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Mosquito-borne diseases (MBDs) threaten public health and food security
globally. We provide the first biogeographic description of the African
mosquito fauna (677 species) and the 151 mosquito-borne pathogens
(MBPs) they transmit. While mosquito species richness agrees with expec-
tations based on Africa’s land surface, African arboviruses and
mammalian plasmodia are more speciose than expected. Species assem-
blages of mosquitoes and MBPs similarly separate sub-Saharan Africa
from North Africa, and those in West and Central Africa from eastern
and southern Africa. Similarities between mosquitoes and MBPs in diversity
and range size suggest that mosquitoes are key in delimiting the range of
MBPs. With approximately 25% endemicity, approximately 50% occupying
one to three countries and less than 5% occupying greater than 25 countries,
the ranges of mosquitoes and MBPs are surprisingly small, suggesting that
most MBPs are transmitted by a single mosquito species. Exceptionally
widespread mosquito species feed on people and livestock, and most
are high-altitude-windborne migrants. Likewise, widespread MBPs are
transmitted among people or livestock by widespread mosquitoes,
suggesting that adapting to people or livestock and to widespread mosquito
species promote range expansion in MBPs. Range size may predict
range expansion and emergence risk. We highlight key knowledge gaps
that impede prediction and mitigation of future emergence of local and
global MBDs.
1. Introduction
Africa carries the heaviest global burden of mosquito-borne diseases (MBDs),
with more than 400 000 deaths attributable to malaria out of the total 700 000
deaths caused by vector-borne diseases annually [1]. At least 8 of the 11 most
impactful global mosquito-borne pathogens (MBPs) originated in Africa—
namely yellow fever virus (YFV), West Nile virus (WNV), chikungunya virus
(CHIKV), Rift Valley fever virus (RVFV), Zika virus (ZIKV) and three human
Plasmodium species ( falciparum, malariae, ovale) [1]. Excluding its islands,
Africa comprises only 20% of the Earth’s land surface, but is the origin of
73% (8/11) of these global MBPs. Based on the species richness–area relation-
ship [2], this excess is highly significant ( p < 0.001, exact binomial test),
corroborating a recent literature review that reached a similar conclusion
using different data [3]. The reasons for Africa’s disproportionate role as the
origin of so many global MBPs may include being the only continent that
extends from the northern to southern temperate zones, covering greater than
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70° of latitude (37°N–34°S), and straddles several biomes
including the outstandingly diverse equatorial forest [2,4,5].
As the homeland of the hominids and extant apes, we
expected that Africa would contain more human MBPs [6];
yet, five of the eight global MBDs are zoonotic (YF, WN,
RVF, CHIK and ZIK), yielding a new hypothesis that Africa
has more MBDs altogether, not only those affecting
humans. Africa is also home to the largest number of mega-
fauna species, and thus it poses a greater risk to many
phylogenetically related domestic animals. Knowledge and
understanding of the MBDs of Africa, therefore, would be
valuable for global health and food security. As Africa
undergoes dramatic perturbations due to deforestation,
urbanization and climate change (e.g. warming and desertifi-
cation), coupled with food and water scarcity, the risk for
the emergence/re-emergence of MBDs needs to be closely
monitored. The projected growth of the African popula-
tion over future decades (from 1.4 to 4 billion) surpasses
that of all other continents [7] and is expected to result
in a higher rate of disease emergence and spread unless
humanity is better prepared. Knowledge of the natural
transmission cycles of pathogens is a prerequisite to success-
ful mitigation of MBDs; however, this information is
vastly lacking.

The study of MBDs has traditionally been fragmented into
separate fields (virology, parasitology, entomology, etc.) and
most studies have focused on one or a few pathogens and/
or their vectors in a limited region. Excepting a few reviews
of certain MBDs [8,9], the ensemble of MBDs as a biological
system composed of mosquitoes and pathogens has never
before been holistically studied to our knowledge. On the
other hand, the increasing frequency of disease emergence
in humans has deservedly been the focus of extensive study
[10–16], yet their broad scope may have precluded inferences
into commonalities shared among certain groups of diseases.
We present a dedicated database constructed based on a
comprehensive literature search (electronic supplementary
material) focusing on all known pathogens transmitted by
mosquitoes between terrestrial tetrapods in continental
Africa. Using this database, we describe the composition
and geographical organization of the mosquito species
and MBPs in Africa to better understand the process of
MBD range expansion, which is key to disease emergence.
Specifically, we evaluate the hypothesis that Africa has
exceptionally high mosquito and MBP diversities and map
the landscapes of their species richness, endemicity and
composition. The results provide insights into the role of
mosquito and MBP dispersal, the nature of barriers to their
spread and the future of MBD surveillance in Africa. We
propose a process for range expansion of MBPs and accord-
ingly rank the African MBPs, as to their expected risk for
disease emergence.

In this exploratory analysis, we summarize trends based
on knowledge that has been accumulated over at least 120
years. Thus, it may come as a surprise that the main vector
species of MBPs of vertebrates are still largely unknown,
including most sylvatic vectors (transmitting among wild
animals) of the better-studied pathogens [17–26]. This is
also the case for many MBP species of vertebrates
[8,17,19,21,27]. Therefore, it is likely that the role of many
mosquito species as vectors of known and unknown patho-
gens is yet to be discovered. Moreover, biogeographic
patterns that apply to non-vector species may equally pertain
to vector species. Accordingly, we include all known African
mosquito species in the current analysis.
2. Results
As many of the records on mosquito and MBP distribution
were collected before 1980, localization of a large portion
of these records is only available at the country level
[9,17,22,26,28–31]. Because many African countries cover
multiple ecozones [4], and given that biogeographic regions
as defined for various animal classes [32] vary in size, our
units of analysis—countries—form fuzzy eco-geographic
units.

(a) What are the African mosquitoes and mosquito-
borne pathogens?

Continental Africa, which comprises 20% of the world’s land
surface, supports 19% of all known global mosquito species
(N = 3570, see Methods) [26]. The African mosquito fauna
includes 677 species spanning 16 genera and 53 subgenera,
with Aedes comprising the largest number of species, fol-
lowed by Anopheles and Culex (figure 1a). Goodness of fit
tests contrasting global diversity by genus with an expected
fraction of 20% (in genera where N > 15 species/genus)
reveal higher fractions of African species in Aedes (23%, p <
0.01, x21 ¼ 6:9), Anopheles (30%, p < 0.0001, x21 ¼ 27:5) and
Coquillettidia (40%, p < 0.0002, x21 ¼ 14:0), but are insignificant
in the other genera. The highest fraction of African species
(100%) is found in the genus Eretmapodites (n = 48), which is
endemic to Africa (figure 1a). Genera whose share of African
species is greater than 20% (of their global diversity) likely
reflect disproportional larger local speciation (or fewer extinc-
tions) on the continent. Among the 53 mosquito subgenera in
Africa, Anopheles (Cellia) is by far the most speciose (n = 121,
figure 1b; electronic supplementary material, table S1). Sev-
eral subgenera have a high proportion of African species
(figure 1b), although most of these have a small number of
species in total, such as Anopheles (Christya) (n = 2). Nonethe-
less, all 29 Aedes (Catageiomyia) species are exclusively African
species and 24 of the 28 species of Aedes (Neomelaniconion) are
African (figure 1b; electronic supplementary material, table
S1). While not precluding that some of the species also
occur outside Africa, a high fraction of species found in
Africa, especially in taxa with a large number of species,
highlights the fauna’s characteristic elements.

A total of 151 known mosquito-borne-pathogen (MBP)
species affecting vertebrates have been reported from
continental Africa (figure 1c). These include 95 viruses, 47
protozoans, 6 helminths and 3 bacteria, comprising a total
of 16 families and 30 genera (figure 1c; including 3 unclassi-
fied genera). These 95 arboviruses represent a significantly
higher share than expected from the known global total
based on the surface land area of Africa (32% versus 20%,
p < 0.0001, x21 ¼ 25:5). The fraction of mosquito-borne arbo-
viruses is likely even higher because among the 300 total
arboviruses that have been isolated from mosquito pools
worldwide [26], some are probably not vectored by mosqui-
toes. Likewise, of the 60 mammalian plasmodia [21], 27
species (40%) are reported from Africa, which is larger than
expected based on the continental/global land mass area
( p < 0.0001, x21 ¼ 23:4). Plasmodia of birds are not considered
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Figure 1. Taxonomical profile of African mosquitoes and MBPs. (a) Number of African species/genera (gold and numerals) compared with the total number world-
wide (green). Star denotes entirely African genus. Note: breaks in the y-axis. (b) The fraction of African mosquito species per subgenus (y-axis) of their worldwide
total in relation to their number in Africa (x-axis). To minimize label overlap, values near 1 were jittered. Subgenera labels (abbreviated) are shown if they have two
or more species. Where no subgenera are known, e.g. Ficalbia (electronic supplementary material, table S1), genus names were used. Corresponding genera (bold
italic font) of the same colour are listed in the dotted frame. Red line marks expected 20% based on Africa’s share of land surface (see text). (c) Taxonomic
composition of African MBPs of vertebrates by family and importance of mosquito-borne transmission (see legend). Suspected mosquito transmission reflects com-
pelling, yet non-definitive evidence (electronic supplementary Data File 2). The number of pathogens in each family is shown above bars (black) and the total by
taxonomic group shown across (gold). The number of pathogens transmitted mechanically are listed (red). (d ) Division of MBPs by group of vertebrate hosts acting
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here because recent molecular analyses reveal many novel
species awaiting formal descriptions [19,21,33].

The vast majority of MBPs are maintained in wild host
reservoirs (figure 1d ), although a few can be transmitted for
short periods between humans, e.g. YFV and O’nyong’nyong
virus (ONNV), or between domestic animals e.g. RVFV.
Mosquito transmission is the primary route of vertebrate
infection in most MBPs (figure 1c), whereas 16 pathogens
rely on other arthropods or direct transmission as their
primary mode of transmission and mosquitoes represent a
secondary route (figure 1c). At least eight of the nine pox-
viruses are transmitted mechanically by mosquitoes, as are
the three bacteria [34] (figure 1c; electronic supplementary
material, file S2). Mechanical transmission appears to be
linked to secondary transmission (figure 1c; electronic sup-
plementary material, file S2), although certain poxviruses
can be transmitted several weeks post single exposure [35,36].

(b) Range size occupied by the African mosquitoes and
mosquito-borne pathogens

Range size evaluations reveal that 26% of all African mos-
quito species are endemic (known from a single country),
and that over 50% are restricted to at most three countries
(median = 3.0, figure 2a). The L-shape distribution reveals
that only 5% of the total number of species are found
across over half of the continent (more than 25 countries,
figure 2a). The Pearson correlation coefficient between the
number of countries and total area (sum over countries
areas) occupied by each species is 0.966 (N = 677, p < 0.0001),
indicating that the number of countries approximates range
size well. The median area occupied by a mosquito species
is 3.09 × 106 km2 (95% CI: 2.72–3.42 km2). Range size varies
among genera ( p < 0.05, quantile regression, figure 2a: inset).

Species of Lutzia, Mansonia, Aedeomyia, Mimomiya, Ficalbia
and Coquillettidia exhibit the largest ranges (figure 2a). How-
ever, the most widespread mosquito species that are found in
greater than 30 countries (14 of 677 species, figure 2) include
the most important (human) disease vectors: An. gambiae, An.
arabiensis, An. funestus, Ae. aegypti and Cx. quinquefasciatus,
less important vectors: An. pharoensis, An. squamosus, An.
coustani, An. ziemanni, An. rufipes, An. rhodesiensis, An. nili,
and Ae. vitattus, and Ur. balfouri, which is not known as
a vector. Anopheles predominates this group of exceptionally
widespread species. Eleven of these species thrive in dom-
estic environments and feed on people or domestic animals
(figure 2a), and at least seven engage in high-altitude wind-
borne migration [37–39]. Surprisingly, the distribution of
range size in African MBPs is remarkably similar to that of
the mosquitoes (figure 2b), with 28% being single country-
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endemic, 56% found in one to three countries (median = 3.0),
and 5% in greater than 25 countries. The Pearson correlation
coefficient between the number of countries and total area
occupied by each MBP species is 0.967 (N = 151, p < 0.0001),
corroborating that the number of countries is a proxy of
range size. The median area occupied by an MBP is 2.15 ×
106 km2 (95% CI: 1.64–2.65 × 106 km2). The most widespread
MBPs (40 countries) are Pl. falciparum and Pl. vivax (PLFLC,
PLVIX) with only nine MBPs being reported in 20 or more
countries (figure 2b). Excepting WNV, which is primarily
transmitted among birds (including migratory birds), all of
these remarkably widespread MBPs are transmitted among
humans (6) or domestic animals (2), and all are vectored by
at least one of the most widespread mosquito species men-
tioned above (figure 2a). For example, PLFLC, PLVIX and
Pl. ovale (PLOVL) are transmitted by some or all of the
above Anopheles species, and DENV, CHIKV and YFV are
transmitted by Ae. aegypti in urban and semi-urban settings
[9,22,40–44]. Similarly, WNV is transmitted by Cx. quinquefas-
ciatus and YFV and ZIKV are transmitted by Ae. vittatus
[9,45–47].

(c) Diversity and endemism across the continent
According to the area–species richness principle, mosquito
species richness has been found to increase with a country’s
area in a worldwide analysis [29]. In Africa, this relationship
accounted for only 13% of the variance compared with 42%
worldwide (figure 3a). The equatorial forest possesses the
highest species richness (figure 3a), with the Democratic
Republic of the Congo (DRC), Cameroon, Uganda, Kenya,
Nigeria and Ivory Coast showing the highest values. Adjust-
ing for area minimally changes these countries’ ranking
(figure 3a). North Africa represents a uniform belt of lowest
mosquito diversity, with Libya being an outlier that exceeds
the 95% confidence limits (CL), given its area (figure 3a). A
corridor of modest diversity exists along the Sahel (from
Mauritania to Chad) in addition to another potential corridor
between Central and East Africa including countries from
Namibia and Botswana to Rwanda, which remained stable
after accounting for country area (figure 3a).

Similarly to mosquitoes, the species richness of African
MBPs is highest in Central Africa, followed by an East Afri-
can zone stretching from Kenya to South Africa (figure 3b).
Except for Senegal and the Ivory Coast, West Africa exhibits
lower diversity of MBPs than East Africa. Sahelian countries
and those between Central and East Africa exhibit lower MBP
richness than the surrounding regions, whereas North Africa
exhibits the lowest MBP richness (figure 3b). Species richness
increases with country size, but this relationship accounts for
only 13% of the variance among countries (excluding outliers:
Libya, increased R2 to 23%, figure 3b).

The distribution of country-endemic mosquito species
reveals greater heterogeneity than species richness, with the
highest endemicity in Equatorial Central Africa, especially
Cameroon (31), followed by South Africa and Angola (22,
figure 4a). These three countries represent outliers after
accounting for species richness and, indirectly, country area
(captured by species richness, figure 3a). Unlike with species
richness, the lowest mosquito endemicity is found across the
Sahel from Mauritania to Somalia and, notably, extending to
equatorial West Africa. Additionally, the secondary ‘corridor’
of low species richness separating South Africa from Central
and East Africa (figure 3a) appears to be wider for endemicity.
Countries without known endemic mosquito species include
Chad and Mozambique (figure 4a). The number of endemic
species per country is correlated with its species richness
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(r = 0.7, N = 45, p < 0.001), but visual inspection suggests a
higher slope after species richness exceeds approximately 100
species per country (figure 3a and figure 4a).
Country-endemic MBPs comprise 25 arboviruses, 11 plas-
modia and 1 nematode, reflecting a similar proportion of
endemicity across taxa: 27.5%, 25.6% and 16.7%, respectively.
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Endemic MBPs show an extreme hotspot in the Central Afri-
can Republic (CAR) and moderate endemism in the Ivory
Coast, followed by Nigeria and then Cameroon, Egypt and
Morocco (figure 4b). Endemic MBP species per country also
increases with species richness and indirectly with country
area (figure 3b). After accounting for species richness, the
CAR remains an outlier endemic hotspot.

(d) Heterogeneity in species composition across
regional and country scales

Because countries differ considerably in surveillance effort, a
regional analysis, wherein each region consists of multiple
countries, exhibits less variability in surveillance effort and
can be used to ascertain the patterns noted at the country
level. Here, five regions have been defined to maximize dis-
tances between regions, accommodate latitudinal variation,
and minimize inter-region enclaves (without regard for politi-
cal regions, see Methods). Over 40% of mosquito species are
region endemic and 60% of mosquito species are found in
one to two regions. Only 19% are found across sub-Saharan
Africa and merely 3% are distributed across all five regions
(figure 5a). Consistent with country results (figure 4a),
the highest mosquito richness and endemicity are found
in Central Africa and the lowest species richness is in
North Africa. Notably, endemicity is lowest in West Africa
(figure 5a). Excesses of species richness based on region
area are found in West and Central Africa, whereas North
Africa exhibits a deficit ( p < 0.01, Z > 3.1, Exact Binomial
tests, figure 6a). Excess of endemic species is detected in
Central Africa, whereas West Africa exhibits the lowest ende-
micity and largest deficit of endemic species, reflecting
the large number of species it shares with Central Africa
(N = 57), as well as with both East and Central Africa
(N = 60, figure 5a).
Similarly to trends observed in mosquitoes, 38% of MBP
species are region endemic and 60% are found in one to
two regions, while only 10% are found across sub-Saharan
Africa and 11% are found across the continent (figure 5b).
MBP richness is highest in Central Africa and lowest in
North Africa, whereas West and East Africa both have similar
MBP richness which appears to be higher than that of
Southern Africa (figure 5b). Considering the region’s area,
an excess of MBPs is detected in Central Africa and West
Africa, whereas a deficit is detected in North Africa
(figure 5b, p < 0.01, |Z| > 2.6, Binomial test). MBP endemicity
is also highest in Central Africa, but lowest in Southern
Africa, showing corresponding sharp departures from expec-
tations based on the region’s area (figure 5b, p < 0.01, |Z| >
2.5, Binomial test). Similar numbers of region-endemic
MBPs are found in West, North and East Africa, in accord-
ance with expectations based on area (figure 5b, p > 0.05).
West and Central Africa share more MBPs with one another
than other region pairs, whereas North Africa shares the
fewest MBPs with all adjoining regions (figure 5b). Overlap-
ping MBPs between three regions is highest between West,
Central and East Africa (N = 16) compared with other combi-
nations (1–4, figure 5).

The regional mosquito fauna is split into sub-Sahara and
North Africa—the two most distinct divisions in terms of
mosquito species composition—followed by the further
split of sub-Saharan Africa into West-Central and East-
Southern fauna (figure 6a, top). A country-based dendrogram
reveals a more complex picture (figure 6a, bottom). Most
countries from West and Central Africa are grouped together,
as are countries from East and Southern Africa (figure 6a).
Nine of the twelve high similarity clusters (R2 > 0.9) group
countries from the same region, with only three exceptions
(Nigeria–Ghana, Ivory Coast–CAR and DRC–Uganda,
figure 6a), which share ecological similarity if not geographic
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continuity. The country dendrogram suggests substantive
differences in mosquito faunas between Sahelian and equa-
torial West Africa countries, which is further supported by
the grouping of Chad with Niger, as well as Nigeria with
Liberia. Assemblages of mosquitoes defined by their signifi-
cant co-occurrence in particular areas, independently from
the regions defined above, are illustrated in electronic
supplementary material, figure S1a.

The composition of MBPs at the regional scale closely fol-
lows that of the mosquitoes, splitting sub-Sahara from North
Africa, followed by a further split of sub-Saharan Africa into
West-Central Africa and the East-Southern African fauna
(figure 6b, top). The country-level dendrogram based on
MBP composition reveals more pervasive cross-regional and
cross-sub-divisional clusters. For example, North African
countries are clustered together, but Egypt is clustered with
Tanzania (figure 6b). Nonetheless, most countries are
grouped by their region or subdivision. Departures from
regional clustering often follows ecological similarity
between countries in the equatorial forests, such as with
Cameroon and the Ivory Coast. Assemblages of MBPs
defined by their significant co-occurrence in particular
areas, independently from the regions defined above, are
illustrated in electronic supplementary material, figure S1b
(electronic supplementary material, Results and Discussion).
3. Discussion
Africa is facing changes in human density, accompanied by
ecosystem destruction—processes that are projected to increase
the exposure of humans and domestic animals to wildlife dis-
eases [5,12,14,48]. Given Africa’s high burden of MBDs, an
understanding of the African mosquito-borne diseasosome is
essential for improving local and global health and food secur-
ity. This study provides the first holistic description of the joint
biodiversity of mosquitoes and MBPs. Despite scarce/incom-
plete information and historically unbalanced sampling
efforts of these taxa across Africa and globally (below), the
data recovered herein summarizes over a century of surveil-
lance and is worthy of exploration to guide future risk
management and surveillance by recognizing key patterns
and knowledge gaps. Our results identify regions harbouring
more sylvatic vectors of both known and yet-to-be discovered
MBPs, and advance understanding of the factors that have
shaped the diversity of AfricanMBDs. We consider the process
of MBDs range expansion key for disease emergence and
address the following questions: (i) does exceptional biodiver-
sity of mosquitoes and MBPs in Africa account for its
disproportionally large role in the origin of global MBDs,
and whether this trend will continue? (ii) What is the geo-
graphical organization of mosquitoes and MBPs in Africa,
and has the former structured the latter? and, (iii) what are
the roles of domestication, dispersal, and adaptation to new
vectors and hosts as drivers of MBD range expansion? Finally,
we call attention to the need for surveillance and monitoring
changes in MBPs’ transmission patterns, as well as the devel-
opment of new tools for translation of these data into risk
maps and mitigation options.

A caveat of our analysis is the low resolution of the
country-based distributional data. As explained above, a sub-
stantial part of the records on mosquito and MBP distribution
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is only available at the country level. Our analysis and
interpretation of the results accommodate these limitations,
although obtaining higher-resolution records will improve
future biogeographical investigations.

(a) Global mosquito-borne diseases that originated
from Africa: past and future

The disproportionately large share of global MBDs originat-
ing from Africa, despite lower sampling effort of vector-
borne diseases compared with other continents [3], along
with the zoonotic nature of most of these diseases (Introduc-
tion), led to our hypothesis that the African mosquito and/or
MBP faunas are especially diverse. The share of the African
mosquito fauna (677 species) in the global culicid diversity
closely aligns with expectations based on continental land
area (19% versus 20%). Dominance of cosmopolitan genera,
such as Aedes, Culex and Anopheles (figure 1a) further sup-
ports that the African fauna is not distinct at the genus
level. However, it has a distinct assemblage of subgenera
(figure 1b). The diversity of African arboviruses and (mam-
malian) plasmodia—the largest taxonomic groups of MBPs
(figure 1c)—are considerably greater than expected by land
mass at 30% and 40%, respectively ( p < 0.0001). The higher
diversity of African MBPs (but not mosquitoes) may account
for the larger share of global MBDs originating in Africa and
in part for its disproportionally heavy burden of MBDs.
Moreover, this excess MBP diversity predicts that new
global MBPs will continue to emerge from Africa at a
higher rate than from any other continent.

Unlike the mosquito fauna, which is mostly well
described, African MBPs remain poorly known, given that
47% of MBPs have been found in humans and domestic ani-
mals while at least 92% are maintained in wild species
reservoirs (figure 1c). A conservative estimate of the African
MBPs of vertebrates can be derived assuming that humans
represent a typical host for vertebrate-specific MBPs of Afri-
can origin. Humans, the most studied vertebrate are known
as the only natural host for at least three and possibly five
African plasmodia [49–52], as well as possibly one nematode
[53,54]. This may be an underestimate since humans are
among the youngest species. With over 5000 vertebrate
species in Africa (approx. 1400 mammals [55], 2401 birds
[56], 1648 reptiles [57] and approx. 600 amphibians [58]), a
conservative estimate would be around 15 000 MBPs,
suggesting that only approximately 1% of the total African
MBP diversity is currently known. Thus, further pathogen
and vector discovery and the identification of their reservoir
hosts would be a productive area of future study, especially
if targeting lesser-known vertebrates and mosquitoes. The
emergence of previously considered ‘benign’ zoonotic patho-
gens such as ZIKV, CHIKV and WNV illustrates the need for
comprehensive knowledge of MBPs, including those trans-
mitted among wild animals by sylvatic vectors. Targeting
mosquito subgenera with a high fraction of African species
that have presumably had more time to be co-opted as vec-
tors by African pathogens, such as species of Eretmapodites,
Aedes (Catageiomyia), Aedes (Neomelaniconion), Culex (Maillotia)
and Culex (Barraudius), might yield many new MBPs. The
network of mosquitoes and MBPs defined by their significant
co-occurrence in the same countries (electronic supplemen-
tary material, figure S2) identifies putative sylvatic vectors
(electronic supplementary material, Results and Discussion).
(b) The area occupied by African mosquitoes and
mosquito-borne pathogens: drivers and
implications

Most mosquitoes and MBPs occupy relatively small geo-
graphic ranges (figure 2). Endemicity in African mosquitoes
is lower than that reported globally (50%) [29], likely because
islands were excluded from our analysis. Based on the
median area occupied by mosquito and MBP species (see
Results), their typical range sizes cover 10% and 7% of conti-
nental Africa, respectively, that can be approximated by
squares with sides of approximately 1500 km. The distri-
butions of range size in African mosquitoes and MBPs are
strikingly similar, suggesting that most African MBPs are
transmitted by one or just a few mosquitoes in sylvatic
cycles among their wild host species. As loyal association
of MBPs with one or few mosquito vectors limits pathogen
range, adapting to multiple vector species is likely a prerequi-
site for range expansion in MBPs (more below). Today’s most
widespread MBPs may have undergone range expansion
from an original state that was similar to the majority of
MBPs: circulating among wild vertebrates in a relatively
small area and this can be expected for MBPs that will
emerge in the future (below).

Whereas most mosquito species occupy a small area (one
to three countries), some are significantly widespread
(greater than 30 countries), including Ae. aegypti, Ae. vitattus,
Cx. quinquefasciatus and 10 Anopheles species (figure 2a).
These species feed preferentially on people and/or domestic
animals and are well adapted to the domestic environment.
Notably, at least 7 of these 13 species have been intercepted
at altitude (40–290 m above ground) [37–39], indicating that
windborne long-range migration is common among these
species, as for other insects [59–62]. The high proportion of
widespread Anopheles species suggests increased dispersal
capacity and faster adaptation to domestic environments,
perhaps reflecting their preference to feed on medium and
large mammals. These traits may mutually reinforce each
other because the widespread presence of domestic settings
minimizes the risk of ending long-range migration in an
inhospitable habitat [63].

There are only eight MBPs whose range exceeds 25
countries (figure 2b)—PLFLC, PLVIX, PLOVL, DENV, YFV,
CHIKV, WNV and RVFV—all of which are vectored by one
or more of the most widespread mosquitoes (above). These
results suggest that the features of the exceptionally wide-
spread MBPs include transmission among people or
domestic animals and adaptation for being transmitted by
at least one of the exceptionally widespread mosquitoes
apart from vectors that maintain the virus in its sylvatic cycle.
(c) Diversity, endemism and composition of mosquitoes
and mosquito-borne pathogens across the continent

Consistent with ample evidence relating the decrease of
species richness with latitude [5,26,29], African mosquito
and MBP diversities measured by species richness are simi-
larly concentrated along the equatorial forest peaking in
Central Africa. Mosquitoes and MBPs exhibit corridors of
moderate species richness along the Sahel (Mauritania to
Chad), as well as between Central Africa and both East and
Southern Africa (figure 3). These corridors’ continuity and
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association to areas of seasonal aridity, which generally are
inhospitable to mosquitoes, attest that they represent natural
features. Unlike species richness, mosquito endemicity
reveals two or three hotspots, whereas surrounding countries
possess few or no endemic species (figure 4). The African
equatorial forest, which is known for its high biodiversity,
combines stable conditions with diverse habitats, a large
area and mountains (greater than 1000 m above sea level)
that promote speciation and the accumulation of species
adapted to cooler habitats at higher elevation [2]. Thus,
higher rates of speciation, lower rates of extinction, and
high ecosystem diversity can explain the high richness and
endemicity of mosquitoes, MBPs (figures 3 and 4) and
vertebrate species [4] in this region. Somewhat different con-
stellations of these factors extend into East and Southern
Africa surrounding the Rift System, which similarly explain
this area’s high biodiversity [4].

In Sahelian countries, the markedly low ratio of endemi-
city to richness (figures 3 and 4) suggests a fauna with high
propensity for long-range migration, enabling these mosqui-
toes to benefit from the ephemeral habitats that provide
ideal conditions during the short Sahelian wet season
[37,38,59,62,64]. Indeed, 50 species of mosquitoes have been
intercepted at high altitudes (40–290 m above ground) in
the Sahel of Mali alone, representing approximately 50% of
the documented ground mosquito fauna in Mali [38]. This
is compared with 31 species in the equatorial region in
Kenya [39], representing only 13%, consistent with predic-
tions that migratory strategies are more common around
seasonal ecosystems [64–66]. The high endemicity/richness
ratio in equatorial regions (figures 3 and 4) indicates a
lower propensity for long-range migration, in support of pre-
dictions identifying resource tracking as the key driver of
long-range migration. Windborne movement of infected mos-
quitoes may initiate outbreaks hundreds of kilometres away
from sylvatic cycles. These results suggest that such out-
breaks are more common at ecozones around the Sahel (e.g.
[20,67]). The landscape of endemicity among MBPs shows a
focal hotspot in CAR—one that is difficult to reconcile
solely by the effect of species richness and country area
(figure 4), even given the high biodiversity of the equatorial
forest. In part, it might be explained by biased sampling;
for example, research centres on yellow fever were estab-
lished over 90 years ago in Nigeria and Uganda, leading
to the discovery of new viruses such as WNV, ZIKV and
Semliki Forest virus (SFV). Additional virus research centres
were later established in South Africa, Egypt, Ivory Coast,
Senegal, CAR, Kenya, Tanzania, DRC and Sudan [68,69],
concentrating arbovirus surveillance in these areas. Regional
differences in diversity, however, are minimal because the
centres were distributed across all regions. Thus, regional
analysis stands as a validation test of the main country-
based results. For example, mosquito and MBP species
display a higher proportion of region versus country endemi-
city (40% versus 25%, respectively), compared with only 3%
(mosquitoes) and 11% (MBPs) across all regions of the
continent (figure 5), which are consistent patterns with
country-based results. Additionally, despite sharing ecozones
and biomes between regions [4], the regional analysis
revealed compositional heterogeneity in mosquitoes and
MBPs across the continent (figures 5 and 6). Remarkably,
the clustering of regions into subdivisions based on the
composition of the mosquito and MBP faunas were nearly
identical (figure 6). Similar to plant and vertebrate biogeogra-
phical results [4], our sub-Saharan Africa and North Africa
divisions match the Palearctic and the Afrotropical faunal
realms and highlight the Sahara as a geographic barrier. Clus-
tering West and Central Africa regions together, separately
from the cluster of East and Southern Africa (figure 6),
aligns with the biogeographical landscapes of mammals and
birds [4]. Our West and Central regions share the Sudanian,
Sahelian and Equatorial (Guinean-Congolian) zoogeographic
zones whereas our East and Southern Africa regions overlap
with the Zambezian and South African zoogeographic zones
[32]. Additionally, the high mountains along the Rift System
probably contribute to separation between the East and
Central regions. The clustering of countries based onmosquito
composition indicated a subdivision of our West and Central
African regions into Sudano-Sahelian and Equatorial subre-
gions, as indicated by the grouping of Chad with Niger
and Ivory Coast with CAR (figure 6); this showed correspon-
dence between our results and the zoogeographical zones
identified by Linder et al. [32]. Collectively, these correspond-
ing patterns add support for a strong bio-geographical signal
in our results.

Vertebrate hosts and vectors likely delimit MBPs’ range;
however, there is evidence supporting a greater role for the
mosquito vectors. Both mammals and birds exhibit areas of
high species richness and endemicity in East Africa and
in smaller areas in Central, West and Southern Africa [4],
unlike African mosquitoes and MBPs. Likewise, the
Sudano-Sahelian area from Senegal to Sudan exhibits the
second highest level of African mammals endemicity [4]. In
birds, aside from a hyper-endemic area in East Africa, the
remainder of the continent is nearly devoid of endemics [4].
Although salient biodiversity features of MBPs are more simi-
lar to mosquitoes than to mammals and birds, resolving this
question requires data on species richness and endemicity
using the same unit area, which is beyond the scope of our
data and analysis.
(d) A model of mosquito-borne disease range
expansion and predicting emerging mosquito-
borne diseases of the future

Our results suggest that the vast majority of MBPs are vec-
tored by one or few mosquito species among wild
vertebrates within a narrow range. Following Wolfe and col-
leagues [6], the biogeographical differences observed
between the ‘original’ and the ‘emergent states’, represented
by a handful of African MBDs (e.g. human malaria, YFV)
points to a plausible process of range expansion. The last
phase of this expansion includes continuous transmission (i)
between people or domestic animals, (ii) by vectors that
feed preferentially on these hosts and are themselves excep-
tionally widespread. The preceding state would include a
capacity to circulate in humans or domestic animals for a
single season or a few years, depending on whether vector
populations are perennial or seasonal [67,70–72]. Unlike
pathogens that are directly transmitted among hosts, the
dependence of MBPs on both wild vertebrate and mosquito
vector species (that blood-feed preferentially on reservoir
species) implies that range expansion requires sequential
adaptations to achieve transmissibility by new vectors,
expanding the host-species breadth of the pathogen. Host
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and vector switching typically faces fitness tradeoffs linked to
specialization in utilization of particular host and vector
species [73–80]; thus, we expect that a typical range expansion
of MBP requires a longer intermediate phase than a directly
transmitted pathogen. Evidence in support of such a slow
process is found in the rare occasions inwhich avianplasmodia
(and other haemosporidia) found in migrant birds can be
established in resident birds in both the Northern and
Southern Hemispheres [73,80]. During the intermediate
phase, the number of vectors and host species slowly increase,
facilitating a gradual enlargement of the geographical range of
the MBP. Once the MBP attains transmissibility into and from
human or domestic animals by at least one of the domesticated
vectors, the transition into the last states is complete and a
rapid final range expansion is expected worldwide.

Accordingly, a larger-than-typical geographical range
would be a marker of an MBP in the intermediate phase, in
which it has adapted to be transmitted by multiple mosquito
vector species and possibly between additional sylvatic ver-
tebrate species. Except for small coastal ecozones, the
African ecozones are typically wider across their east–west
axis than across their north–south axis [4], suggesting that
the longer the north–south dimension of an MBP’s range,
the more likely it is to be transmitted by multiple vector
and host species. Hence, we propose that an MBP’s total
range size, estimated as the sum of the area (of countries, in
our data) covered by its range and the maximal north–
south length of its range, be used to gauge its range expan-
sion phase. While these range size measures are expected to
be largest in MBPs circulating among humans and domestic
animals and smallest for those circulating in wild mammals,
it is less clear if MBPs circulating in wild birds are larger than
those of wild mammals. Both measures were found to be
larger for MBPs circulating in humans and domestic animals
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for the median and the 75th quantile (area: p < 0.0001, td.f. =
116 > 8, north–south: p < 0.0001, td.f. = 116 > 5, figure 7), but no
significant differences were found between MBPs circulating
in mammals and birds even by using a one-sided test (area:
p > 0.31, td.f. = 116 < 0.11, north–south: p > 0.11, td.f. = 116 < 1.2,
figure 7). Contrary to our expectation, the north–south dis-
tance seems to ‘saturate’ faster than the total area (figure 7),
suggesting that it may be more sensitive to early range expan-
sion than to later stages of MBD range expansion. The total
area of most MBPs transmitted among humans or domestic
animals (undergone range expansion, N = 15) covers an area
of 10–20 × 106 km2 and their north–south distance spans 40–
60°, whereas the overall majority of MBPs (N > 90) cover
area less than 4 × 106 km2 and north–south distance less
than 15° (figure 7c). Except for eight MBPs transmitted
among wild birds that have a long north–south distance, 30
MBPs occupy intermediate ranges covering area 4–10 ×
106 km2 and north–south distance of 20–50° (figure 7c).
Accordingly, this group is enriched with species that are cur-
rently at the intermediate phase of range expansion that pose
elevated risk for disease emergence. These include Usutu
(USUV), Wesselsbron (WSLV), Akabane (AKAV), Spondweni
virus (SPOV) and ONNV (figure 7c). This approach puta-
tively identifies pathogens during their intermediate phase
of range expansion before they infect humans or domestic
animals. Monitoring changes in geographical range as well
as the MBP host and vector ranges will further validatate
these predictions. For example, the number of vectors and
hosts in which a pathogen is found and the numbers by
which it can be transmitted may be used as independent mar-
kers of the MBP’s prospects to undergo range expansion.
Experimental evidence about the pathogen compatibility
and capacity for transmission, e.g. [81] with the most wide-
spread vectors and domestic hosts, will further augment its
risk assessment. Evaluation of the pathogenicity and impact
that an MBP would have on human and domestic animals
is beyond the scope of this analysis, but the possibility of
increased virulence linked to transmissibility in these new
hosts by domesticated vectors—for instance, ZIKV—should
not be ignored.
(e) Conclusion and policy implications
MBDs such malaria, West Nile and Zika have emerged from
the African continent at a disproportionally high rate, reflect-
ing Africa’s exceptionally diverse arboviral and plasmodia
faunas and highlighting that attention to African MBDs is
key for predicting and mitigating future threats to global
public health and food security. Here, we aimed to better
understand MBP range expansion by analysis of the geo-
graphical organization of mosquitoes and MBPs on the
continent. We find that most MBPs circulate in sylvatic
cycles between wild host species and vector species, which
remain mostly unknown. We estimate that only 1% of the
African MBPs are presently known. Mosquito and MBP
diversities across the continent reveal major divisions and
hotspots. Striking similarities between mosquitoes and
MBPs in their spatial diversities and range sizes suggest
that mosquitoes play a dominant role in delimiting the
range of MBPs. Extending the theory which explains patho-
gen emergence in relation to regional and global spread,
our results highlight drivers that promote range expansion
via adaptations to new vector and host species and allow
us to rank the African MBPs by their emergence risk for
further tracking and validation.

The projected growth of the African human population
will speed up anthropogenic changes on the continent
including fragmentation of natural ecosystems; biological
invasions; and warming, floods and droughts caused by
climate change. These changes will likely increase the risk
of MBD emergence unless health science capacity in Africa
is strengthened. Improving disease surveillance in Africa,
capacity to predict and effectively respond to MBD outbreaks
will strengthen public health, veterinary science, food
security and conservation, promoting cross-disciplinary
collaboration between vector biologists, parasitologists, virol-
ogists, zoologists, taxonomists, ecologists, meteorologists,
conservation and agricultural experts, sociologists and land-
use planners, among others. Such investments will tackle
the poor state of knowledge of MBPs, enable data integration
and modelling of outbreaks, empower preparedness and
effective mitigation strategies that are urgently needed in
Africa. Given the accelerating pace of pathogen emergence
and rapid spread across borders, implementing trans-conti-
nental investments in Africa is a priority we cannot afford
to postpone.
4. Methods
The database and our analysis refer to continental Africa (sur-
rounded by the Mediterranean Sea to the north, the Indian
Ocean to the east and the Atlantic Ocean to the west), excluding
all islands (e.g. Cape Verde, Comoros, Madagascar, Mauritius,
Seychelles, São Tomé and Príncipe) because island biogeography
requires consideration of multiple factors, such as distances to
the nearest mainland and to other islands, historical formation
of the island, existence of past terrestrial bridges, etc., which
deserve separate treatment. Very few records of mosquitoes
and MBPs can be found for Eswatini, Lesotho, South Sudan
and Western Sahara. Moreover, parts of their records are
included in their previous political affiliations, e.g. South
Sudan in Sudan. Therefore, these countries are not listed in our
analysis; instead, our analysis, pertains to 45 countries, with
few countries that subsumed those in the past and still ‘contain’
their records, e.g. ‘Sudan and South Sudan’ being used (elec-
tronic supplementary material, table S1). Because countries
differ in surveillance effort, grouping neighbouring countries
into regions minimizes variation in surveillance effort variability
and was used to test country-based patterns. Unlike the geopoli-
tical regions with the same names, our five regions were defined
to maximize distances among regions, accommodate latitudinal
variation and minimize inter-region enclaves (figure 5).

Our African mosquito distribution data (electronic sup-
plementary material, file S1) was initially generated based on
the global distribution lists, updated to 2017 [26]. We updated
records of anophelines in sub-Saharan countries [31], and culi-
cines following country-specific lists recently published for
Mali [82], Mauritania [83], Morocco [84] and incorporated
records for southern African countries [85]. Information on
global diversity of mosquitoes was recently updated [26] and
allowing reconciliation of species identifications that were later
revised, e.g. Culex tigripes/Lutzia tigripes or An. arabiensis and
An. gambiae. Subspecies were not included in our data. To our
knowledge, these sources represent the most comprehensive
and updated information on the African mosquito fauna.

The MBP distribution data was generated based on hundreds
of references listed in electronic supplementary material, file S2,
providing they met the three criteria as follows: a peer-reviewed
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scientific source (or a source listed in peer-reviewed sources, e.g.
the Centers for Disease Control (CDC) arbovirus catalogue)
reported that the MBP has been: (i) naturally transmitted in con-
tinental Africa, (ii) to a terrestrial vertebrate host, (iii) by
mosquito vector, to the extent that this mode of transmission is
recognized to have an epidemiological role, even if other
mode(s) of transmission play a greater role. Repeated searches
in PubMed, Web of Science, Google scholar and Biosis were car-
ried out using these basic terms: ‘Africa’ AND ‘pathogen*’ AND
‘mosquito*’, with the following permutations. The term ‘patho-
gen’ was changed into virus, arbovirus, protozoa, plasmodium,
nematode, filaria and bacteria and the term ‘mosquito*’ was
changed to ‘vector*’. For each MBP, additional searches with its
name (e.g. ‘Plasmodium vivax’, ‘Zika virus’) were carried out
with the term ‘Africa*’. The literature cited in publications that
met our criteria (above) were examined to expand the sources.
The additional sources included books, catalogues/databases
and older publications that were not available in the electronic
literature databases (above). The title/abstract of each paper
were read to select putatively relevant sources with respect to
the localization of African MBPs, their vectors and their natural
vertebrate hosts. A more detailed reading allowed us to extract
the relevant information about isolation of MBPs and add the
reference to our database.

Our database includes information whether mosquito role in
the MBP transmission is secondary or primary and whether it is
biological or mechanical. Strains or any sub-species definitions
were not included. To ascertain accuracy of our MBP records,
we compared our data with the CRORA database (Centre de
Référence OMS sur la Recherche des Arbovirus et des Fièvres Hémor-
ragiques (CRORA)) (last updated in 2015) and the EID2 database
[86] (as of September 2021) among other sources. Only records
that met our above criteria were included in our database.
Although redundant and laborious, the construction process of
this database (above) ensured exhaustive and comprehensive
information that was cross validated between us to minimize
errors and bias. The comparisons with independent databases,
e.g. CRORA and EID2 have corroborated its completeness with
respect to the criteria defined above. By confining our records
to continental Africa, the term endemic refers to a species
found in one African country (or region, when specified), how-
ever, although less common, the species may be also found
outside continental Africa.

Information on land mass of the world and of continental
African countries [87] were used to calculate the proportion of
area of continental Africa from the land worldwide and total
area per species. Accordingly, the total area of the worldwide
and continental Africa we used are 148,568,946.1 and
296.63,582.0. Global coordinates central position of each African
country [88] were used to compute maximum north–south range
distances for each MBP.

(a) Data analysis
Goodness of fit χ2-tests implemented by Proc Freq [89] were used
to assess if diversity in a particular area was higher than pre-
dicted by the relative size of the area. Exact tests were used if
expected values were smaller than 5. Confidence intervals (distri-
bution free) of medians were computed using Proc Univariate
[89] based on ranks. Person correlation, linear and quadratic
regression models to relate biodiversity measures with country
area were implemented by Proc Reg [89]. Quantile regression
implemented by Proc Quantreg [89] extends the general linear
model for estimating conditional change in the response variable
across its distribution as expressed by quantiles, rather than its
mean (though the median is similar to the mean in symmetric
distributions). It does not assume parametric distribution (e.g.
normal) of the random error part of the model, thus it is con-
sidered semiparametric. The value of this analysis is that it
allows to address variation among the medians of various
groups and also across quantiles even when the mean and the
median are unchanging. The parameters estimates in linear
quantile regression models are interpreted as in typical general
linear models, as rates of change adjusted for the effects of the
other variables in the model for a specified quantile [90]. We
used matrices of presence absence of mosquitoes or MBPs to
compute matrices of Jaccard distances between regions or
countries (separately), using Proc Distance [89] and used the
Ward method in Proc Cluster with height measured by R2 (the
proportion of variance accounted by the clusters) to produce
and plot dendrograms
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