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Abstract
Summary: Federated learning enables collaboration in medicine, where data is scattered across multiple centers without the need to aggregate
the data in a central cloud. While, in general, machine learning models can be applied to a wide range of data types, graph neural networks
(GNNs) are particularly developed for graphs, which are very common in the biomedical domain. For instance, a patient can be represented by a
protein–protein interaction (PPI) network where the nodes contain the patient-specific omics features. Here, we present our Ensemble-GNN soft-
ware package, which can be used to deploy federated, ensemble-based GNNs in Python. Ensemble-GNN allows to quickly build predictive mod-
els utilizing PPI networks consisting of various node features such as gene expression and/or DNA methylation. We exemplary show the results
from a public dataset of 981 patients and 8469 genes from the Cancer Genome Atlas (TCGA).

Availability and implementation: The source code is available at https://github.com/pievos101/Ensemble-GNN, and the data at Zenodo (DOI:
10.5281/zenodo.8305122).

1 Introduction

Machine learning and deep learning offer new opportunities
to transform healthcare, and have been used in many different
areas, including oncology (Bibault et al. 2016), pathology
(Coudray et al. 2018), diabetes (Spänig et al. 2019), or infec-
tious diseases (Riemenschneider et al. 2016, Ren et al. 2022).
However, clinical datasets are typically rather small and need
to be aggregated over different hospitals. Often, data ex-
change over the internet is perceived as insurmountable, pos-
ing a roadblock hampering big data-based medical
innovations. The most pressing problem in training powerful
AI is that all the data usually distributed over various hospi-
tals needs to be accessible in a central cloud. Due to recent
data leaks, public opinion, and patient trust (Holzinger 2021,
Holzinger et al. 2021) demand more secure ways of storing
and processing data. As the E.U. GDPR (General Data
Protection Regulations) and as the E.U. NISD (Network and
Information Security Directive) entered into force in 2018 and
2016, respectively, data providers, researchers, and IT solu-
tion providers are challenged to find ways of providing

hospitals complete control over how the patient data is proc-
essed. Federated AI enables collaborative AI without sharing
the data and, thus, is a promising approach toward GDPR
compliance. Federated AI implies that each participant se-
curely stores its data locally and only shares some intermedi-
ate parameters computed on local data (Hauschild et al.
2022, Näher et al. 2023). It should be noted, that using feder-
ated learning alone does not automatically fulfill all GDPR
requirements. For instance, federated learning does not pro-
tect against attacks such as model inversion.

Graph neural networks (GNNs) are widely adopted within
the biomedical domain (Muzio et al. 2021). Biological entities
such as proteins do not function independently and thus must
be analyzed on a systems level. GNNs provide a convenient
way to model such interactions using e.g prior knowledge de-
fined by a protein–protein interaction network (PPI). The PPI
can be used as the GNN’s input graph, while the nodes can be
enriched by patient-specific omics profiles. These knowledge-
enriched deep learning models might be more interpretable
compared to standard approaches when used to predict
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patient outcomes. However, due to the GDPR mentioned
above, the challenge remains how to enable federated learning
on GNNs. Here, we present a software tool and Python pack-
age for federated ensemble-based learning with GNNs. The
implemented methodology enables federated learning by
decomposing the input graph into relevant subgraphs based
on which multiple GNN models are trained. The trained mod-
els are then shared by multiple parties to form a global, feder-
ated ensemble-based deep learning classifier.

2 Materials and methods

2.1 Input data

The input data for our software package consists of patient
omics data on a gene level and a PPI network reflecting the in-
teraction of the associated proteins. In order to perform graph
classification using GNNs, each patient is represented by a
PPI network, and its nodes are enriched by the patient’s indi-
vidual omics features. We call these networks patient-specific
PPI networks. Given that specific data representation, it is
possible to classify patients based on their genomic character-
istics while incorporating the knowledge about the functional
relationships between proteins. It should be noted, that the to-
pology of the network is the same for all patients.

2.2 Ensemble learning with graph neural networks

The proposed algorithm for graph-based ensemble learning
consists of three steps:

1) Decomposition of the PPI network into communities us-
ing explainable AI.

2) Training of an ensemble GNN graph classifier based on
the inferred communities.

3) Predictions via Majority Voting.

In the first step, the Python package GNNSubNet (Pfeifer
et al. 2022) is used to build a GNN classifier and to infer rele-
vant PPI network communities (disease subnetworks). In de-
tail, GNNSubNet utilizes the Graph Isomorphism Network
(GIN) (Xu et al. 2018) to derive a graph classification model
and implements a modification of the GNNExplainer (Ying
et al. 2019) program such that it computes model-wide
explanations. This is done by randomly sampling patient-
specific networks while optimizing a single-node mask. From
this node mask, edge relevance scores are computed and
assigned as edge weights to the PPI network. A weighted com-
munity detection algorithm finally infers disease subnetworks.
In the second step, an ensemble classifier based on the inferred
disease subnetworks is created, and predictions are accommo-
dated via Majority Voting. The ensemble members are predic-
tive GNN models, that are based on the detected disease
subnetworks, which overall makes the deep learning model
more interpretable. High performing members of the ensem-
bles may consist of a subnetwork biologically important for a
specific disease or disease subtype.

In the federated case, each client has its dedicated data
based on which GNN models of the ensemble are trained.
These models are shared among all clients creating a global
ensemble model, and predictions are again accomplished via
Majority Vote (see Fig. 1).

3 Results and discussion

We used the gene expression data of human breast cancer pa-
tient samples for an experimental evaluation of the herein
proposed methodologies. The Cancer Genome Atlas (TCGA)
provided the data preprocessed as described in (Chereda et al.
2021b). The data was structured by the topology of Human
Protein Reference Database (HPRD) PPI network (Keshava
Prasad et al. 2009). The resulting dataset comprises 981
patients and 8469 genes. The binary prediction task was to
classify the samples into a group of patients with the luminal
A subtype (499 samples) and patients with other breast cancer
subtypes (482 samples).

3.1 Performance of Ensemble-GNN in

nonfederated case

We assessed the performance of our algorithm using 10-fold
cross-validation (see Table 1). Ensemble-GNN, initially using
GIN as a base learner, showed the average balanced accuracy
(Brodersen et al. 2010) of 0.86 (fourth row of Table 1). As a
comparison, a Random Forest (RF) classifier, not guided and
restricted by any PPI knowledge graph, demonstrated 0.90 of
average balanced accuracy on the same dataset. The slight de-
crease in performance can be explained by the following rea-
son: The GIN method (Xu et al. 2018) shows worse
convergence during training on gene expression modality,
compared to data with combined gene expression and DNA
methylation modalities [see also Pfeifer et al. (2022), Table 2].
Since transcriptomics is one of the most common omics types
(Athieniti and Spyrou 2023), we improved the performance
of Ensemble-GNN specifically on gene expression modality
using the ChebNet approach from Defferrard et al. (2016).
ChebNet models have been successfully applied in Chereda
et al. (2021a) to classify patients based on gene expression
profiles structured by a PPI network. The corresponding pre-
dictions were further explained on a patient level (Chereda
et al. 2021a). Ensemble-GNN employing ChebNet as a base
learner achieved as good classification performance as RF (see
Table 1).

For the GIN architecture we could observe that decompos-
ing the PPI into subnetworks has a positive effect on the pre-
dictive performance. For the ChebNet architecture, however,
no such effect can be reported. We explain this difference by
the fact that the employed GIN classifier applies global pool-
ing to the whole graph. In a classical graph classification set-
up pooling from an entire graph, comprising a small set of
vertices, is more efficient than pooling from a graph with
thousands of vertices. In our case the graph topology is the
same across all patients, which might intensify the aforemen-
tioned effect. Furthermore, it has been reported that GNNs
are susceptible to an effect called “oversmoothing” in multi-
layered architectures (Rusch et al. 2023). In our case, GIN
had five message-passing layers while ChebNet comprised
one graph convolutional layer and one fully connected layer,
without global pooling. GNNs trained on smaller subnet-
works could be less affected by the “oversmoothing” phe-
nomenon. Our reported results on gene expression data using
the GIN architecture support this observation; however, addi-
tional investigation is required to draw definitive conclusions.

3.2 Performance of Ensemble-GNN in

federated case

In the federated case, we evaluated the performance of
Ensemble-GNN using the two implemented base learners:
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GIN and ChebNet. We utilized five Monte Carlo iterations,
in which the data was equally distributed across three clients.
Each client-specific data was then split into a train (80%) and
test dataset (20%). The trained models of the client-specific
Ensemble-GNNs were combined into a global federated
model. The performance of the global model was estimated
using client-specific test sets.

For Ensemble-GNN (GIN), the mean local client-specific
test accuracy from five Monte Carlo iterations was [0.84,
0.83, 0.78, 0.79, 0.81] with an overall mean value of 0.81
(see Table 2). For the global, federated model we obtained
[0.85, 0.86, 0.83, 0.84, 0.87] with a mean value of 0.85.
Mean performance values for Ensemble-GNN using the
ChebNet architecture were higher, 0.85 and 0.87 respectively.

We have conducted an additional experiment, where we
initially split the data into a global train set and a global test
dataset. The train set was then equally distributed across three
clients. The average performance of the local classifier to pre-
dict the global test set was [0.78, 0.80, 0.77, 0.77, 0.76] with

an overall mean value of 0.78. The accuracy of the federated
model was [0.82, 0.83, 0.82, 0.80, 0.86] with an overall
mean value of 0.83. The performance of Ensemble-GNN
could be improved using ChebNet. In this case, we obtained
mean values of 0.87 and 0.88 respectively (see Table 2).

Note, we report on balanced accuracy in all cases to ac-
count for a possible unbalanced sample distribution caused
by the data splits. However, whether the federated model can
compensate for possible batch effects and/or non-IID (inde-
pendent and identically distributed) data is uncertain. In our
future work, we could use the concepts of federated domain
adaptation as proposed by Peng et al. (2019) and transfer
learning (Park et al. 2021) to make a global model adaptable
to a specific client.

Finally, the overall accuracy could be further improved us-
ing aggregation techniques beyond Mayority Voting. For in-
stance, the inferred subnetworks could be weighted by their
relevances to obtain the final labels. Alternative voting rules
were also developed and discussed by Werbin-Ofir et al.
(2019).

4 Conclusion

We present Ensemble-GNN, a Python package for ensemble-
based deep learning with interpretable disease subnetworks as
ensemble members. The implemented methodology is espe-
cially suited, but not limited to, the federated case, where sen-
sitive data is distributed across multiple locations. We could
show that the models trained on subnetworks locally, and
shared across multiple parties/clients globally, can improve
client-specific predictive performance.

Figure 1. Federated ensemble learning with GNNs. Each client builds its dedicated ensemble classifier based on relevant subnetworks. The models

trained on these subnetworks are shared and a global ensemble classifier is created. Final predictions are based on Majority Voting

Table 1. Performance within 10-fold CV (mean balanced accuracy 6

standard error of the mean) of GNNSubNet and Ensemble-GNN utilizing

TCGA-BRCA data, depending on a base learner (GIN or ChebNet).

Method (base learner) Balanced accuracy

RF (decision tree) 0.90 6 0.0109
GNNSubNet (ChebNet) 0.90 6 0.0094
Ensemble-GNN (ChebNet) 0.90 6 0.0105
Ensemble-GNN (GIN) 0.86 6 0.0120
GNNSubNet (GIN) 0.52 6 0.0121
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Table 2. Performance (mean balanced accuracy) of Ensemble-GNN based on TCGA-BRCA data, depending on the base learner GIN and ChebNet.a

Method (base learner) Federated setup with client-specific test data Federated setup with global test data

Local model Federated model Local model Federated model

Ensemble-GNN (ChebNet) 0.85 0.87 0.87 0.88
Ensemble-GNN (GIN) 0.81 0.85 0.78 0.83

a For both federated setups, the data was distributed across three clients within five Monte-Carlo iterations.
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