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Proteomic characterization of epithelial
ovarian cancer delineates molecular
signatures and therapeutic targets in distinct
histological subtypes

Ting-Ting Gong1,8, Shuang Guo2,8, Fang-Hua Liu3,4,5, Yun-Long Huo6,
Meng Zhang3,4,5, Shi Yan3,4,5, Han-Xiao Zhou2, Xu Pan2, Xin-Yue Wang2,
He-Li Xu3,4,5, Ye Kang6, Yi-Zi Li3,4,5, Xue Qin1, Qian Xiao1,3, Dong-Hui Huang3,4,5,
Xiao-Ying Li3,4,5, Yue-Yang Zhao3, Xin-Xin Zhao3, Ya-Li Wang3, Xiao-Xin Ma1,
Song Gao1, Yu-Hong Zhao3,4,5, Shang-Wei Ning 2,9 & Qi-Jun Wu 1,3,4,5,7,9

Clear cell carcinoma (CCC), endometrioid carcinoma (EC), and serous carci-
noma (SC) are the major histological subtypes of epithelial ovarian cancer
(EOC), whose differences in carcinogenesis are still unclear. Here, we under-
take comprehensive proteomic profiling of 80 CCC, 79 EC, 80 SC, and 30
control samples. Our analysis reveals the prognostic or diagnostic value of
dysregulated proteins and phosphorylation sites in important pathways.
Moreover, protein co-expression network not only provides comprehensive
view of biological features of each histological subtype, but also indicates
potential prognostic biomarkers and progression landmarks. Notably, EOC
have strong inter-tumor heterogeneity, with significantly different clinical
characteristics, proteomic patterns and signaling pathway disorders in CCC,
EC, and SC. Finally, we infer MPP7 protein as potential therapeutic target for
SC, whose biological functions are confirmed in SC cells. Our proteomic
cohort provides valuable resources for understanding molecular mechanisms
and developing treatment strategies of distinct histological subtypes.

Epithelial ovarian cancer (EOC) is the most common type of ovarian
cancer (OC), and is considered to be a malignant transformation from
the ovarian surface, peritoneal, or fallopian tube epithelium1. According
to the 2020World Health Organization (WHO) classification2, common
histological subtypes of EOC include clear cell carcinoma (CCC),
endometrioid carcinoma (EC), serous carcinoma (SC), and mucinous

carcinoma. Among them, SC, the most prevalent EOC subtype, shows
the worst survival outcome and is the leading cause for gynecological
cancer-related deaths3. As a result, SC has received widespread atten-
tion, particularly in studies of large cohorts, such as The Cancer Gen-
ome Atlas (TCGA)4. Exploratory genome and transcriptome data from
SC cohorts have increased our overall understanding of EOC5,6.
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As the improvement in analytical depth via mass spectrometry
(MS) has proceeded, researchers have captured druggable molecular
phenotypes at the proteome levels in multiple cancer types. In glio-
blastoma, proteomic analysis has characterized the signature of the
epithelial-mesenchymal transition (EMT) as specific to tumor cells but
not to stroma in the mesenchymal subtype7. For hepatocellular carci-
noma, Jiang et al. demonstrated that sterol O-acyltransferase 1
(SOAT1), with a subtype-specific signature, suppressed the prolifera-
tion and migration of cancer cells8. Furthermore, several studies have
explored the important role of proteomic profiling in high-grade ser-
ous ovarian cancer (HGSOC). The study by Zhang et al. provided
additional insights into the pathways and processes that drive the
biology of HGSOC and how these pathways are altered relative to the
clinical phenotypes9. McDermott et al. described a potential role for
proliferation-induced replication stress in promoting the character-
istic chromosomal instability of HGSOC10. A study from Coscia et al.
also revealed that cancer/testis antigen 45 (CT45), a prognostic factor
associated with the doubling of disease-free survival, enhanced che-
mosensitivity in metastatic HGSOC11. However, molecular character-
ization of EOC histological subtypes (CCC, EC, and SC) using large
cohorts is still limited.

In this work, we collect a cohort of 269 EOC samples, aiming at a
comprehensive characterization of EOC based on proteomic analysis,
to increase our knowledge of the molecular features associated with
this lethal malignancy. A comparison of the proteomic profile of EOC
and control tissue (CT) samples reveals dysregulated proteins and
aberrant signaling pathways. The protein co-expression network not
only reflects the biological features of each co-expressionmodule, but
also suggests potential prognostic biomarkers and progression land-
marks. There is strong heterogeneity among the histological subtypes
of EOC. Based on protein expression levels, prognostic ability and
druggability, we also predict potential therapeutic targets for each
subtype separately.

Results
Proteomic landscape highlights heterogeneity and differences
in clinical characteristics of EOC
We collected 239 EOC samples (SC, n = 80; EC, n = 79; and CCC,
n = 80) and 30 CT samples (Supplementary Data 1). The proteome
analysis was performed using label-free technology on the same
mass spectrometer with consistent quality control (Fig. 1a). A total of
8257 proteins were identified across all tumor samples. The number
of proteins detected in each sample was shown in Supplementary
Fig. 1a, in which Supplementary Fig. 1b demonstrated the details of
the proteomic data quantification for each group. UniformManifold
Approximation and Projection (UMAP) analysis demonstrated a
clear distinction between the proteomes of tumor and non-tumor
samples as well as between EOC pathology subtypes, which further
highlights the high heterogeneity among tumor samples that
underpins our stratification analysis (Fig. 1b). To better depict the
inter-tumor heterogeneity of EOC, we characterized the patients’
clinical information among pathology subtypes. Compared with EC
and CCC, patients with SC were older at diagnosis and were prone to
relapse (Fig. 1c and Supplementary Data 2). Moreover, SC was enri-
ched with advanced tumor stages than EC and CCC (Fig. 1d and
Supplementary Data 2). In particular, evaluation of the survival
characteristics of the EOC histological subtypes revealed that SC,
EC, and CCC exhibited significantly different overall survival (OS)
and relapse-free survival (RFS) (Fig. 1e and Supplementary Data 2).
Of these, SC had a significantly lower survival rate and a greater risk
of postoperative death and recurrence, with a median OS of
47.57 ± 2.36 months and a median RFS of 16.57 ± 2.50 months
(median ± standard error). Furthermore, we delineated protein
subcellular localization and found that most detected proteins were
from the nucleus (n = 2834), plasma membrane (n = 740), and

mitochondria (n = 620), implying potential protein targets and
dysregulated biological processes (BPs) (Fig. 1f).

Dysregulated proteins impact important biological processes
Dysregulated proteins in tumors were identified based on proteomic
data. Of the 4447 high-quality proteins obtained after quality control,
295 and 927 proteins were significantly up- and downregulated in the
tumor samples, respectively (adj.P value < 0.01 and |log2 (fold change)|
>1, Fig. 2a and Supplementary Data 3). Intriguingly, we found thatmost
dysregulated proteins tended to be downregulated in tumor tissue,
which was also supported by the previous study10. In addition, we
found that upregulated proteins had higher average expression than
downregulated proteins (Supplementary Fig. 2a). In addition, we cal-
culated the mutation frequency of these dysregulated proteins in SC
samples using the somatic mutation data of the TCGA mc3 project12,
and the results showed no significant difference in the mutation fre-
quency of dysregulated proteins (Supplementary Fig. 2b).

Functional enrichment analysis was applied to dysregulated pro-
teins with a fold change larger than 2, and GO analysis indicated that
downregulated proteins were significantly enriched in BPs including:
cell death, DNA repair/damage, development and immune response,
and others, whereas BPs that were enriched in upregulated proteins
were limited (Fig. 2b, Supplementary Fig. 2c, and Supplementary
Data 4). As for KEGG pathways, DNA replication, cell cycle, HIF-1 sig-
naling pathway and several metabolism-related pathways were over-
represented in proteins upregulated in tumor samples, whereas PI3K-
Akt signaling pathway and focal adhesion and extracellular matrix
(ECM)-receptor interaction were overrepresented in downregulated
proteins (Fig. 2c and Supplementary Data 4). Meanwhile, the GSEA-
enrichedGObiological processes and KEGGpathways also highlighted
consistent biological functions (Supplementary Data 5). The GSEA
analysis of cancer hallmarks revealed that the estrogen response and
oxidative phosphorylation hallmarks were overrepresented in the
upregulated proteins, and that apoptosis, EMT, TNFA signaling via NF-
κB, and other pathways were overrepresented in the downregulated
proteins in EOC (Fig. 2d), which indicated that the proliferation and
metastasis of tumor cells may be promoted through aberrant proteins
and pathways.

We aimed to measure the ability of differentially expressed pro-
teins to classify EOC and CT samples. Firstly, to distinguish between
tumor and normal samples, differentially expressed proteins were
used as the initial feature. Then, the classification performance of each
feature was evaluated using the area under the curve (AUC) of the
receiver operating characteristic (ROC) curves (R package “pROC”13).
In addition, proteinswith gooddiscriminatorypowerwere enrolled for
further validation in the ovarian cancer cohort of McDermott et al.
(Clinical Proteomic Tumor Analysis Consortium, CPTAC cohort)10. We
observed that multiple upregulated proteins exhibited strong dis-
criminatory ability with a mean AUC greater than 0.9 (current cohort)
and further validated in the CPTAC cohort10 with a mean AUC also
greater than 0.8. The exosome protein lists from the ExoCarta (http://
www.exocarta.org/)14 and Vesiclepedia (http://microvesicles.org/)15

databases. Proteins with discriminatory ability have overlapping por-
tions with exosomal proteins (Fig. 2e), and these overlapping proteins
may provide richer perspectives for EOC research.

Signaling pathway disturbances suggest latent therapeutic
opportunities
Since the proteomic analysis revealed disturbances in several signaling
pathways, we next sought to elucidate such disturbances from amulti-
omics perspective. Here, we integrated previously published phos-
phoproteomic data (CPTAC cohort)10 and phosphoproteomic analysis-
identified dysregulated phosphosites of these proteins in the above
pathways. As a result, we found that proteins in DNA replication
pathways showed global upregulated patterns, whereas dysregulated
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phosphosites showed more complex patterns in Gap 1 Phase, Gap 2
Phase and Mitotic Phase. The HIF-1 signaling pathway was also enri-
ched in upregulated proteins, whereas the phosphorylation of these
proteins was inhibited in the CPTAC cohort. Furthermore, we found
that ECM receptors and the PI3K-Akt signaling pathway were over-
represented in downregulated proteins in EOC, with the phosphosites
showing a downregulated pattern as well. Approved drug-target pro-
teins were identified in the Drug–Gene Interaction database (DGIdb,
https://dgidb.genome.wustl.edu/)16 and were highlighted in the above
pathways (Fig. 3a).

Clinical associations of dysregulated proteins in the above four
pathways were assessed by univariate regression analysis. Multiple
well-known therapeutic targets, such as CDK4, CDKN1B, and COL1A2,
showed very high-risk scores for a mortality prognosis of EOC (Cox
adj.P values < 0.05, Fig. 3b and Supplementary Data 6). In addition,

ECM-receptor members including COL1A1, COL1A2 and COL6A3 were
associated with RFS and showed significantly lower expression in
tumor samples than in controls, with lower expression associated with
longer survival rate (Cox adj.P values < 0.05, Fig. 3b and Supplemen-
tary Data 6), which suggested that the receptors mediating the asso-
ciation between cellular and matrix components are altered in the
EOC. Particularly, among these targetable proteins, CDK4, CDKN1B,
and COL1A2 showed very high-risk scores in both OS and RFS of EOC
(Cox adj.P values < 0.05, Fig. 3b and Supplementary Data 6). To
determine the stability of CDK4, CDKN1B, and COL1A2 protein
expression, we used the Parallel ReactionMonitoring (PRM) analysis to
target these proteins to quantify their expression levels and verified
that these proteins were still under-expressed in EOC (Supplementary
Fig. 2d). The above results suggested that targeting theseproteinsmay
prove beneficial in future clinical treatments.
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Fig. 1 | Proteome landscape in EOC histological subtypes. a Overview of the
experimental setup for MS-based proteome profiling. b UMAP plot of epithelial
ovarian cancer (EOC) tumor and control tissue (CT) samples, color-coded by EOC
histological subtypes. c Heatmap showing the clinical information and mean pro-
tein abundance of samples. d Differences in the abundance of EOC histological
subtypes in terms of tumor stage. CCC samples (n = 80), EC samples (n = 79), and

SC samples (n = 80). P values were calculated by two-sided Fisher’s exact test.
eKaplan–Meierplots of overall survival (OS) (Log-rankP value = 4e-08) and relapse-
free survival (RFS) (Log-rank P value < 2e-16) for EOC histological subtypes. CCC
samples (n = 80), EC samples (n = 79), and SC samples (n = 80). f Schematic diagram
of protein subcellular localization. Icons were made by Freepik (https://www.
freepik.com/home). Source data are provided as a Source Data file.
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Protein network characterization identifies candidate bio-
markers and progression landmarks
To investigate the biological characteristics of our cohort from a
proteome-wide perspective, we constructed a protein co-expression
network based on protein expression profiling using weighted gene

co-expression network analysis (WGCNA). A scale-free network was
implemented with scale-free R2 = 0.8 and soft-threshold power (β) =
4 as the soft-threshold values (Supplementary Fig. 3a). We per-
formed the “cutreeDynamic” function with minModuleSize = 5, and
identified up to 58 co-expression EOC modules (Supplementary
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interval (CI). Source data are provided as a Source Data file.
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Fig. 3b). Among them, 41 modules were further extracted by
exploring enriched BPs for each module by GO annotations (adj.P
values < 0.05). Figure 4a illustrated the protein co-expression net-
work of 896 nodes and 13,574 edges, which was annotated with the
distinct biological functions of eachmodule. For example, Module4,
the largest co-expression module, was mainly participated in basic
functions such as nucleic acid transport, RNA splicing and RNA
localization. Module11 showed similar primary functions as Mod-
ule4. Similarly, proteins in multiple modules were involved in DNA
repair (Module9 and Module16), transport (Module27, Module45,
etc.), and localization (Module14). As the second largest co-
expressed module, Module1 was associated with a variety of
important immune functions, such as acute inflammatory response,
humoral immune response and immune effector process. In addi-
tion, Module18, Module36, and Module12 were also significantly
enriched in immune-related BPs. In the co-expression network,
41.34% of the protein–protein interactions were known interactions
in the STRING database (https://cn.string-db.org/)17. For the inter-
actions in the co-expression network, the mean Pearson correlation
was 0.643, and for the STRING database, it was 0.663 (Fig. 4b). In

addition, we examined the overlap between the above EOCmodules
and the histological subtype modules, where the protein associa-
tions between the modules were assessed using the hypergeometric
Fisher’s exact test (adj. P values < 0.05). The results showed that
almost all histological subtype modules (97%) had a statistically
significant overlap with the EOC modules (Supplementary Fig. 3c),
demonstrating a better overlap between the EOC modules and the
histological subtype modules.

Subsequently, we evaluated the abnormal expression levels of
the proteins by comparing each histological subtype with CT sepa-
rately (Supplementary Fig. 3d and Supplementary Data 7). When the
relative protein abundances per pathogenic category were super-
imposed overlaid on the network, multiple modules (such as Mod-
ule31, Module7, Module18, etc.) with differential regulation among
the three histological subtypes were identified (Fig. 4c). The protein
abnormalities and functional variations in the specific modules were
considered essential. Interestingly, the proteins ofModule31 (Fig. 4d)
were not only differentially expressed among histological subtypes
(Supplementary Fig. 4a), but also highly expressed in late stages
(stage III and IV), elucidating the molecular dynamics of tumor
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progression (Fig. 4e and Supplementary Fig. 4b). In particular, sig-
nificant shorter OS time periods were evident in patients with higher
expression of IFIT3 (Fig. 4f), indicating that IFIT3 could be a candidate
biomarker and a progression landmark for EOC. Furthermore, ECM-
receptor members including COL4A1, COL4A2, and LAMA1, which
belong toModule7 (Supplementary Fig. 4c), were also associatedwith
histological subtype and stage (Supplementary Fig. 4d, e). To verify
the expression characteristics of these proteins, including IFIT1, IFIT2,
IFIT3, COL4A1, COL4A2, and LAMA1, we performed the PRM analysis
and found that the expression levels of these proteins in histological
subtypes and stages were consistent with the above results, which
reflected the reproducibility of the proteins (Supplementary
Fig. 4f, g).

Distinct molecular features and pathogenic mechanisms in his-
tological subtypes
To gain insight into proteins that would be distinguished between the
various subtypes, we applied the K-W test to identify differentially
expressed proteins in the three histological subtypes. Next, a pairwise
comparison between subtypes was performed. We assessed the
overlap of differentially expressed proteins between SC with CCC and
SC with EC as SC-specific proteins. We performed a similar analysis to
identify the specificproteins of the twoother subtype-specificproteins
(Supplementary Fig. 5a). We identified 861 CCC-specific proteins, 423
EC-specific proteins, and 1094 SC-specific proteins (Fig. 5a). Next, we
performed functional enrichment analysis on subtype-specific pro-
teins, in which GO categories were grouped according to the
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functional theme. The CCC-specific proteins were enriched in meta-
bolic processes such as cellular lipid catabolic process, translational
initiation, and hexose metabolic process. The EC-specific proteins
were enriched in viral process antigen processing and presentation.
The SC-specific proteins were enriched in intracellular transport and
cell communication such as protein-containing complex localization
and substrate adhesion-dependent cell spreading (Fig. 5b). Next, we
explored the biological significance of pathways using Metascape
pathway analysis. The CCC-specific proteins were enriched in path-
ways such as PI3K-Akt signaling pathway, the citric acid (TCA) cycle
and respiratory electron transport, and ECM-receptor interaction. The
EC-specific proteins were enriched in pathways such as MHC class II
antigen presentation, selective autophagy, and Oxidative damage
response. The SC-specific proteins were enriched in pathways such as
Programmed Cell Death, Activation of NF-κB in B cells and VEGFA-
VEGFR2 signaling pathway (Fig. 5c). All three subtype-specific proteins
were enriched in signaling pathways associated with Rho GTPases
(Fig. 5d). The Rho family of small GTPases coordinate cell cycle pro-
gression, cell migration, and actin cytoskeleton dynamics18. A higher
resistance of culturedmetastatic EOC cells to chemotherapeutic drugs
through the Rho/ROCK signaling pathway19,20. Furthermore, proteins
in the pathwaywere differentially expressed in the three subtypes. For
example, among the three subtypes, RHOA (P values = 6.5e-13) and
PAK1 (P values = 6.3e-9) had the highest expression in SC and EC,
respectively.

Next, we investigated common dysregulated proteins across the
three subtypes and characterized the copy number variation of these
proteins in TCGA (Supplementary Fig. 5b). We found no significant
differences between the copy number variations of these dysregulated
proteins. In addition, hallmark MTORC1 signaling was significantly
associated with these common proteins (Supplementary Fig. 5c), and
the common dysregulated proteins were enriched in protein autop-
hosphorylation, axon development, cell junction, cell junction
assembly and regulation of developmental growth (Supplemen-
tary Fig. 5d).

Based on the differences in tumor stages of three histological
subtypes, the differences in protein and biological functions between
early-stage (stages I and II) and late-stage (stages III and IV) of tumors
were further investigated in each histological subtype separately.
Supplementary Fig. 6a demonstrates the number of tumor progres-
sion landmarks for each histological subtype. Notably, there was a low
overlap of tumor progression landmarks between histological sub-
types, demonstrating their subtyping specificity. We also revealed
specific KEGG signaling pathways that promote tumor progression for
eachhistological subtype (Supplementary Fig. 6b). In particular, the SC
subtype, with the worst survival rate, exhibited abnormalities in mul-
tiple signaling pathways, focusing on cellular processes (such as focal
adhesion and regulation of actin cytoskeleton) and organismal sys-
tems (such as leukocyte transendothelial migration, FcγR-mediated
phagocytosis, and chemokine signaling pathway) (Supplementary
Fig. 6b and Supplementary Data 8). Among them, focal adhesion
promotes tumor development and metastasis through effects on
cancer cells and stromal cells of the tumor microenvironment21. The
interaction of these aberrant signaling pathways may accelerate
metastasis, recurrence, and even death in the SC population.

Potential therapeutic targets for distinct histological subtypes
We tried to find potential drug targets for each histological subtype.
First, the intersection of differentially expressed proteins in EOC and
CT with subtype-specific proteins was used as a candidate protein list.
Then, independent and significant prognostic proteins were identified
for each histological subtype based on Kaplan–Meier curves and Cox
regression analysis. In CCC, CSPG4 was highly expressed compared to
the other two subtypes.Moreover, CSPG4 hadprognostic value only in
CCC and not in the other groups (Fig. 6a, b). Low expression of

TMEM87A was predominantly found in EC, and was significantly
associated with good prognostic outcome in patients with EC (Fig. 6c,
d). Protein MMP7 displayed excellent potential as a therapeutic target
in SC, with subtype-specific high expression and prognostic ability
(Fig. 6e, f). The prognostic value of MPP7 was also validated in the
CPTAC dataset (log-rank P values < 0.05).

Based on the prognostic value of MPP7 and the degree of malig-
nancy of SC, we investigated the function of MPP7 in SC cells in vitro.
Malignant behaviors including cell proliferation, cell migration, and
cell invasion, cell cycle distribution, and cell apoptosis were assessed.
Cell counting kit-8 (CCK-8) assays showed that shRNA-mediatedMPP7
knockdown decreased cell viability (Supplementary Fig. 7a and Sup-
plementary Data 9), indicating the inhibition of cell proliferation by
MPP7 knockdown. Flow cytometric analysis of cell cycle demonstrated
that MPP7 knockdown resulted in decreases in cells at the S phase and
increases in cells at the G1 and G2 phase (Fig. 6g and Supplementary
Data 10). The results implied that MPP7 was involved in the regulation
of G1-S and S-G2 transition. Flow cytometric analysis of cell apoptosis
elucidated that cell apoptosis was induced by MPP7 knockdown
(Fig. 6h and Supplementary Data 11). Transwell assays suggested that
cell migration and invasion were inhibited by MPP7 knockdown
(Supplementary Fig. 7b, c and Supplementary Data 12 and 13). These
findings uncovered that the biological function of MPP7 in SC. Taken
together, we propose the further analysis of these subtype-specific
proteins as promising therapeutic targets in the three histological
subtypes.

Discussion
Epidemiological studies have shown that OC is the second most
common malignant gynecological tumor characterized by high mor-
tality, increased recurrence rate, heterogeneity, and drug resistance22.
Among them, EOC is the most common type of OC, accounting for
more than 90% of cases, and it has the greatest fatality rate among
malignant tumors of the female reproductive system23. Despite
breakthroughs in chemotherapy and surgery for patients, this disease
continues to represent a substantial threat to women, which is pri-
marily due to the lack of symptoms in its early stages and apparent
inter-tumor heterogeneity24. Thus, there is an urgent need to uncover
the dysregulated molecular pathways and identify prognostic bio-
markers and potential drug targets, which are essential for the pre-
vention and treatment of EOC.

In clinical characteristics, we found that women in our cohort
tended to be younger and had amore favorable outcome compared to
the general EOC population, which is consistent with several previous
studies25–31. In terms of age, previous evidence has shown that preg-
nancy history has been consistently related to OC risk32. Recent
changes in fertility rates in China may have partly contributed to the
early development of OC33. Another possible explanation for this dis-
parity may be the younger age at diagnosis with better physical fitness
and tolerance for aggressive treatment26,28.

Although genetic analysis has made significant advances in pre-
cision oncology, it still has limitations since the functions encoded by
the genome are predominantly executed at the protein level34,35.
Proteomic-based analysis extends new perspectives for screening
disease-associated biomarkers and candidate molecular targets,
improving our understanding of malignancy transformation and
therapeutic approaches36–39. In our study, we added another omics
layer-based proteomic analysis of EOC, and provided complementary
insights into this malignancy beyond our current genomic under-
standing. We performed a quantitative proteomic analysis of EOC and
CT tissues and identified a series of differentially expressed proteins.
Notably, most dysregulated proteins tended to be under-expressed in
tumor tissues, which was consistent with a previous study10. For
example, the expression abundance of multiple key proteins (such as
COL1A1, COL1A2, ITGA2B, ITGB3, etc.) in the ECM-receptor interaction
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or PI3K-AKT signaling pathways were significantly downregulated10.
And, significant enrichment of biological functions, such as humoral
immune response, focal adhesion, and regulation of endocytosis, were
corroborated10. Moreover, multiple disordered hallmarks of cancer
were identified, including apoptosis, EMT and the TNFA signaling
pathway, among others, suggesting oncogenic and invasive roles
in EOC40.

Particularly, disturbances in signaling pathways may suggest
potential therapeutic opportunities. Uncontrolled cell proliferation is
a hallmark of cancer40. The complex composed of cyclins and their
associated cyclin-dependent kinases (CDKs) promotes cell cycle
progression by phosphorylating and inactivating the retinoblastoma
protein (RB)41,42. We observed that CDK4, CDK6, and CDKN1B parti-
cipating in the cell cycle were all risk factors for the recurrence of
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EOC. Inhibition of CDKs blocks uncontrolled cell proliferation. The
development of pharmacological inhibitors of CDKs has shown pro-
mising activity and clinical efficacy in the treatment of breast
cancer41,43–45. There was also a phase II trial found that CDK4/6 inhi-
bition with palbociclib was well tolerated and demonstrated single-
agent activity in patients with recurrent ovarian cancer46. In addition,
EOC cells spread through direct extension to the peritoneum, invade
the underlying basementmembrane and spreadover the ECM to form
metastatic implants, unlike most solid tumors that spread by lym-
phatic or hematogenous routes47. Collagen is the most abundant
component in ECM proteins, which plays a critical role in cell pro-
liferation, differentiation and maintenance of tissue homeostasis48.
Among them, abnormal expression of COL4A1 and COL4A2 disrupts
the strict regulation of the ECM and promotes the proliferation and
invasion of cancer cells, which is often the main cause of cancer
metastasis, recurrence and even death49,50. This evidence suggests
that ECM proteins could be potential diagnostic markers for pre-
dicting EOC recurrence and promising drug targets for EOC
treatment.

The construction of the protein co-expression network not only
provides a comprehensive perspective of the biological features
determining each histological subtype, but also rationalizes the
selection of potential biomarkers and progression landmarks. Basic
and immune functional modules dominate the network, and espe-
cially tend tomore abundant protein expression in SC. Abnormalities
in DNA repair and the immune system are developing fields of
research in EOC pathogenesis51,52. For instance, cytotoxic T-cell infil-
tration has been shown tobe associatedwith improvedoverall patient
survival53. In particular,Module31 in our study not only participated in
BPs related to antiviral and immune response, but also showed sig-
nificant differences in histological subtypes and stages. In addition,
IFIT proteins participate in the regulation of antiviral and immune
response, apoptosis, cell population proliferation and migration54–58.
Emerging evidence suggests that these IFIT proteins may also play
roles in cancer progression54. For example, high IFIT3 expression
predicted better response to IFN-α therapy in hepatocellular carci-
noma patients59, and its knockdown attenuated chemoresistance of
pancreatic cancer cells to gemcitabine and paclitaxel therapy60.
Intriguingly, IFIT3 characterized the molecular dynamics of tumor
progression and predicted shortened OS of patients in our study,
suggesting IFIT3 itself as a potential candidate biomarker and pro-
gression landmark for EOC.

There is considerable clinicopathologic heterogeneity in EOC61,
including a broad spectrum in histologic staging62, and significant
differences in mortality and recurrence rates63, consistent with pre-
vious studies. Clearly, heterogeneity of EOC has a molecular basis.
Examination of proteins with significantly different expression pat-
terns among the three histological subtypes identified multiple
subtype-specific proteins which were enriched in the Rho GTPase-
related signaling pathways. Differences and commonalities in proteins
from distinct histological subtypes may help us to better understand
the mechanisms of tumor progression and facilitate the identification
of potential therapeutic strategies. Given the large heterogeneity
among histological subtypes, it is essential to consider heterogeneity

when considering potential therapeutic targets and treatment deci-
sions. Based on the important role of MPP7 in SC at the levels of
proliferation, cell cycle, apoptosis, migration, invasion, and prognosis,
we considered it as a potential therapeutic target for SC. New et al.
have analyzed MPP7 as positive regulator of pancreatic ductal ade-
nocarcinoma cell survival and autophagy, providing a reasonable basis
for considering this novel autophagy regulator as a therapeutic
target64. These results may have significant implications for the
development of histologic subtype-specific biomarkers and the coor-
dination of therapeutic regimens.

We recognize several limitations. First, historical epidemiologic
data have suggested that the incidence and survival rates of OC
depend on ethnicity and geographical area51,65. Since East Asian
backgrounds were significantly younger compared to other races
and have an earlier stage of OC30,66. This could contribute to the fact
that our cohort had favorable clinical outcomes than that of the
general patients25. However, since our study only included patients
from China, the data may not fully represent the entire population.
This inevitably limits generalization to other populations and
introduces the possibility of bias towards particular
demographics67. Then, we integrated phosphoproteomic data from
a previously published paper by CPTAC10 to investigate the impor-
tant role of proteins and their post-translational modifications in
signaling pathways. Due to differences in patient race/ethnicity (the
patients in our study were yellow, whereas the patients in CPTAC
were predominantly white), this may have imposed some limitations
on the use of phosphoproteomic data. Further research is necessary
to investigate and confirm the findings reported hereof to be clini-
cally meaningful. In addition, we only obtained mass spectrometry-
based proteomic data, lacking data on the transcriptome, muta-
tions, and copy number variation data. This limits our study to
proteomic, and multi-omics data will be used to deepen the study of
EOC histological subtypes in the future.

In conclusion, we have provided a comprehensive characteriza-
tion of EOC based on proteomic analysis, broadening our under-
standing of the molecular features associated with this lethal
malignancy. Proteomic characterization of EOC and CT tissue samples
has revealed features of protein dysregulation and disruption of key
signaling pathways. The protein network reconstitution not only pro-
vides a global perspective of the biological features of each histolo-
gical subtype, but also suggests potential prognostic biomarkers and
progression landmarks. Themarked histological subtype specificity of
EOC is manifested in various aspects, which include staging, survival
rate, recurrence rate and regulation of signaling pathways. Based on
the distinct differences in protein abundance, prognostic ability, and
drug ability of histological subtypes, we also predict potential targets
for each subtype separately. The in vitro experiments further high-
lighted the importance of MPP7 in the malignant behavior of SC cells.
Although experimental verification of the biological functions ofMPP7
in SC cells may not represent the prognostic value of MPP7, our study
provides a potential target for drug therapy in SC that needs to be
further validated in future research. This comprehensive analysis has
thus provided broad insights into the biological characterization,
clinical diagnosis and therapeutics of EOC.

Fig. 6 | Potential therapeutic targets for distinct histological subtypes. a, c, e
Expression levels of CSPG4, TMEM87A, and MPP7 among the respective histolo-
gical subtypes. CCC samples (n = 80), EC samples (n = 79), and SC samples (n = 80).
The P values are calculated using the Kruskal–Wallis test. Boxplots show median
(central line), upper and lower quartiles (box limits), min to max range.
b, d, f Kaplan–Meier survival curves for patients expressing CSPG4, TMEM87A, and
MPP7 in CCC, EC, and SC patients, respectively. CCC samples (n = 80), EC samples
(n = 79), and SC samples (n = 80). Among them, the red line represents highly
expressedprotein and theblue line represents lowly expressedprotein.gOVCAR-3,
A2780, andES-2 cellswere infectedwith lentiviral vectors carrying shMPP7or shNC.

Cell cycle distributionwas analyzed by flow cytometry at 48 h after infection. hCell
apoptosis was measured by Annexin V-FITC/PI staining at 48h after infection. The
count of Annexin V-FITC-positive and PI-positive cells (Late apoptosis) andAnnexin
V-FITC-positive and PI-negative cells (Early apoptosis) was assessed by flow cyto-
metry. Data are presented by mean ± standard deviation and analyzed by the one-
way analysis of variance (ANOVA) followed by Tukey’s tests or the Brown–Forsythe
and Welch ANOVA tests followed by Tamhane T2 tests. The flow cytometry
experiments were repeated four times. Source data are provided as a Source
Data file.
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Methods
Clinical specimens acquisition
All clinical samples, as well as the corresponding clinical information,
were collected after approval by the Institutional Review Board of
Shengjing Hospital of China Medical University (2020PS265K) with
written and informed consent from the patients who were not com-
pensated. A total of 239 formalin-fixed, paraffin-embedded (FFPE)
ovarian epithelial tissues were acquired from newly diagnosed EOC
patients undergoing primary debulking surgery at the Shengjing Hos-
pital of ChinaMedical University (Shenyang, China) from 2013 to 2019.
Detailed information on sample collection, evaluation, and processing
is in Supplementary Method 1. All patients were treated with both
carboplatin and paclitaxel. The 239 patients were included in the pre-
sent analysis with three histological types: SC samples (n = 80), EC
samples (n = 79) andCCCsamples (n =80). Basedon the characteristics
of EOC, it is difficult to obtain para-carcinoma tissue68. Therefore, the
histologically normal ovarian tissues (n = 30) taken from cases of
uterine fibroids were used as CT samples, in which the ovary was sur-
gically removed incidental to radical surgery. The median age of CT
samples at time of surgery was 55 years old and ranged between 41 and
71 years old. All of these samples were examined by two experienced
pathologists who confirmed the diagnosis of the disease samples. Eli-
gible tumor samples contain at least 90% tumor cells.

Tumor stages were calculated according to the International
Federation of Gynecology andObstetrics (FIGO) criteria and histologic
typing system of the WHO, respectively69. OS was determined as the
interval between surgery and death from any cause or the date of last
follow-up (December 31, 2021) for patients who were still alive. The
primary endpoint was RFS, defined as the time from completion of
primary surgery to the first progression or recurrence of disease or
death from any cause70.

FFPE ovarian tissue section preparation
Detailed information on sample collection, evaluation, and processing
has been provided below.

Obtaining a fresh specimen. Cut small blocks of tissue 1 cm2 × 0.4 cm,
and place them in a histological/tissue processing cassette. Cautious:
(1) The ovarian tissuewas removedgently to avoid traumaby anexpert
gynecologist; (2) Specimen is not allowed to dry out prior to fixation;
(3) Avoid contaminating fresh specimens with foreign chemicals or
substances such as disinfectants; (4) Each specimen should be prop-
erly identified and name, pathology number, and other details recor-
ded as soon as possible; (5) Fixation is always carried out promptly. If it
is necessary that a specimen remains unfixed for a short periodof time,
it should be refrigerated at 4 °C.

Fixation. To the tissue, add 20× the tissue volume 10% neutral for-
malin. Cautious: (1) The specimen is placed in formalin, this will slowly
penetrate the tissue causing chemical and physical changes that will
harden and preserve the tissue and protect it against subsequent
processing steps; (2) An adequate volume of fixative (ratio of at least
20:1) is used in a container of an appropriate size. This avoids distor-
tion of the fresh specimen and ensures good quality fixation; (3) Ide-
ally, specimens should remain in fixative for long enough for the
fixative to penetrate every part of the tissue and then for an additional
period to allow the chemical reactions of fixation to reach equilibrium
(fixation time). Generally, this will mean that the specimen should fix
for between 6 and 48 h.

Dehydration. Becausemelted paraffinwax is hydrophobic (immiscible
withwater),mostof thewater in a specimenmust be removedbefore it
can be infiltrated with wax, a typical dehydration sequence for speci-
mens notmore than 4-mm thick would be: (1) 80% ethanol 1 h; (2) 90%
ethanol 1 h; (3) 95% ethanol 1 h; (4) 95% ethanol 1 h; (5) 100% ethanol

1 h; (6) 100% ethanol 1 h; (7) 100% ethanol 1 h. Cautious: Processing
reagents are replaced strictly according to established guidelines.

Clearing. A popular clearing agent is xylene, andmultiple changes are
required to completely displace ethanol, a typical clearing sequence
for specimens not more than 4-mm thick would be: (1) xylene 1 h; (2)
xylene 1 h. Cautious: Processing reagents are replaced strictly
according to established guidelines.

Wax infiltration. A typical infiltration sequence for specimens not
more than 4-mm thick would be: (1) wax 1 h; (2) wax 1 h; (3) wax 1 h.
Cautious: High-quality wax is used for infiltration to ensure high-
quality blocks that are easy to cut.

Embedding. This step is carried out using an “embedding center”
where amold is filled withmolten wax and the specimen is placed into
it. The specimen is very carefully orientated in the mold because its
placement will determine the “plane of section”, an important con-
sideration in both diagnostic and research histology. A cassette is
placed on top of the mold, topped up with more wax, and the whole
thing is placed on a cold plate to solidify. When this is completed, the
block with its attached cassette can be removed from the mold and is
ready for microtomy. It should be noted that, if tissue processing is
properly carried out, the wax blocks containing the tissue specimens
are very stable and represent an important source of archival material.
Cautious: (1) Specimens are carefully orientated, competent grossing
ensures flat surfaces on most specimens; (2) A mold of suitable size is
always chosen for each specimen; (3) Specimens are handled gently
during embedding; (4) Before handling tissue, forceps are heated to
the point where the wax just melts; (5) Before handling tissue, forceps
are heated to the point where the wax justmelts; (6)Molds are filled to
an optimum level and do not overflow.

Protein profiling and quality control
Materials and reagents. The materials and reagents required for
sample preparation are listed in Supplementary Data 14.

Protein extraction. After dewaxing, the samples were transferred to
1.5-mL centrifuge tubes, and four times the volume of cracking buffer
(1% SDS, 1%protease inhibitor) was added for ultrasonic cracking. After
centrifugation for 10min at 12,000× g and 4 °C, cell fragments were
removed, and the supernatants were transferred to new centrifuge
tubes. Protein concentration was determined using a BCA kit.

Trypsin digestion. The protein from each sample was enzymatically
hydrolyzed in equal quantities, and the volume was adjusted to be
consistent with the lysate. One time the volume of pre-cooled acetone
was added, followed by vortex mixing, then four times the volume of
pre-cooled acetonewas added andprecipitationwasperformed for 2 h
at −20 °C. After centrifugation at 4500 × g for 5min, the supernatant
was discarded, and the precipitate was washed with pre-cooled acet-
one two times. After drying the precipitate, triethylammonium bicar-
bonate with a final concentration of 200mM was added and the
precipitate was broken up by ultrasound, then trypsin was added at a
ratio of 1:50 (protease: protein, m/m) and the sample was enzymolized
overnight. Dithiothreitol was added at a final concentration 5mM and
the sample was reduced for 60min at 37 °C. Finally, iodoacetamide
was added at a final concentration of 11mM, and the sample was
incubated for 45min at room temperature in the dark.

LC-MS/MS analysis. The peptides were dissolved by liquid chroma-
tographic mobile phase A and separated by the NanoElute ultra-high
performance liquid system. Mobile phase A was an aqueous solution
containing 0.1% formic acid and 2% acetonitrile. Mobile phase B con-
tained 0.1% formic acid and 100% acetonitrile solution. Liquid phase

Article https://doi.org/10.1038/s41467-023-43282-3

Nature Communications |         (2023) 14:7802 11



gradient settings were 0–60min, 5–22% B; 60–69min, 22–31% B;
69–72min, 31–80% B; 72–75min, 80% B; the flow rate was maintained
at 400 Nl/min. The peptides were separated by the ultra-performance
liquid phase system and then injected into a capillary ion source for
ionization and analyzed by a timsTOF Pro mass spectrometer. The ion
source voltage was set at 1.75 kV, and the peptide parent ions and their
secondary fragments were detected and analyzed using high-
resolution TOF. The scanning range of the secondary mass spectro-
metry was set to 100–1700. Data acquisition was performed in parallel
cumulative serial fragmentation (PASEF) mode. After first-order mass
spectrometry collection, the secondary spectra with the charge num-
ber of parent ions in the range of 0–5 were collected in PASEF mode
ten times. The dynamic exclusion time of tandem mass spectrometry
scanning was set to 30 s to avoid repeated scanning of parent ions.

Database search. The resultingMS/MS data were processed using the
Maxquant search engine (v1.6.15.0)71,72. Tandem mass spectra were
searched against Homo_sapiens_9606_SP_20210721.fasta. Trypsin/P
was specified as the cleavage enzyme allowing up to two missing
cleavages. The mass tolerance for precursor ions was set at 20 ppm in
the first search and Main search. Carbamidomethyl on Cys was speci-
fied as fixed modification and oxidation on Met was specified as vari-
able modifications. The false discovery rate was adjusted to <1%.

Proteomic data filtering and normalization
Label-free quantitation (LFQ) intensity of 269 samples (239 EOCand30
CT samples) were obtained from the Maxquant result files. Proteins
withmissing values inmore thanhalf of the sampleswere removed8. As
a result, 4447 proteins out of a total of 8257 proteins were retained.
The LFQ intensity of the 4447 proteins was normalized using the
normalized quantile functions in the R package “limma”73. Missing
values were imputed using the DreamAI algorithm74.

Differential expression analysis of the proteome
Differential proteomic analysis was conducted on 4447 quantifiable
proteins in a total of 8257 proteins detected. We performed Wilcoxon
tests to identify the dysregulated proteins with a statistically sig-
nificant P value between EOC and CT patients. The P values were cor-
rected by the Benjamini & Hochberg (BH) procedure. Significantly up-
or downregulated proteins were extracted by a threshold of adj.P
value < 0.01 and |log2 (fold change)| >1. We also used “limma” analysis
to adjust for clinicopathological characteristics and calculate protein
abundance differences. In addition, we compared the differentially
expressed proteins between histological subtype and CT separately
using the above methods.

To assess differentially expressed proteins across treatment
groups, the Kruskal–Wallis test (K-W test) was used to identify differ-
entially expressed proteins among the three histological subtypes of
EOC (SC, EC, and CCC). Post hoc tests were performed to identify the
differentially expressed proteins between any two subtypes (adj.P
values < 0.05, R package “PMCMRplus”).

Survival analysis
For the clinicopathological analysis, Fisher’s exact test (two-sided) was
performed. Kaplan–Meier curves and log-rank tests were used to
compare OS or RFS among the proteomic subtypes. Clinical associa-
tions of protein expression were examined using the Cox proportional
hazards model, and P values were adjusted using the BH procedure.
Univariable and multivariable Cox regression analysis were used to
estimate the hazard ratios (HR), 95% confidence intervals (CI), Cox
P values, and Cox adj.P values of each protein.

Functional enrichment analysis
Comprehensive function annotation of proteins, including GO75,76,
KEGG77 and GSEA78, was performed on R package “clusterProfiler”79,

Metascape (http://www.metascape.org/) and R package “fgsea”80 to
identify BPs, KEGG pathways, Reactome gene sets81, WikiPathways82,
and Hallmark gene sets78,83 in which dysregulated proteins were enri-
ched. The adj.P values < 0.05were considered statistically significant. R
packages “simplifyEnrichment”84 and “GOSemSim”85 were used to
cluster GO terms based on similarity matrices of functional terms. The
function “simplify” of R package “clusterProfiler” was used to remove
redundancies of enriched GO results.

Weighted correlation network analysis
The whole quantifiable proteins were identified by WGCNA to con-
struct a protein co-expression network using R package “WGCNA”86 to
generate the co-expression network and modules. Scale-free R2 = 0.8
was set in order to make the network more consistent with scale-free
characteristics. Meanwhile, the adjacencymatrix was transformed into
a topological overlap matrix (TOM) to reduce noise and spurious
correlation. Network construction and module identification were
performed based on (TOM) similarity. Other parameters were set as
follows: soft-threshold power (β) = 4, “cutreeDynamic” function, min-
ModuleSize = 5. The co-expression network was visualized using
Cytoscape v3.6.087.

Parallel reaction monitoring
PRM is an ion monitoring technology based on high-resolution, high-
precision mass spectrometry, which can selectively detect target
proteins, so as to achieve quantification of target proteins. Detailed
information about the PRM analysis is provided below.

Trypsin digestion. The protein sample was added with 1 volume of
pre-cooled acetone, vortexed tomix, and addedwith 4 volumes of pre-
cooled acetone, precipitated at −20 °C for 2 h. The protein sample was
then redissolved in 200mM TEAB and ultrasonically dispersed. Tryp-
sin was added at 1:50 trypsin-to-protein mass ratio for the first diges-
tion overnight. The sample was reduced with 5mM dithiothreitol for
60min at 37 °C and alkylated with 11mM iodoacetamide for 45min at
room temperature in darkness. Finally, the peptides were desalted by
Strata X SPE column.

LC-MS/MS analysis. The tryptic peptides were dissolved in 0.1% for-
mic acid (solvent A), directly loaded onto a homemade reversed-phase
analytical column. The gradient was comprised of an increase from 6%
to 20% solvent B (0.1% formic acid in 98%acetonitrile) over 16min, 20%
to 30% in 6min and climbing to 80% in 4min then holding at 80% for
the last 4min, all at a constant flow rate of 500 nL/min on an EASY-nLC
1000 UPLC system. The peptides were subjected to NSI source fol-
lowed by tandem mass spectrometry (MS/MS) in Q ExactiveTM Plus
(Thermo) coupled online to the UPLC. The electrospray voltage
appliedwas2.1 kV. Them/z scan rangewas390 to 1135 for full scan, and
intactpeptidesweredetected in theOrbitrapat a resolutionof 70,000.
Peptides were then selected forMS/MSusingNCE setting as 27 and the
fragments were detected in the Orbitrap at a resolution of 17,500. A
data-independent procedure that alternated between one MS scan
followed by 20MS/MS scans. Automatic gain control was set at 3E6 for
full MS and 1E5 for MS/MS. The maxumum IT was set at 210ms for full
MS and auto for MS/MS. The isolation window for MS/MS was set at
1.6m/z.

Data analysis. The resulting MS data were processed using Skyline
(v.21.1). Peptide settings: enzyme was set as Trypsin [KR/P], Max mis-
sed cleavage set as 0. The peptide length was set as 7-25, Variable
modification was set as Carbamidomethyl on Cys and oxidation on
Met, and max variable modifications were set as 3. Transition settings:
precursor charges were set as 2, 3, ion charges were set as 1, ion types
were set as b, y. The product ions were set as from ion 3 to the last ion,
the ion match tolerance was set as 0.02Da.
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Experimental methods and statistical analysis
Cell culture and infection. Ovarian cancer cell lines OVCAR-3, A2780,
and ES-2 were purchased from icellbioscience (China) and cultured in
RPMI-1640medium (Solarbio, China) containing 20% FBS (TIANHANG,
China), RPMI-1640 medium containing 10% FBS, and McCOY’s 5 A
medium (Procel, China) containing 10% FBS at 37 °C with 5% CO2,
respectively. All human cancer cell lines were authenticated by STR
profiling and mycoplasma-negative. Cells were infected with lentiviral
vectors carrying short hairpin RNA (shRNA) targeting MPP7 (shMPP7)
or its negative control shRNA (shNC) (OVCAR-3: MOI = 30; A2780:
MOI = 10; ES-2: MOI = 5).

CCK-8 assay. Cells (3 × 103) were seeded onto a 96-well plate and
harvested at 0, 24, 48, 72, or 96 h after infection. The CCK-8 assays
were performed using the CCK-8 assay kit (Wanleibio, China) accord-
ing to the manufacturer’s instructions. The optical density (OD) was
detected at 450nm using a BioTek 800 TS plate reader (Agilent, USA).

Flow cytometry. Cell cycle distribution and cell apoptosis were ana-
lyzed using flow cytometry. For cell cycle analysis, cells werefixedwith
70% cold ethanol and washed with PBS at 48 h after infection. After
incubationwith RNaseA at 37 °C for 30min, the cells were stainedwith
Propidium Iodide (PI) for 30min. For cell apoptosis detection, cells
were washed with PBS at 48 h after infection and resuspended in
binding buffer. Then, the cells were stainedwith AnnexinV-FITC and PI
for 15min. The Cell Cycle Analysis Kit and the Annexin-FITC-PI Staining
Kit were purchased from Wanleibio (China). The signal of PI and
Annexin V-FITC was detected by a NovoCyte flow cytometer (Agilent,
USA). The results obtained from flow cytometric analysis were ana-
lyzed by the NovoExpress software (version 1.4.1, Agilent, USA). Gating
strategies for flow cytometric analysis are shown in Supplemen-
tary Fig. 8.

Transwell assay. The transwell chambers used formigration assays or
the matrigel-coated transwell chambers used for invasion assays were
placed into 24-well plates. Cells were resuspended in serum-free
medium at 48h after infection and seeded in the transwell upper
chamber at 5000 (Migration assay) or 50,000 (Invasion assay) cells per
well. After 24 h, the cells on the lower side of the transwell membrane
were fixed with 4% PFA (Aladdin) for 20min, stained with 0.5% crystal
violet (Amresco, USA) for 5min, and counted under a microscope
(OLYMPUS, Japan).

Statistical analysis. GraphPad Prism 8 (GraphPad Software, USA) was
used for statistical analyses. The Shapiro-Wilk normality test and the
Brown–Forsythe test were used for the analysis of normal distribution
and variance homogeneity, respectively. Data, which were normally
distributed and had equal variances, were analyzed using one-way or
two-way analysis of variance (ANOVA) followed by Tukey’s tests. Data,
which were normally distributed and had unequal variances, were
analyzed using Brown–Forsythe and Welch ANOVA tests followed by
Tamhane T2 tests. Data are presented as mean± standard deviation
(SD). A P value < 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are either
downloaded from open repositories or have been uploaded to such
repositories and are publicly available. The mass spectrometry pro-
teomic data generated in this study have been deposited in the Pro-
teomeXchange Consortium via the PRIDE partner repository under
accession code PXD033741. The mass spectrometry proteomic data

generated in this study have also been deposited in the OMIX under
accession code OMIX002719, in accordance with the necessary
approval from the ChineseMinistry of Science and Technology related
to export the genetic information and materials associated with this
study. The exosome protein lists used in this study are available in the
ExoCarta (http://www.exocarta.org/) and Vesiclepedia (http://
microvesicles.org/) databases. The protein–protein interactions used
in this study are available in the STRING (https://cn.string-db.org/)
database. The approved drug-target protein lists used in this study are
available in the Drug-Gene Interaction database (DGIdb, https://dgidb.
genome.wustl.edu/). The remaining data are available within the Arti-
cle, Supplementary Information or Source Data file. Source data are
provided with this paper.
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