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Multivariate time-series data that capture the temporal evolution
of interconnected systems are ubiquitous in diverse areas.
Understanding the complex relationships and potential
dependencies among co-observed variables is crucial for the
accurate statistical modelling and analysis of such systems. Here,
we introduce kernel-based statistical tests of joint independence
in multivariate time series by extending the d-variable Hilbert–
Schmidt independence criterion to encompass both stationary
and non-stationary processes, thus allowing broader real-world
applications. By leveraging resampling techniques tailored for
both single- and multiple-realization time series, we show
how the method robustly uncovers significant higher-order
dependencies in synthetic examples, including frequency mixing
data and logic gates, as well as real-world climate, neuroscience
and socio-economic data. Our method adds to the mathematical
toolbox for the analysis of multivariate time series and can aid
in uncovering high-order interactions in data.
1. Introduction
Time series that record temporal changes in sets of system variables
are ubiquitous across many scientific disciplines [1], from physics
and engineering [2] to biomedicine [3,4], climate science [5,6],
economics [7,8] and online human behaviour [9,10]. Many real-
world systems are thus described as multivariate time series of
(possibly) interlinked processes tracking the temporal evolution
(deterministic or random) of groups of observables of interest.
The relationships between the measured variables are often
complex, in many cases displaying interdependencies among
each other. For example, the spreading of COVID-19 in Indonesia
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was dependent on weather conditions [11]; the sustainable development goals (SDGs) have extensive

interlinkages [12]; there are strong interconnections between foreign exchange and cryptocurrencies [13];
and the brain displays multiple spatial and temporal scales of functional connectivity [14]. Driven by
technological advances (e.g. imaging techniques in the brain sciences [15], or the increased connectivity
of personal devices via the Internet of Things [16]), there is a rapid expansion in the collection and
storage of multivariate time-series datasets, which underlines the need for mathematical tools to analyse
the interdependencies within complex high-dimensional time-series data.

Characterizing the relationships between variables in a multivariate dataset often underpins the
subsequent application of statistical and machine-learning methods. In particular, before further
analyses can be performed, it is often crucial to determine whether the variables of interest are jointly
independent [17]. Joint independence of a set of d variables means that no subset of the d variables
are dependent. We need to look no further than ANOVA and t-tests to find classic statistical methods
that assume joint independence of input variables, and the violation of this assumption can lead to
incorrect conclusions [18]. Causal discovery methods, such as structural equation modelling, also
require joint independence of noise variables [19]. Furthermore, joint independence has applications in
uncovering higher-order networks, an emergent area highlighted in recent studies [20–24].

Kernel-based methods offer a promising framework for testing statistical independence. Notably, the
d-variable Hilbert–Schmidt independence criterion (dHSIC) [19] can be used as a statistic to test the joint
independence of d random variables. Developed as an extension of the pairwise HSIC [25], a statistical test
that measures the dependence between two variables [25–27], dHSIC measures the dependence between d
variables [19]. Specifically, dHSIC can be simply defined as the ‘squared distance’ between the joint
distribution and the product of univariate marginals when they are embedded in a reproducing kernel
Hilbert space (RKHS). Crucially, kernel methods do not make assumptions about the underlying
distributions or type of dependencies (i.e. they are non-parametric). Yet, in its original form, dHSIC
assumes the data to be iid (i.e. drawn from identical independent distributions). This is an unreasonable
assumption in the case of time-series data, and it has precluded its application to temporal data.

To the best of our knowledge, dHSIC has not yet been extended to time-series data. The pairwise
HSIC has been extended to deal with stationary random processes under two different test resampling
strategies: shifting within time series [26] and the Wild Bootstrap method [27]. However, the
assumption of stationarity, by which the statistical properties (e.g. mean, variance, autocorrelation) of
the time series are assumed not to change over time, is severely restrictive in many real-world
scenarios, as non-stationary processes are prevalent in many areas, e.g. stock prices under regime
changes or weather data affected by seasonality or long-term trends. Hence, there is a need for
independence tests that apply to both stationary and non-stationary processes. Recently, pairwise
HSIC has been extended to non-stationary random processes by using random permutations over
independent realizations of each time series, when available [28].

In this paper, we show how dHSIC can be applied to reject joint independence in the case of both
stationary and non-stationary multivariate random processes. Following recent work [28], we adapt
dHSIC so that it can be applied to stationary and non-stationary time-series data when multiple
realizations are present. Additionally, we develop a new bootstrap method inspired by [26], which
uses ‘shifting’ to deal with stationary time-series data when only one realization is available. Using
these methodological advances, we then introduce statistical tests that rely on these two different
resampling methods to generate appropriate null distributions: one for single-realization time series,
which is only applicable to stationary random processes, and another for multiple realization time
series, which is applicable to both stationary and non-stationary random processes. We show
numerically that the proposed statistical tests based on dHSIC robustly and efficiently identify the
lack of joint independence in synthetic examples with known ground truths. We further show how
recursive testing from pairwise to d-order joint independence can reveal emergent higher-order
dependencies in real-world socio-economic time series that cannot be explained by lower-order
factorizations.
2. Preliminaries
2.1. Kernel-based tests for joint independence

Definition (Joint independence of a set of variables). The d variables Xj, j = 1,…, d, with joint
distribution PX1,...,Xd are jointly independent if and only if the joint distribution is fully factorizable
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into the product of its univariate marginals, i.e. PX1,...,Xd ¼ Qd

j¼1 PXj , where the PXj denote the
marginals.

Remark (Joint independence of subsets). If d variables are jointly independent, then any subset of
those d variables is also jointly independent, e.g. PX1,X2,X3 ¼ PX1PX2PX3 implies PX1,X2 ¼ PX1PX2 , which
follows from marginalization with respect to X3 on both sides of the equality. Hence, by the
contrapositive, lack of joint independence of a subset of variables implies lack of joint independence
of the full set of variables.

A series of papers in the last two decades have shown how kernel methods can be used to test for
independence of random variables (for details, see [19,25]). The key idea is to embed probability
distributions in RKHSs [29] via characteristic kernels, thus mapping distributions uniquely to points in
a vector space. For a summary of the key definitions and foundational results, see [30,31].

Definition (RKHS and mean embedding for probability distributions [32,33]). Let Hk be a RKHS
of functions f :X ! R endowed with dot product 〈 · , · 〉, and with a reproducing kernel k :X � X ! R. Let
P be a distribution defined on a measurable space X , then the mean embedding of P in Hk is an element
mP [ Hk given by mP :¼ Ð

kðx, �ÞPðdxÞ, with the property hf , mPi ¼ EP½f � ¼
Ð
f ðxÞPðdxÞ, 8f [ Hk.

If the kernel is characteristic, the RKHS mapping is injective and this representation uniquely captures
the information about each distribution. Based on such a mapping, statistics have been constructed to test
for homogeneity (using the maximum mean discrepancy, MMD [33]) or independence (using the HSIC
[25]) between two random variables.

Remark. An example of a characteristic kernel is the Gaussian kernel ksðx, yÞ ¼ exp ð�kx� yk2=s2Þ
where x, y [ Rp. The Gaussian kernel will be used throughout our applications below, but our results
apply to any other characteristic kernel.

Recently, an extension of HSIC for d variables, denoted dHSIC, was introduced and used as a statistic
for joint independence to test the null hypothesis H0 :PX1,...,Xd ¼ Qd

j¼1 PXj .

Definition (dHSIC [19]). Let us consider d random variables Xj, j = 1,…, d, with joint distribution
PX1,...,Xd . For each Xj, let Hk j denote a separable RKHS with characteristic kernel kj. The d-variable
dHSIC, which measures the similarity between the joint distribution and the product of the marginals,
is defined as

dHSICðX1, . . . , XdÞ :¼ kmPX1,...,Xd
� mPX1 ���PXd

k2H, ð2:1Þ

where H :¼ Hk1 � � � � �Hkd and ⊗ is the tensor product.

Remark. Given the definition (2.1), dHSIC is zero if and only if the variables are jointly independent,
i.e. when the joint distribution is equal to the product of the marginals. This is the basis for using dHSIC
to define the null hypothesis for statistical tests of joint independence.

Remark (Emergent high-order dependencies). As noted above, the rejection of joint independence
for any subset of a set of d variables also implies the rejection of joint independence for the full set of d
variables. Therefore, many observed rejections of joint independence at higher orders follow from
rejections of joint independence at lower orders (i.e. within subsets of variables). To identify more
meaningful high-order interactions, in some cases, we will also consider ‘first time rejections’ of d-way
joint independence, i.e. when the joint independence of a set of d variables is rejected but the joint
independence of each and all of its subsets of size d0 < d cannot be rejected. We denote these as
emergent high-order dependencies.
2.2. Time series as finite samples of stochastic processes
Our interest here is in the joint independence of time series, which we will view as finite samples of
stochastic processes.

Notation (Stochastic processes and sample paths). We will consider a set of d stochastic processes
fXjðt; vÞ : t [ T g, j ¼ 1, . . . , d, where t [ T is defined over the index set, corresponding to time, and
v [ V is defined over the sample space. Below, we will also use the shorthand fXj

tg to denote each
stochastic process.
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For each stochastic process, we may observe n independent realizations (or paths), which are samples

from V indexed by ωi: fXjðt; viÞ : t [ T g, i ¼ 1, . . . , n. Furthermore, each path is finite and sampled at
times t = 1,…, Tj.

Remark (Time series as data samples). For each variable Xj, the data samples (time series) consist of
n paths (Xj(1,ωi),…, Xj(Tj,ωi)), i = 1,…,n, which we arrange as Tj-dimensional vectors
xji ¼ ðxji,1, . . . , xji,Tj

Þ, i ¼ 1, . . . , n, i.e. the components of the vector are given by xji,tk : ¼ Xjðtk; viÞ.
Definition (Independence of stochastic processes). Two stochastic processes fXj

tg and fXj0
t g with

the same index set T are independent if for every choice of sampling times t1, . . . , tf [ T , the
random vectors (Xj(t1),…,Xj(tf )) and (Xj0 (t1),…,Xj0 (tf )) are independent. Independence is usually
denoted as fXj

tg ?? fXj0
t g. Below, we will abuse notation and use the shorthand Xj

t ?? X j0
t .

From this definition, it immediately follows that the realizations are independent.

Remark (Independence of realizations). Although the samples within a path ðXjð1, viÞ, . . . ,
XjðTj, viÞÞ ¼ ðxji,1, . . . , xji,Tj

Þ are not necessarily independent across time, each variable is independent

across realizations for any time t, i.e. xji,t ?? xji0 ,t 8t, 8i = i0. In other words, the n time series are assumed to

be iid samples, xji
n on

i¼1
�iidPXj , where PXj is a finite-dimensional distribution of the stochastic process fXj

tg.
Definition (Stationarity). A stochastic process is said to be stationary if all its finite-dimensional

distributions are invariant under translations of time.

Aim of the paper: Here, we use kernels to embed finite-dimensional distributions of the d stochastic
processes fXj

tg and design tests for joint independence of time series thereof. Recent work has used
HSIC to test for independence of pairs of stationary [27,34] and non-stationary [28] time series. Here,
we extend this work to d > 2 time series using tests based on dHSIC. We consider two scenarios:

— if we only observe a single time series (n = 1) of each of the d variables, then we can only consider
stationary processes;

— if we have access to several time series (n > 1) of each of the d variables, then we can also study non-
stationary processes.

3. dHSIC for joint independence of stationary time series
We first consider the scenario where we only have one time series (n = 1) for each of the d variables Xj,
which are all assumed to be stationary. Our dataset is then fxjgdj¼1, and it consists of d time-series vectors
xj ¼ ðxj1, . . . , xjTÞ, which we view as single realizations of the stationary stochastic processes fX j

t g, all
sampled at times t = 1,…,T. As will become clear below, the limited information provided by the
single realization, together with the use of permutation-based statistical tests, means that the
assumption of stationarity is necessary [26].

Let Kj [ RT�T be kernel matrices with entries Kj
ab ¼ kjðxja, xjbÞ where a,b∈ {1,…,T}, and kj :R� R ! R

is a characteristic kernel (e.g. Gaussian); hence, the matrix Kj captures the autocorrelational structure of
variable Xj. In this case, dHSIC (2.1) can be estimated as the following expansion in terms of kernel
matrices [19,35]:

ddHSICstðx1, . . . , xdÞ :¼ 1
T2

XT
a¼1

XT
b¼1

Yd
j¼1

Kj
ab �

2
Tdþ1

XT
a¼1

Yd
j¼1

XT
b¼1

Kj
ab þ

1
T2d

Yd
j¼1

XT
a¼1

XT
b¼1

Kj
ab: ð3:1Þ

The null hypothesis is H0 :PX1,...,Xd ¼ PX1 � � �PXd , and we test (3.1) for statistical significance. To do so, we
bootstrap the distribution under H0 using random shifting to generate S samples [26]. For each of the
samples s = 1,…,S, we fix one time series (x1 without loss of generality) and generate random shifting
points t

j
s, j ¼ 2, . . . , d for each of the other d− 1 time series where h , t

j
s , T and h is chosen to be

the first index where the autocorrelation of
Pd

j¼1 x
j is less than 0.2 [26].

Each time series is then shifted by t
j
s, so that xjs,t ¼ xjðtþt

j
sÞmodT

. This shifting procedure, which is
illustrated in figure 1, breaks the dependence across time series yet retains the local temporal
dependence within each time series. In this way, we produce S randomly shifted datasets
ðx1s , . . . , xds Þ, s ¼ 1, . . . , S, and the estimated dHSIC is computed for each shifting:ddHSICstðx1s , . . . , xds Þ. The p-value is computed by Monte Carlo approximation [19]. Given a
significance level α, the null hypothesis H0 is rejected if a . p-value. We note that although an
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alternative to shifting called Wild Bootstrap has been proposed [27,36], it has been reported to produce
large false positive rates [37]. We therefore use shifting (and not the Wild Bootstrap) in this manuscript.

3.1. Numerical results

3.1.1. Validation on synthetic stationary multivariate systems with a single realization

To validate our approach, we apply the dHSIC test for joint independence to datasets consisting of d = 3
time series of length T with n = 1 realizations (i.e. one time series per variable). We use three stationary
models with a known dependence structure (ground truth), the strength of which can be varied. For each
test, we use S = 1000 randomly shifted samples and we take α = 0.05 as the significance level. We then
generate 200 such datasets for every model and combination of parameters (T, λ), and compute either
the test power (i.e. the probability that the test correctly rejects the null hypothesis when there is
dependence) or the type I error (i.e. the probability that the test mistakenly rejects the true null
hypothesis when there is independence) for the 200 datasets.

Model 1.1: Three-way dependence ensuing from pairwise dependencies. The first stationary example [38]
has a three-way dependence that follows from the presence of two simultaneous two-way dependencies:

Xt ¼ 1
2
Xt�1 þ et, Yt ¼ 1

2
Yt�1 þ ht, Zt ¼ 1

2
Zt�1 þ zt þ l(Xt þ Yt), ð3:2Þ

where et, ηt, ζt and θt are generated as iid samples from a normal distribution N ð0, 1Þ, and the
dependence coefficient λ regulates the magnitude of the dependence between variables, i.e. for λ = 0
we have joint independence of (X, Y, Z ) and the dependence grows as λ is increased. Figure 2a shows
the result of our test for d = 3 variables applied to time series of length T = [100, 300, 600, 900, 1200]
and increasing values of the dependence coefficient 0≤ λ≤ 1 generated from model (3.3). As either λ
or T increase, it becomes easier to reject the null hypothesis of joint independence. Full test power can
already be reached for λ = 0.5 across all lengths of time series. Our test also rejects pairwise
independence between the (X, Z ) and (Y, Z ) pairs, and fails to reject independence between (X, Y ), as
expected from the ground truth.

Model 1.2: Pure three-way dependence. Our second stationary example, also from [38], includes a three-
way dependence without any underlying pairwise dependence:

Xt ¼ 1
2
Xt�1 þ et, Yt ¼ 1

2
Yt�1 þ ht, Zt ¼ 1

2
Zt�1 þ zt þ ljutjsign(XtYt), ð3:3Þ

where et, ht, zt and θt are iid samples from N ð0, 1Þ, and the coefficient λ regulates the three-way
dependence. Figure 2b shows that the test rejects the null hypothesis as either λ or T increase,
although the test power is lower relative to (3.2), as there are no two-way dependencies present in this
case, i.e. this is a three-way emergent dependency.

Model 1.3: Joint independence. As a final validation, we use a jointly independent example [38]:

Xt ¼ aXt�1 þ et, Yt ¼ aYt�1 þ ht, Zt ¼ aZt�1 þ zt, ð3:4Þ
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where et, ηt and ζt are iid samples from N ð0, 1Þ. Figure 2c shows that in this case we do not reject the null
hypothesis of joint independence across a range of values of the autocorrelation parameter a. Note that
the type I error of the test remains controlled around the significance α = 0.05 for all values of T and a.
3.1.2. Synthetic frequency mixing data

As a further illustration linked more closely to real-world applications, we have generated a dataset
based on frequency mixing of temporal signals. Frequency mixing is a well-known phenomenon in
electrical engineering, widely used for heterodyning, i.e. shifting signals from one frequency range to
another. Applying a nonlinear function (e.g. a quadratic function or a rectifier) to the sum of two
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signals with distinct frequencies generates new signals with emergent frequencies at the sum and
difference of the input signals (figure 3a–c). It has previously been shown that the instantaneous
phases of the emergents display a unique three-way dependence, without any pairwise dependencies
[39–41]. Importantly, given sufficiently long time series, the instantaneous phase can be considered a
stationary signal [39]. Hence, we can apply our test to this system.

Here, we generated a dataset using the sum of two sinusoidal functions with frequencies f1 = 7 Hz
and f2 = 18 Hz as input, to which we applied a quadratic function plus weighted Gaussian noise e.
This produces a signal F that contains components at input (root) frequencies (f1 = 7 Hz and f2 =
18 Hz), second harmonics (2f1 = 14 Hz and 2f2 = 36 Hz) and emergent frequencies (fD ¼ f2 � f1 ¼ 11Hz
and fS ¼ f1 þ f2 ¼ 25Hz). See figure 3a and [39] for further details. We then computed a wavelet
transform and extracted the instantaneous phases for frequencies f1, f2, fS and fD, which we denoted
f1, f2, fS and fD. These phases can be considered as stationary time series. The ground truth is that
there should be no pairwise dependencies between any of those phases, but there are higher-order
interactions involving three-way and four-way dependencies [39].

We applied dHSIC with shifting to all possible groupings of d phases (for d = 2, 3, 4) from the set
ff1, f2, fS, fDg. The phases consisted of time series with length T = 1000, and we used S = 1000
shiftings for our bootstrap. We found that the null hypothesis of independence could not be rejected
for any of the six phase pairs (d = 2), whereas joint independence was rejected for all four phase
triplets (d = 3) and for the phase quadruplet (d = 4). The rejection of all the three-way and four-way
joint independence hypotheses, without rejection of any of the pairwise independence hypotheses,
thus recovers the ground truth expected structure (figure 3b).
3.1.3. Application to climate data

As an application to real-world data, we used the PM2.5 air quality dataset, which contains four
variables: hourly measurements of particulate matter with a diameter of 2.5 microns or less (PM2.5)
recorded by the US Embassy in Beijing between 2010 and 2014, and three concurrent meteorological
variables (dew point, temperature, air pressure) measured at Beijing Capital International Airport [42].
Non-stationary trends and yearly seasonal effects were removed by taking differences of period 1 and
period 52 in the averaged weekly data. Stationarity of the de-trended series was verified by an
Adfuller test [43]. As expected, we found that the null hypotheses ( joint independence) were rejected
for all groups of d = 2, 3, 4 variables, implying that PM2.5, dew point, temperature and air pressure
are all dependent on each other.
4. dHSIC for joint independence of non-stationary time series with
multiple realizations

When we have multiple independent observations of the d variables, these can be viewed as iid samples
of a multivariate probability distribution. By doing so, the requirements of stationarity and same
point-in-time measurements across all variables can be loosened.
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Consider the case when we have access to n > 1 observations of the set of variables (X1,…, Xd), where
each observation i = 1,…, n consists of d time series Xj, which we write as vectors xji ¼ ðxji,1, . . . , xji,Tj

Þ of
length Tj. Each of the n observations thus consists of a set fxjigdj¼1, which can be viewed as an independent
(iid) realization of a finite-dimensional multivariate distribution PX1,...,Xd . To simplify our notation, we
compile the n observations of each Xj as rows of a n × Tj matrix X j, so that Xj

½i, : � ¼ xji.
Let kj :RTj � RTj ! R be a characteristic kernel (e.g. Gaussian) that captures the similarity between a

pair of time series of variable Xj. We then define the set of kernel matrices Kj [ Rn�n with entries
Kj

ab ¼ kjðxja, xjbÞ where α, β∈ {1,…, n}. Therefore, the matrix Kj captures the similarity structure
between the time series of variable Xj across the n observations. This set-up thus allows us not to
require stationarity in our variables, since the n observations capture the temporal behaviour of the d
variables concurrently. In this case, dHSIC for the set of observations (X1,…, Xd) can be estimated as [19]

ddHSICmultðX1, . . . , XdÞ :¼ 1
n2

Xn
a¼1

Xn
b¼1

Yd
j¼1

Kj
ab �

2
ndþ1

Xn
a¼1

Yd
j¼1

Xn
b¼1

Kj
ab þ

1
n2d

Yd
j¼1

Xn
a¼1

Xn
b¼1

Kj
ab: ð4:1Þ

Similarly to §3, the null hypothesis is H0 :PX1,...,Xd ¼ PX1 � � �PXd and we test (4.1) for statistical
significance. Due to the availability of multiple realizations, however, we use a different resampling
method (standard permutation test) to bootstrap the distribution of (4.1) under H0 (figure 4). For each
of the samples p = 1,…, P, we fix one variable (X1 without loss of generality), and we randomly
permute the rest of the variables across realizations to create the permuted sample fxjpgdj¼1 ¼ fxjP½i,p�gdj¼1,
where P½i, p� indicates a random permutation between realizations, and x1p ¼ x1i , 8p. In this way, we
produce P permuted datasets ðX1

p, . . . , X
d
pÞ, p ¼ 1, . . . , P, with X1

p ¼ X1. The estimated dHSIC (4.1) is
then computed for each permutation p. Given a significance level α, the null hypothesis H0 is rejected
if a . p-value where the p-value is computed by Monte Carlo approximation [19].
4.1. Numerical results

4.1.1. Validation on simple non-stationary multivariate systems

The dHSIC test is applied to datasets consisting of n observations of non-stationary time series of length
T of three variables (X, Y, Z ), with ground truth dependencies that can be made stronger by increasing a
dependence coefficient λ. For every model and combination of parameters (n, T, λ), we generate 200
datasets and compute the test power, i.e. the probability that the test correctly rejects the null
hypothesis in our 200 datasets. Figure 5 shows our numerical results for two non-stationary models:
the first model (shown in figure 5a,b with two non-stationary trends) has a three-way dependence
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ensuing from two-way dependencies; the second model (shown in figure 5d for a non-stationary trend)
has an emergent three-way dependence with no pairwise dependencies.

Model 2.1: Three-way dependence ensuing from pairwise dependencies with non-stationarity. The first model
has the same dependence structure as (3.2), i.e. two simultaneous pairwise dependencies and an ensuing
three-way dependence, but in this case with non-stationary trends:

Xt ¼ g1ðtÞ þ Xt�1 þ et, Yt ¼ g2ðtÞ þ Yt�1 þ ht, Zt ¼ g3ðtÞ þ Zt�1 þ zt þ l(Xt þ Yt), ð4:2Þ

where et, ht and zt are iid samples from a normal distribution N ð0, 1Þ; λ regulates the strength of the
dependence (λ = 0 means joint independence); and g1(t), g2(t), g3(t) are non-stationary trends as follows:

— linear trend (figure 5a): g1(t) = g2(t) = g3(t) = t
— complex nonlinear trend (figure 5b): g1ðtÞ ¼ sin2ðtÞ=logð1þ tÞ, g2ðtÞ ¼ cos2ðtÞ=logð1þ tÞ,

g3ðtÞ ¼ sinðtÞ cosðtÞ=logð1þ tÞ.

Figure 5a,b shows that the dHSIC test is able to reject the null hypothesis of joint independence for (4.2)
even for short time series and low values of the dependence coefficient λ. The test power increases
rapidly as the length of the time series T or the number of realizations n are increased. As expected,
the null hypothesis cannot be rejected for T = 1, since the temporal dependence is no longer observable.

Model 2.2: Emergent three-way dependence with non-stationarity. The second model has the same
dependence structure as (3.4) (i.e. an emergent three-way dependence without two-way dependencies)



three-way four-way two-way

normalized whole brain volume estimated total intracranial volume

estimated total intracranial volume

clinical dementia rating

normalized whole brain volume

normalized whole brain volumeage

age

age

estimated total intracranial volume

clinical dementia rating

clinical dementia rating

Figure 6. High-order dependencies between four variables in MRI and Alzheimer’s data containing multiple realizations of time-
series data. The hyperedges represent rejections of the respective joint independence tests. We find 2 (out of 6) pairwise
dependencies and 3 (out of 4) three-way dependencies, as well as the four-way dependence between all variables. There are
no emergent dependencies in this example.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230857
10
but with non-stationary trends

Xt ¼ aXt�1 þ et þ t sinðtÞ, Yt ¼ aYt�1 þ ht þ t cosðtÞ, Zt ¼ aZt�1 þ zt þ l tsignðXtYtÞ, ð4:3Þ
where, again, et, ηt and ζt are iid samples from N ð0, 1Þ, and λ regulates the strength of the dependence.
We set a = 0.8, the point at which the data becomes non-stationary according to an Adfuller test. Figure 5c
shows good performance of the test, which is able to reject joint independence for low values of λ, with
increasing test power as the length of the time series T and the number of realizations n are increased
(figure 5c).

4.1.2. Synthetic XOR dependence

The exclusive OR (XOR) gate (denoted �) is a logical device with two Boolean (0–1) inputs and one
Boolean output, which returns a 1 when the number of ‘1’ inputs is odd. Here, we consider a system
with three Boolean variables X, Y, W driven by noise, which get combined via XOR gates to generate
another Boolean variable Z:

Xt ¼ Xt�1, if et � 0:5
1� Xt�1, otherwise

�
Yt ¼ Yt�1, if ht � 0:5

1� Yt�1, otherwise

�

and Wt ¼ Wt�1, if zt � 0:5
1�Wt�1, otherwise

�
Zt ¼ Xt � Yt �Wt, if ut � 0:5

1� Xt � Yt �Wt, otherwise

�
9>>=
>>; ð4:4Þ

where et, ηt, ζt and θt are iid samples from U½0, 1Þ, a uniform distribution between 0 and 1, and X0, Y0 and
W0 are initialized as random Boolean variables. The dependence in this system is high-order: it only
appears when considering the four variables, with no three-way or two-way dependencies. We find
that our test does not reject joint independence for d = [2, 3] variables, but does reject joint
independence of the four-variable case.

4.1.3. Application to MRI and Alzheimer’s data

As a first application to datawith multiple realizations, we apply our test to a magnetic resonance imaging
(MRI) and Alzheimer’s longitudinal dataset [44], which comprises demographic and MRI data collected
from subjects over several visits. Here, we consider n = 56 subjects, each with at least three visits (T = 3),
and we assume that the subjects constitute iid realizations—a reasonable assumption since this is a well-
designed population study with representative samples. We then perform dHSIC tests to find
dependencies between four key variables: age, normalized whole brain volume (nWBV), estimated total
intracranial volume (eTIV) and clinical dementia rating (CDR). The first three variables are clinical risk
factors, whereas CDR is a standardized measure of disease progression.

Our findings are displayed as hypergraphs in figure 6 where nodes represent variables and
hyperedges represent rejections of joint independence from the two-way, three-way and four-way
dHSIC tests. In this case, we find only two pairwise dependencies (age-nWBV and nWBV-CDR),
while eTIV is seemingly disconnected to the rest of the variables. Note that the possible emergent
three-way interaction (age-eTIV-CDR) is not present, although eTIV shows the expected three-way
and four-way dependencies with CDR, nWBV and age. This example highlights how our method can
be used to reveal the different higher-order dependencies beyond pairwise interactions. To understand
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the complex high-order interactions of the incomplete factorizations, methods based on Streitberg and
Lancaster interaction can be explored in future work [45].

4.1.4. Application to socio-economic data

As a final illustration in a different domain area, we test for joint independence between the United Nations
SDGs [46]. This dataset consists of a time series of a large number of socio-economic indicators forming the
17 SDGs (our variables Xj, j = 1,…, 17) measured yearly between 2000 and 2019 (T = 20) for all 186
countries in the world (see [12] for details on the dataset). We take the countries to be iid realizations, as
in [12], although this assumption is less warranted here than for the dementia dataset in §4.1.3 due to
moderate correlations between countries due to socio-economic and political relationships.

As an illustration of the differences in data dependencies across country groupings, we consider two
classic splits: (i) a split based on income level (n = 74 countries with low and lower-middle income, and
n = 105 countries with high and upper-middle income); and (ii) a split based on broad geography and
socio-economic development (n = 49 countries in the Global North and n = 137 countries in the Global
South). This dataset highlights the difficulties of examining high-order dependencies as the number of
variables grows, e.g. d = 17 in this case.

The results of applying this recursive scheme to the SDG dataset are shown in figure 7. The comparison
between low- and high-income countries (figure 7a–c) shows that the latter have strong pairwise
dependencies (124 rejections of two-way independence out of a total of 136 pairs) and only 1 emergent
three-way interaction (figure 7c), whereas the former have more emergent higher-order dependencies (eight
three-way and one five-way) (figure 7b). These results suggest that the interdependencies between SDGs
are more complex for lower-income countries, whereas most of the high-order dependencies in high-
income countries are explained by the pairwise dependencies between indicators. Given that many
analyses of SDG interlinkages consider only pairwise relationships, this implies the need to consider high-
order interactions to capture relationships in lower-income countries where policy actions targeting
pairwise interlinkages could be less effective. The comparison between the Global North and Global South
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(figure 7d,e) shows that the latter has exclusively two-way dependencies, whereas the former has emergent
three-way interactions (12) and four-way interactions (1) (figure 7e). Interestingly, two SDGs, climate action
and life below water, consistently appear in emergent high-order dependencies in lower- and higher-
income countries, and in Global North groupings, suggesting their potential for further studies. In addition,
the hypergraphs of emergent high-order interactions for different country groupings can be studied using
network science techniques, including the computation of centrality measures to rank the importance of
SDGs within the system of interdependent SDG objectives and the use of community detection algorithms
to extract clusters of highly interdependent SDGs [12].
5. Discussion
In this paper, we present dHSIC tests for joint independence in both stationary and non-stationary time-series
data. For single realizations of stationary time series, we employ a random shifting method as a resampling
technique. In the case of multiple realizations of either stationary or non-stationary time series, we consider
each realization as an independent sample from a multivariate probability distribution, enabling us to use
random permutation as a resampling strategy. To validate our approach, we conducted experiments on
diverse synthetic examples, successfully recovering ground truth relationships, including in the presence
of a variety of non-stationary behaviours. As illustrated by applications to climate, SDGS, and MRI and
Alzheimer’s data, the testing framework could be applicable to diverse scientific areas in which stationary
or non-stationary time series are the norm.

There are some computational considerations that need to be taken into account for different
applications. In our numerical experiments, we have evaluated the impact of several parameters,
including the length of the time series T and the number of observations n, on the computational
efficiency and statistical power of our test. In general, the test statistic can be computed in OðdT2Þ or
Oðdn2Þ, where d is the number of variables and T2 or n2 are the sizes of the kernel matrices [19].
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Hence, the computational cost increases with the number of variables and/or number of realizations and

length of the time series. The computational cost also grows linearly with the number of resamplings (S
or P) used to approximate the null distribution, but our findings show that the test is robust even for low
numbers of resamplings. Figure 8a shows that the test power does not improve substantially beyond 100
resamplings (permutations)—a result that has been previously discussed for iid data [47]. Therefore,
achieving a balance between test power and computational efficiency is crucial, particularly when
dealing with large multivariate datasets.

It is worth noting that for stationary data with multiple independent realizations, both resampling
schemes (shifting and permutation) can be employed to sample the null distribution. If the number of
realizations (n) is much larger than the length of the time series (T), the permutation strategy provides
more efficient randomization as long as the realizations are diverse. Conversely, when n is smaller
than T, time shifting allows to better exploit the observed temporal dynamics. As an illustration of this
point for Model 1.1 (3.2) with multiple realizations, figure 8b shows that if we have T = 20 time points
available, then the permutation-based approach has the same performance as the shifting approach
when the number of realizations reaches n = 6. However, if T = 100 time points are available, both
performances become similar when the number of realizations is n = 20. These resampling alternatives
must also be evaluated in conjunction with the study of different kernels that can more effectively
capture the temporal structure within and across time series (e.g. signature kernels). We leave the
investigation of these areas as an avenue of future research.

The interest in higher-order networks, such as hypergraphs or simplicial complexes, has been steadily
growing [24] with applications across scientific fields [22,48–51]. Higher-order networks can be natural
formalizations of relational data linking d entities [52,53]. However, there is a scarcity of research and a lack
of consensus on how to construct higher-order networks from observed iid or time-series data [54], and the
joint independence methods proposed here could serve to complement approaches based on information
measures [20]. By iteratively testing from pairwise independence up to d-order joint independence, our
approach can uncover emergent dependencies not explained by lower-order relationships. This framework
presents a direction for the development of higher-order networks, bridging the gap between observed data
and the construction of meaningful higher-order network representations.
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