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Abstract
Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease 
pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, 
patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, 
a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial 
permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical 
models of TBI. Moreover, the cyclosporine formulation NeuroSTAT ® displayed positive effects on injury biomarker levels 
in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future 
research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based bio-
markers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical 
power and allow for more accurate assessment of long-term outcomes.

Keywords Biomarkers · Brain injuries, Traumatic · Clinical trials as topic · Cyclosporine · Diffuse axonal injury · Drug 
evaluation, Preclinical

Introduction

Traumatic brain injury (TBI) is a major cause of death and 
disability. Globally, more than 50 million people have a 
TBI each year [1]. The burden of mortality and morbidity 
that TBI imposes on society makes TBI a pressing public 
health problem.

TBI has been defined as an “alteration in brain function, 
or other evidence of brain pathology, caused by an external 
force” [2]. Depending on the nature of that external force, 
it can be broadly categorized as diffuse or focal. However, 
these categories simplify what is a complex disease process 
with diverse and overlapping injury subtypes [3]. The heter-
ogeneity of disease pathology and clinical course has posed 
substantial challenges in the development of neuroprotective 

therapies for TBI, resulting in a lack of clinically proven 
pharmaceutical interventions.

Another barrier for TBI drug development is under-
standing and addressing the complexity of the secondary 
injury cascades that follows the initial injury. One example 
of such an injury cascade has been described for diffuse 
axonal injury (DAI), a common type of TBI. In DAI, neu-
rons become sheared, stretched, or otherwise damaged as 
a result of high-velocity translational or rotational forces. 
Axons respond to these mechanical forces and secondary 
insults by undergoing Wallerian degeneration [4]. Mem-
brane polarization and ion homeostasis are disrupted in 
affected neurons and oxidative stress increases. Neurofila-
ments become compacted and axonal transport is impaired 
as a result of the fracturing of microtubules. As a result of 
calcium overload and oxidative stress, common in several 
types of injuries, the mitochondrial permeability transition 
pore (mPTP) forms, increasing mitochondrial membrane 
permeability and ultimately leading to irreversible neuron 
damage and brain atrophy [5, 6]. If we can attenuate the sec-
ondary injury cascades following TBI, in the case of DAI by 
preventing the transition from reversible damage to axon dis-
connection, then we have an opportunity to limit the extent 
of neurodegeneration and morbidity following trauma [7].
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Cyclosporine has been used for decades to achieve immu-
nosuppression in organ transplant recipients. Indeed, its 
potent neuroprotective effects were discovered by accident 
while it was being used as an immunosuppressant to prevent 
hippocampal graft rejection in an experimental forebrain 
ischemia model [8, 9]. Since then, cyclosporine has dem-
onstrated neuroprotection in a wide range of animal models 
of neurological injury and disease, an effect that has been 
linked to its ability to stabilize mitochondrial function by 
preventing mPTP formation [10–12]. Cyclosporine, analogs 
of cyclosporine, and genetic tools to modulate mPTP forma-
tion have been widely explored in experimental traumatic 
central nervous system injury models [13]. Here, we sum-
marize the preclinical and clinical development of Neuro-
STAT ® (also known as  CicloMulsion®), a novel parenteral 
formulation of cyclosporine which was developed to avoid 
the risk of anaphylactic reactions associated with Kolliphor 
 EL®, which is used as an excipient in other cyclosporine 
products such as  Sandimmune® [14]. NeuroSTAT ® has been 
recognized by regulatory authorities in the US and Europe 
in their granting of orphan drug designation for treatment 
of moderate to severe TBI (US Food and Drug Adminis-
tration designation 10-3197, European Union designation 
EU/3/10/791).

Following a number of unsuccessful interventional clini-
cal trials, large natural history initiatives over the past few 
decades have sought to improve the precision of TBI clas-
sification and diagnosis, standardize data collection, and 
develop and validate relevant clinical outcome measures 
[15–17]. The next era of therapeutic clinical trials will be 
able to utilize these efforts to better target defined subgroups 
of TBI patients with disease pathologies likely to benefit 
from the tested intervention. Specifically, the use of imaging 
and fluid-based biomarkers can aid in both the selection of 
patients with specific types of disease pathologies and the 
monitoring of pharmacodynamic effects of drugs.

In this article, we summarize the molecular basis for 
the neuroprotective effect of cyclosporine before review-
ing the preclinical and clinical evidence supporting its use 
in TBI. Finally, we will look at the opportunities for con-
tinued development of neuroprotective compounds such as 
cyclosporine for TBI, given recent advances in biomarkers 
and imaging.

Molecular and Cellular Effects 
of Cyclosporine

Cyclosporine is a cyclic polypeptide of 11 amino acids 
whose pharmacological targets are cyclophilins, a family 
of enzymes with diverse roles in cellular processes. Its cur-
rent therapeutic uses in organ transplantation and autoim-
mune diseases are mediated by binding to cyclophilin A. 

This binding inhibits calcineurin activity in T-helper cells 
and prevents lymphokine release and T-cell proliferation in 
cell-mediated immune responses [18].

Cyclosporine and its analogs have displayed neuropro-
tective properties in several models of acute and chronic 
neurological disease. Its neuroprotective effect is consid-
ered to be predominantly mediated via inhibition of another 
cyclophilin, cyclophilin D, which regulates the mPTP [19]. 
Cyclosporine’s ability to inhibit activation of the mPTP has 
been demonstrated in both rodent and human brain mito-
chondria [20–22]. In TBI, inhibition of the mPTP by phar-
macological treatments or genetic knockout of cyclophilin 
D decreases mitochondrial damage, lesion volume, intra-
axonal cytoskeletal destruction, and brain injury biomarker 
levels (see Table 1).

Preclinical Development of Cyclosporine

Data from a wide range of in vivo models of TBI provide evi-
dence of the neuroprotective effects of cyclosporine on mecha-
nistic, histological, and behavioral endpoints (Table 1). More 
than 30 independent experimental studies of cyclosporine have 
been completed in different TBI models, including rodents and 
large animals. The neuroprotective effects of cyclosporine have 
been evaluated in impact acceleration animal models of DAI,  
as well as in models of primarily focal injury (cortical contu-
sion) and experiments involving focal brain injury combined 
with DAI (fluid percussion models of TBI). Dosing regimens 
have varied from a single bolus to continuous infusions over 
several days, and the timepoint of evaluation following injury 
has varied from hours to weeks, depending on the outcome 
measure. A few studies have rigorously evaluated the optimal  
dosing regimen. For example, in a rat impact acceleration model,  
10 mg/kg (infused post-injury over 1 h) was the most effective 
cyclosporine dose at attenuating axonal injury, as demonstrated 
by a 79% reduction in the mean density of damaged axons dis-
playing amyloid precursor protein immunoreactivity at 24 h 
following injury [23]. In a series of papers evaluating the opti-
mal dose and dosing regimen of cyclosporine following CCI 
injury in rats, an initial intraperitoneal loading dose of 20 mg/kg  
followed immediately by a continuous 7-day subcutaneous 
infusion of 10 mg/kg offered the greatest neuroprotective effect, 
as measured by a 74% reduction in lesion volume at day 7 [24, 
25]. Overall, most in vivo studies have demonstrated beneficial 
effects of cyclosporine on the evaluated outcome measures. A 
few studies have found cyclosporine to be ineffective against 
TBI or to have negative effects (Table 1). Doses and dosing 
duration in relation to routes of administration have been dis-
cussed as a potential reason for these findings [13]. Moreover,  
in a study using a rat penetrating ballistic-like brain injury 
model, it was concluded that the vehicle for cyclosporine con-
tributed to the observed negative effects on outcome measures 
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[26]. However, the in vivo studies collectively demonstrate 
that cyclosporine exerts neuroprotective effects by (i) preserv-
ing mitochondrial function and morphology, (ii) maintaining 
axonal/cytoskeletal integrity, (iii) reducing the extent of pro-
teolytic processes activated by or operant in TBI, (iv) mini-
mizing the volume of the traumatic lesion, and (v) preserving  
peri-contusional viability.

Piglet Study of NeuroSTAT 

As illustrated in Table 1, the therapeutic potential of cyclo-
sporine in various formulations has been evaluated in several 
different TBI models, mostly in rodents. Compared to rodent 
models, piglet models are more relevant to humans because 
the gyrencephalic pig brain resembles the human brain more 
closely in anatomy, growth, and development than do the 
brains of rodents. The efficacy of the NeuroSTAT cyclo-
sporine formulation has been evaluated in a randomized, fully 
blinded study using a piglet controlled cortical impact (CCI) 
TBI model. The piglet study aimed to investigate whether 
treatment with NeuroSTAT could influence the volume of 
parenchymal injury, as well as markers of neuronal integrity 
and axonal injury. Based on the evaluation of optimal dosing 
regimens in previous animal models ([24, 25], see discussion 
above) as well as preliminary signals from clinical studies ([27, 
28], see below), it was decided to administer NeuroSTAT as 
a 5-day continuous infusion. Some of the translational out-
come measures of the study are summarized in Fig. 1. Com-
pared to placebo (n=13), NeuroSTAT (20 mg/kg/day, n=11) 
reduced the cortical plus subcortical lesion volume by 35% 
[29]. Axonal injury in the peri-contusional area was also 
reduced, as evidenced by significantly improved fractional 
anisotropy scores obtained by magnetic resonance diffusion 
tensor imaging [30]. Spectroscopic imaging of neuronal viabil-
ity metabolites in brain regions comprising injured and nor-
mal parenchyma 5 days after CCI showed significantly higher 
mean levels of N-acetylaspartate, gamma-aminobutyric acid, 
phosphocreatine, and taurine in NeuroSTAT-treated animals 
compared to placebo-treated animals. Levels of neurofila-
ment light (NF-L), a biomarker of axonal injury, also showed 
a trend of being lower in serum and cerebrospinal fluid (CSF) 
of NeuroSTAT-treated animals compared to placebo-treated 
animals. The study thus demonstrated that continuous infusion 
of NeuroSTAT for 5 days following CCI in piglets diminished 
secondary brain injury.

Clinical Studies of Cyclosporine in TBI

Clinical studies of cyclosporine in TBI are summarized in 
Table 2. Commercial cyclosporine formulations are referred 
to by name; other formulations are collectively referred to 
as “cyclosporine.”

Early Randomized Controlled Trials

In a randomized, double-blind trial of cyclosporine by 
Young and colleagues, patients with severe TBI (Glasgow 
Coma Scale [GCS] 4–8) were assigned to one of four dose 
cohorts (placebo n=2, cyclosporine n=8 for each cohort): 
0.625, 1.25, or 2.5 mg/kg as a 2-h infusion every 12 h (6 
doses) or a 2.5 mg/kg loading dose followed by 5 mg/kg/
day as a continuous 72-h infusion. Efficacy was assessed 
at 3 and 6 months. Although Glasgow Outcome Scale 
(GOS) and Glasgow Outcome Scale-Extended (GOSE) 
scores did not differ significantly between placebo- and 
cyclosporine-treated patients, cyclosporine showed trends 
of improved functional outcomes across different dose 
cohorts. Outcome scores improved from poor to good at 
the 6-month assessment in 35% of cyclosporine-treated 
patients and 0% of placebo-treated patients. Moreover, 
patients treated by continuous infusion for 72 h had a 
higher probability of a favorable functional outcome than 
patients who received separate infusions every 12 h. The 
incidence of mortality and serious adverse events (SAEs) 
did not differ significantly between cyclosporine and pla-
cebo. Percentages of patients with infections and abnormal 
liver function test results were also comparable between 
treatments [27].

In another randomized, double-blind trial conducted by 
Bullock and colleagues, patients with severe TBI (GCS 
3–8) were randomly assigned 3:1 to cyclosporine 5 mg/
kg or placebo. Treatment was administered by continu-
ous infusion over 24 h. Brain extracellular fluid levels of 
glucose, lactate, and pyruvate were significantly higher 
in patients treated with cyclosporine than in those who 
received placebo. Conversely, glutamate levels were sig-
nificantly higher in the placebo group than the cyclo-
sporine group 1 to 2 days after the end of study drug infu-
sion, and lactate/pyruvate ratio was significantly higher 
in the placebo group 2 to 3 days after the end of study 
drug infusion. Cyclosporine administration was associated 
with increases in mean arterial pressure (MAP) and cer-
ebral perfusion pressure (CPP) [31]. Moreover, MAP and 
CPP were significantly higher in the cyclosporine group 
than the placebo group from 0 through 3 days, although 
MAP remained within the normal physiologic range. 
Mean blood urea nitrogen (BUN) levels were higher for 
cyclosporine than for placebo at 24 and 48 h, but they too 
remained within the normal range. The mean white blood 
cell count was higher for cyclosporine than for placebo at 
24 h. Otherwise, there were no significant differences in 
laboratory test results between the two treatments, and the 
incidence of adverse events (AEs) was generally compa-
rable between treatments. No significant treatment differ-
ence in neurological outcome based on GOS scores was 
observed at 3 or 6 months [32].
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Fig. 1  Translational efficacy 
outcomes of NeuroSTAT in 
a piglet study with controlled 
cortical impact injury. Neuro-
imaging on day 5 post-injury 
depicting A magnetic resonance 
imaging anatomical images rep-
resentative of the median injury 
in the NeuroSTAT-treated group 
and B in the placebo group. C 
Volume of injury measured by 
manual tracing on each slice 
of area of increased signal 
abnormality on FLAIR imaging 
by board-certified neuroradi-
ologist blinded to treatment 
group. D Fractional anisotropy 
in peri-contusional tissue using 
diffusion tensor imaging. E 
Neurofilament light (NF-L) 
in serum day 1–5 post-injury. 
Data are presented as mean and 
SEM. *p<0.05. Adapted from 
[29, 30] with permission from 
the publisher

Placebo
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Nonrandomized Study

A nonrandomized, placebo-controlled clinical study in Iran 
tested cyclosporine on TBI patients with a GCS score of 
≤10 and clinical and radiological evidence of DAI. Cyclo-
sporine (5 mg/kg) or vehicle (5% dextrose water) was admin-
istered as a continuous 24-h infusion, starting within 8 h 
after trauma. Efficacy was assessed at 3 and 6 months. All 
patients in both the cyclosporine arm (n=50) and the placebo 
arm (n=50) had moderate or severe cognitive impairment 
at 3 and 6 months based on mini-mental state examination 
(MMSE) results [33]. There were no significant differ-
ences between treatment arms in MMSE results or GOSE 
scores at 3 and 6 months. While not presented in detail, data 
for deaths and infections were reported to be comparable 
between the cyclosporine and placebo arms. BUN levels at 
48 h were higher in the cyclosporine arm than in the placebo 
arm. Otherwise, levels of other safety markers (creatinine, 
aspartate aminotransferase, alanine aminotransferase, and 
alkaline phosphatase) were within normal ranges and were 
comparable between treatment arms.

Clinical Development of NeuroSTAT 

Bioequivalence Study

The first clinical study in the clinical development of Neu-
roSTAT was a Phase I open-label laboratory-blind crosso-
ver study in healthy volunteers to establish bioequivalence 
between NeuroSTAT and the reference cyclosporine for-
mulation Sandimmune. NeuroSTAT and Sandimmune 
were administered as a single 5 mg/kg dose, infused at a 
constant rate over 4 h. Sixty-five subjects were enrolled in 
the study of whom 63 received at least one dose of study 
drug. The analysis included data for the 52 subjects who 
completed the study. For both AUC 0-last and Cmax, the 90% 
confidence intervals of the geometric mean ratios for Neu-
roSTAT/Sandimmune were within the bioequivalence range 
of 0.80–1.25 [14]. Two SAEs were recorded (anaphylactoid 
reaction and anaphylactic reaction), both after administra-
tion of Sandimmune. No SAEs were recorded after admin-
istration of NeuroSTAT.

Copenhagen Head Injury Ciclosporin Trial

CHIC (Copenhagen Head Injury Ciclosporin) was an open-
label, Phase Ib/IIa clinical trial that investigated the effects 
of two NeuroSTAT dosing regimens on pharmacokinetics, 
safety, and biomarkers of efficacy in patients with severe 
TBI (GCS 4–8) and clinical indication for external ventricu-
lar drainage and intracranial pressure monitoring. Patients 
were given a 2.5 mg/kg IV loading dose followed by a 5-day 

continuous infusion of 5 mg/kg/day (n=10) or 10 mg/kg/day 
(n=6). CSF cyclosporine concentration-time profiles showed 
that all patients had detectable cyclosporine concentrations. 
The PK profiles in blood and CSF were similar after the 
constant infusion was stopped, suggesting that elimination 
of CSF is determined by elimination in blood. The mean 
steady-state concentration indicated a dose-proportional 
exposure in CSF.

A positive pharmacodynamic signal was detected in bio-
markers measured in CSF samples. Levels of glial fibrillary 
acidic protein (GFAP), NF-L, Tau, and ubiquitin carboxy-
terminal hydrolase (UCH)-L1 tended to decrease during the 
5-day NeuroSTAT treatment period and to increase in the 
follow-up period after the end of treatment. Figure 2A illus-
trates by-patient CSF NF-L values over time. The shifts in 
trends for biomarker concentrations (slope after vs. during 
infusion) were statistically significant for NF-L (Fig. 2B) 
and the other investigated biomarkers [28]. These findings 
are exciting but should be considered preliminary given the 
lack of a control group and the small sample size.

Twenty-one AEs related to NeuroSTAT were reported in 
the CHIC trial. These included five events of increased plasma 
cystatin C, three events of increased plasma creatinine, and two 
events of oliguria. Plasma bilirubin levels increased during 
treatment in both dose groups, but the increase was more pro-
nounced in the higher dose group (10 mg/kg/day). Moreover, 
compared to the 5 mg/kg/day group, hyperbilirubinemia was 
more frequent in the 10 mg/kg/day dose group. One patient in 
the 10 mg/kg/day group suffered from an SAE of acute renal 
tubular necrosis, likely as a result of concurrent sepsis. Four 
events of increased intracranial pressure were assessed as non-
related to study treatment, and intracranial pressure was not 
obviously affected by NeuroSTAT administration.

Future Directions

As outlined above, the broad neuroprotective effects of 
cyclosporine have been demonstrated in multiple preclini-
cal studies with solid experimental evidence supporting 
cyclosporine’s efficacy in both diffuse and focal contusional 
injury models (Table 1). In addition, safe and tolerable 
dosing regimens have been explored in clinical studies of 
patients with severe TBI with mixed underlying pathology. 
Based on this exciting preclinical and clinical data, cyclo-
sporine warrants further investigation as a potential therapy 
for TBI.

Recent advancements in the understanding of the biology 
of TBI, diagnostic and prognostic biomarkers, and medical 
imaging will facilitate further development of neuroprotec-
tive compounds. First, focusing on a single pathological 
TBI endophenotype (i.e., an internal measurable pheno-
type underlying a more complex phenotype [34, 35]) will 
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minimize patient heterogeneity and increase the ability to 
assess pharmacodynamic outcomes. One appealing candi-
date here is a predominantly DAI endophenotype. DAI is 
one of the most common and severe forms of TBI, with a 
high degree of intracellular secondary injury cascade activa-
tion [3]. A systematic review and meta-analysis concluded 
that TBI patients with DAI have a three times higher risk of 
an unfavorable outcome than TBI patients without DAI [36]. 
The mechanism of action of cyclosporine is highly relevant 
to DAI in that prompt treatment of the primary injury can 
prevent subsequent brain atrophy.

Fluid biomarkers and neuroimaging are potentially 
sensitive measures for diagnosing DAI and tracking 
neurodegeneration following DAI [37]. Both have been 
included in large natural history studies, providing a 
valuable data source for adequate powering of investiga-
tional studies and for analyzing the associations between 
biomarker trajectories and long-term clinical outcomes 
[17, 38].

A biomarker of particular interest for DAI is NF-L, a pro-
tein found in long myelinated white matter axons. Studies 
have shown that serum NF-L increases as a result of TBI and 
that serum NF-L levels after TBI can predict clinical out-
come [39–41]. Both the preclinical piglet study with Neuro-
STAT and the clinical CHIC study demonstrated that NF-L 
levels were attenuated during cyclosporine therapy [28, 30].

Brain atrophy after TBI has been shown to be predictive 
of cognitive and neuropsychological outcomes [42–44]. 
Global and regional atrophy can be measured by repeat 
magnetic resonance imaging (MRI) scans, comparing a 
pseudo-baseline assessment soon after trauma to later fol-
low-up assessments. MRI with diffusion tensor imaging 

also enables a sensitive assessment of DAI, and the loca-
tion and extent of DAI as assessed by fractional anisot-
ropy has been shown to predict the degree of progressive 
atrophy [45]. Advanced imaging techniques such as these 
should help clinical researchers to more accurately predict 
long-term outcomes in TBI patients based on short-term 
responses to cyclosporine.

Conclusions

Since its serendipitous discovery, the neuroprotective 
effect of cyclosporine has been explored and validated in 
an extensive set of preclinical and clinical studies. Future 
clinical development of cyclosporine will be aided by an 
increased understanding of TBI endophenotypes and the 
further development of biomarkers and MRI as clinical 
research tools. These important advancements should 
increase the probability of success in clinical trials, ena-
bling the evaluation of cyclosporine in a more homog-
enous population where clinical efficacy can be visualized 
and quantified. The time is now for the progression of 
neuroprotective agents for the treatment of TBI to address 
the unmet needs of patients with TBI who have been his-
torically underserved.
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Fig. 2  Pharmacodynamic signal 
of NeuroSTAT in the Copen-
hagen Head Injury Ciclosporin 
Phase Ib/IIa clinical trial. 
Temporal profile of brain injury 
biomarker neurofilament light 
(NF-L) in cerebrospinal fluid 
(CSF). A Individual levels of 
NF-L in CSF samples drawn 
at predose, during the continu-
ous NeuroSTAT infusion, and 
after treatment had ended. 
Dashed vertical lines indicate 
the start and stop of infusion. 
CSF, cerebrospinal fluid. B 
Slopes of NF-L change during 
NeuroSTAT infusion and during 
follow-up after infusion stop. 
Data are presented as mean and 
SEM. *p<0.05. Adapted from 
[28] with permission from the 
publisher
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