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Key Points

• Elevated P21 or
FOXO3 mediates
β-thalassemia erythroid
cell apoptosis.

• Loss of FOXO3 or P21
reduces β-thalassemia
erythroid cell apoptosis
but loss of neither
improves β-thalassemic
ineffective
erythropoiesis.
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that

lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results

in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion

of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly.

However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well

understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated

expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid

apoptosis. In Foxo3−/−/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas

erythroid cell maturation, and red blood cell and hemoglobin production are substantially

improved even with elevated reactive oxygen species in double-mutant erythroblasts.

However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective

erythropoiesis is not resolved in Foxo3−/−/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a

(cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in

both mouse and patient–derived β-thalassemic erythroid precursors. Double-mutant p21/

Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning.

Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in

erythroid compartments of surviving p21−/−/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas

ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were

not modified. These combined results suggest that mechanisms that control β-thalassemic

erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and

involve a molecular network including FOXO3 and P21. Overall, these studies provide a new

framework for investigating ineffective erythropoiesis in β-thalassemia.

Introduction

β-thalassemias are 1 of the most common hemoglobinopathies globally, caused by >200 mutations in
the β-globin gene. Patients experience variable degrees of anemia associated with a broad range of
clinical manifestations.1-3 Patients with β-thalassemia may be affected by severe anemia, requiring
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chronic blood transfusions for survival (β-thalassemia major),
or milder clinical anemia requiring only sporadic transfusions
(β-thalassemia intermedia), whereas patients with minor thalas-
semia are asymptomatic.1-3

Mutations in the β-globin gene lead to the absence or reduced
β-globin synthesis. Decreased β-globin synthesis causes an imbal-
ance in protein levels of α vs β chain, which disrupts production of
functional adult α2β2 hemoglobin A, a pathological mechanism that
is most evident in homozygote β-thalassemia mutations. The accu-
mulation of excessive unpaired α-globin chains in erythroblasts
triggers redox-mediated reactions, leading to the generation of toxic
aggregates that precipitate into red blood cell (RBC) precursors. In
turn, the accumulation of α-globin aggregates result in premature
death, ineffective erythroid maturation, and hemolytic anemia. Ane-
mia induced by β-thalassemia further triggers the release of eryth-
ropoietin (EPO), which leads to the expansion of EPO–sensitive
erythroid progenitors, leading to extramedullary erythropoiesis and
splenomegaly. The increased apoptosis of late maturing erythro-
blasts is known as an aggravating factor in sustaining anemia
despite enhanced erythropoiesis in patients with β-thalassemia,4-6

which results in further expansion of extramedullary hematopoiesis.
The clinical aspects of β-thalassemia are orchestrated in response to
stress and elevated reactive oxygen species (ROS) in erythroid
cells.7-11 However, the source and regulation of elevated ROS levels
remains debated and whether ROS are implicated in inducing
apoptosis in β-thalassemia erythroid cells is unclear.12 Importantly,
the molecular underpinning of the enhanced apoptosis in β-thalas-
semia remains poorly understood.4-6,12-16

In the erythroid compartment, the transcription factor FOXO3
coordinates cell maturation and redox state.17-21 FOXO3 is
required for homeostatic erythropoiesis through regulation of a
genetic program that promotes terminal erythroid maturation and
enucleation.14,17 These diverse functions are accomplished
through transcriptional activation by FOXO3 of an array of genes
including apoptotic genes in addition to cell cycle, antioxidant, and
autophagy genes, depending on the cellular context.22-26 A gradual
increase in FOXO3 expression, nuclear localization, and tran-
scriptional activity during erythroid maturation balances ROS levels
in early vs late erythroblasts.17,27 In early erythroid precursors,
FOXO3 regulates erythroid cell cycling and differentiation. In late
erythroblasts, FOXO3 is critical to terminal erythroid maturation,
coordinated mitochondrial removal, and enucleation.17,21,27-29

FOXO3 regulation of antioxidant genes in erythroid precursor
cells, maintains the half-life of RBCs.17 FOXO3 loss in erythroid
cells is balanced by the activation of TP53 with which FOXO3
shares many targets and functions.17,30-32 The steady upregulation
of FOXO3 with maturation of primary mouse erythroblasts is not
associated with apoptosis.17 However, whether FOXO3 regulates
apoptosis during erythropoiesis in the context of β-thalassemia is
unknown; because FOXO3 can promote opposing pathways
depending on cellular state, including inhibiting cell cycle or pro-
moting cell cycle exit, inducing apoptosis, or promoting survival and
differentiation.30,33-36 Although FOXO3 is a target of TP53,37 both
factors have cross talk and share many common targets.31,38 The
cyclin-dependent kinase inhibitor P21 (CDKN1A, CIP1, WAF1)
is a known direct target of both FOXO3 and TP5339,40 that
represses cell cycle entry in erythroid cells17,41,42 but its function in
β-thalassemia erythroid cells is largely unknown.43
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Here, we asked whether FOXO3 is implicated in defects of
β-thalassemia RBC production and subsequent abnormalities. We
provide evidence that FOXO3 is prematurely activated in the
β-thalassemia erythroid compartment; TP53 follows a similar
pattern. We further show, using genetic approaches, that loss
of either FOXO3, or its known target P21, significantly reduces
β-thalassemia erythroid cell apoptosis. However, although FOXO3
loss improves anemia, it does not reduce splenomegaly or retic-
ulocytosis in β-thalassemic mice. Alternatively, loss of P21 does not
improve β-thalassemia anemia, extramedullary erythropoiesis,
splenomegaly, or overall ineffective erythropoiesis. Altogether,
these intriguing results suggest that mechanisms that control
anemia, erythroid apoptosis, and ineffective erythropoiesis may be
uncoupled in β-thalassemia. Our findings also uncover an intricate
network between P21 and FOXO3 that includes TP53 in con-
trolling β-thalassemia erythroid apoptosis.

Materials and methods

Mice

All protocols were approved by the institutional animal care and use
committee of Mount Sinai School of Medicine. Foxo3+/− mice have
been described previously.30 Wild-type (WT) mice were used as
controls in all experiments. For the majority of the experiments, 8- to
16-week-old mice were used. The β-thalassemic mice used have
been described previously.44 The Foxo3−/−/Hbbth3/+ double-mutant
mice were generated by crossing the Foxo3−/− with the Hbbth3/+

mice. P21−/− mice (Jackson Laboratory) were crossed with Hbbth3/+

mice. Birth frequency of p21−/−/Hbbth3/+ deviated significantly from
Mendelian inheritance (χ2 test, P < .0001), suggesting occurrence
of prenatal lethality.

Cell isolation and fluorescence-activated cell sorting

(FACS) staining

Bone marrow cells were isolated from WT, Foxo3−/−, p21−/−,
Hbbth3/+, Foxo3−/−/Hbbth3/, or p21−/−/Hbbth3/+ mice by flushing
the tibia and femurs with ice cold Iscove Modified Dulbecco
Medium (IMDM, Gibco, catalog no. 12440-053) + 2% fetal bovine
serum (FBS). These were then filtered through a 70-μm cell
strainer, washed with 2% FBS/phosphate-buffered saline (PBS)
and stained with TER119-Fluorescein isothiocyanate (FITC; BD
Biosciences, catalog no. 557915) or TER119-V450 (BD Bio-
sciences, catalog no. 560504), CD44-Pacific Blue (PB; BD
Biosciences, catalog no. 560451), or CD44-Phycoerythrin
(PE; BD Biosciences, catalog no. 553134), and CD45-
Allophycocyanin (APC; BD Biosciences, catalog no. 559864)
at 1:100 dilution in 2% FBS/PBS, and incubated at room tem-
perature for 10 minutes. Cells were washed and resuspended in
IMDM + 2% FBS containing 4′,6-diamidino-2-phenylindole
(DAPI; for viability testing; 1 μg/mL). For the analysis of mito-
chondrial network, cells were incubated with 100 nM Mitotracker
Green probe (Invitrogen Molecular Probes, catalog no. M7514)
for 20 minutes at 37◦C, after staining with primary antibodies.
Cytoflow acquisition was carried out on the BD LSRII and cell
sorting was performed on a BD Influx (Flow Cytometry Facility-
Icahn School of Medicine at Mount Sinai) instrument. All
cytometry analysis and quantifications were carried out using the
FlowJo 10 software (TreeStar).
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22



Immunoblotting

TER119+ cells isolated from WT, Foxo3−/−, and the Hbbth3/+ mice
were boiled directly in Laemmli sample buffer at 95◦C for 10 minutes
and stored at −80 ◦C till further use. Electrophoresis was carried out
and the gels were transferred onto a polyvinylidene fluoride (PVDF)
Immobilon-P membrane (Millipore). Membranes were then blocked
with 5% bovine serum albumin (BSA)/1 × PBS/0.1% Tween-20
solution. After 3 washes, the membranes were incubated with the
respective primary antibodies overnight at 4◦C in 1% BSA/1× PBS/
0.1% Tween-20 solution. After further washes, the membranes were
then incubated with the secondary antibodies for 1 hour at room
temperature. The blots were then washed 3 times and developed
using the ECL reagent (Pierce). CD34+ cells were isolated from
blood obtained from healthy controls and patients with β-thalas-
semia, lysates prepared as described earlier, and probed with anti-
P21 antibody. The blots were then washed and developed using the
enhanced chemiluminescence (ECL) reagent. Antibodies used
against TP53 upregulated modulator of apoptosis (PUMA, or BCL2-
binding component 3; Novus Biologicals, catalog no. NB100-
56623SS), ACTB (Cell Signaling, catalog no. 4970S), and P21
(Cell Signaling, catalog no. 2947).

EPO measurement

Using heparin as an anticoagulant, plasma was collected from blood
obtained from WT, p21−/−, Hbbth3/+, and p21−/−/Hbbth3/+ mice. It
was then centrifuged for 20 minutes at 2000g within 30 minutes of
collection. EPO was quantified using the mouse erythropoietin/EPO
Quantikine enzyme-linked immunosorbent assay kit (R&D Systems,
catalog no. MEP00B), per the manufacturer’s instructions.

Hematological studies

Blood samples were obtained fromWT, Foxo3−/−, Hbbth3/+, p21−/−,
Foxo3−/−/Hbbth3/+, and p21−/−/Hbbth3/+ mice, immediately after
euthanization of the mice and collected in EDTA or heparin. Com-
plete blood counts were measured at the Comparative Pathology
laboratory at Mount Sinai using an Advia 120 analyzer.

Intracellular ROS measurements

TER119+ cells were isolated from the bone marrow of
indicated mice. These cells were washed with PBS and then
resuspended in PBS supplemented with 2% fetal calf serum or
FBS and 5μM CM-H2DCFDA (chloromethyl derivative of 2’ ,7’
-dichlorodihydrofluorescein diacetate [H2DCFDA]) probe (Invi-
trogen Molecular Probes, catalog no. 1034012) and incubated
in the dark for 20 minutes at 37◦C under 5% CO2. The oxidative
conversion of CM-H2DCFDA to the fluorescent product was
measured using flow cytometry, as previously described.45,46

Apoptosis assay using annexin V–propidium iodide

(PI) or 7-aminoactinomycin D staining

Erythroblasts from the bone marrow or spleen were isolated
fromWT, Foxo3−/−, Hbbth3/+, 21−/−, Foxo3−/−/Hbbth3/+, and p21−/−/
Hbbth3/+ mice, as previously described.45,46 Erythroblasts of indi-
cated stages, stained with TER119 and CD44, were analyzed for
apoptosis by flow cytometry using either the annexin V–fluorescein
isothiocyanate (BD Bioscience, catalog no. 556547) or annexin
V–APC (eBioscience, catalog no. 88-8007-74) Apoptosis Detection
kit in TER119+CD45- erythroblasts. FACS sorted erythroblasts of
indicated stages stained with TER119 and CD44 were washed, and
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
resuspended in 100 μL 1× annexin V binding buffer, and stained with
annexin V for 15 minutes followed by 7-aminoactinomycin D or PI
staining, per the manufacturer’s instructions. Apoptotic cells were
then analyzed within 1 hour.

Ki-67 staining

FACS purified erythroblasts of indicated stages were isolated from
WT, p21−/−, Hbbth3/+, and p21−/−/Hbbth3/+ mice and stained for
Ki-67 using the Mouse Anti-Ki-67 Set (BD Biosciences, catalog no.
556026). Briefly, cells were fixed in 70% ethanol at −20◦C for 2
hours. These were then washed twice at 500 g for 10 minutes with
PBS supplemented with 1% FBS and 0.09% sodium azide, and
resuspended at a concentration of a million cells per 100 μL. After
transferring into a fresh tube, 20 μL antibody was added, gently
mixed, and incubated at room temperature for 20 to 30 minutes in
the dark. After 2 washes with PBS at 500 g for 5 minutes, the
supernatant was discarded, the cells were resuspended in 500 μL
PBS, and 10 μL of PI solution was added. FACS analysis was
carried out using the BD LSRII instrument.

Immunofluorescence staining and confocal microscopy

FACS-sorted erythroid progenitor (TER119−, c-KIT+, and CD71Hi)
cells from the bone marrow of WT, Hbbth3/+, p21−/−, and p21−/
−/Hbbth3/+ mice were cytospun at 250 rpm for 3 minutes. These
were then fixed with 4% paraformaldehyde (Alfa Aesar by Ther-
moFisher Scientific, catalog no. 43368) and permeabilized with
0.1% Triton X-100/1× PBS solution. After blocking in 1% BSA/1×
PBS solution for 1 hour, the slides were incubated with the primary
antibodies overnight (anti-TP53 and anti-FOXO3). The slides were
then washed 3 times with 1× PBS and incubated at room tem-
perature for 1 hour with the secondary antibody. The slides were
again washed 3 times with 1× PBS, air dried, and mounted with
Fluoroshield mounting medium containing DAPI (Abcam, catalog
no. ab104139). Antibodies used: CD71-PE (BD Biosciences,
catalog no. 553267), c-KIT-APC (BD Biosciences, catalog no.
553356), TP53 (Santa Cruz Biotechnology, catalog no. sc-126 or
Cell Signaling, catalog no. 2524), and FOXO3 (Cell Signaling).

Microscopy image analysis

Fluorescence intensity was quantified using ImageJ for 30 to 50
individual cells per experiment group. The channels were first split
from merged channel images and “Raw Integrated Density”
(RawIntDen) of selected channel (protein of interest) was
measured by the “Measure” command. To quantify nuclear mean
fluorescence intensity, nuclear area was first defined by the
threshold set in the DAPI channel and mapped to the selected
channel as “Area of Interest” (AOI). Nuclear mean fluorescence
intensity was then measured using the “Mean” function (Raw-
IntDen of AOI divided by the area size of AOI).

Human CD34 purification and culture

Peripheral blood was obtained from healthy controls and patients
with β-thalassemia (institutional review board: 15-012123, The
Children’s Hospital of Philadelphia [CHOP], Stefano Rivella) and
CD34+ cells were isolated by positive selection using the human
CD34 Microbead kit from Miltenyi Biotec (catalog no.130-046-
702) as per the manufacturer’s instructions. The CD34 culture
and differentiation was performed as previously described.29,47

CD235a (glycophorin A), CD49d (α4 integrin), and CD233
P21 REGULATES B-THALASSEMIA ERYTHROID APOPTOSIS 6875
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Figure 1. Erythroid apoptosis in β-thalassemia (Hbbth3/+)

mice. (A) Gating strategy to identify pro-, basophilic,

polychromatophilic erythroblasts (gate [G] I-GIII), orthochromatic

erythroblasts and reticulocytes (GIV), and RBCs (GV) in WT and

Hbbth3/+ bone marrow (BM) cells. (B) Graphs showing the

percentage of each population in panel A. Note the increased

gate III and IV with a concomitant decrease in gate V Hbbth3/+

erythroid cells. (C) Macroscopic appearance of the spleen in WT

and Hbbth3/+ mice. (D) Overlay of FACS histogram of annexin V

staining of WT vs Hbbth3/+ BM TER119+ subpopulations in live

cells. (E) Fold change of annexin V+ in live TER119+ Hbbth3/+

relative to WT cells (n ≥ 3). Results are shown as mean ±

standard deviation (SD); **P < .01, ***P < .001.
(band 3) antibodies were obtained from Xiuli An’s laboratory (New
York Blood Center) and used for determining the stage of erythroid
cell differentiation, as previously described.29 The protocol was in
accordance with the Declaration of Helsinki.

Quantitative reverse transcription polymerase chain

reaction (qRT-PCR) analysis

Total RNA was isolated using the RNeasy Mini kit (Qiagen, catalog
no. 74004). qRT-PCR analysis was carried out as described
previously.14,27

Statistics

Student unpaired 2-tailed t test was carried out for all experiments
unless specified otherwise. Error bars indicate standard deviation
or standard error, as indicated in the figure legends. The number of
mice used (sample size) is mentioned in the figure legends. Each
experiment was repeated at least 3 times independently with 2 or 3
technical replicates unless specified otherwise. All statistical ana-
lyses were carried out using the GraphPad Prism software.

Results

Apoptotic phenotype in mouse β-thalassemia is

similar to human β-thalassemia

To address the underlying mechanism of apoptosis of β-thalassemic
erythroid cells, we used Hbbth3/+ mice that are heterozygous for
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deleted β1 and β2 globin subunits and exhibit a phenotype similar to
that of human β-thalassemia intermedia.44,48 Using flow cytometry
analysis of erythroid cell maturation with parameters of size
(forward scatter), CD44, and TER119 markers,49 we found that the
anemia-associated erythroblasts decreased in RBCs in gate V. In
addition, heterozygous Hbbth3/+ erythroblasts44,48 show an increase
in polychromatophilic and orthochromatic erythroblasts found in
gates III and IV (Figure 1A-B). Similar to patients with β-thalassemia,
Hbbth3/+ mice display splenomegaly, which results from extra-
medullary erythropoiesis associated with clearing damaged RBCs
(Figure 1C). Elevated ROS levels suggesting increased oxidative
damage were also observed in late maturing β-thalassemic erythroid
cells and mirror features of human β-thalassemia (supplemental
Figure 1A). Interestingly, ROS levels were not significantly different
in the β-thalassemia erythroid progenitor compartment as compared
with that of WT controls (supplemental Figure 1B).

To further validate the model independently, we determined that
the frequency of apoptotic (annexin V+) bone marrow erythroblasts
within the viable fraction is significantly higher in Hbbth3/+ relative to
WT live erythroblasts (Figure 1D-E; supplemental Figure 2), similar
to what has been observed in patients with β-thalassemia.5

FOXO3 is activated prematurely in the β-thalassemic

erythroid compartment

To evaluate whether FOXO3 is implicated in regulating β-thalassemic
erythroid apoptosis, FOXO3 expression and nuclear localization,
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22



Table 1. Blood parameters in Hbbth3/+ vs Foxo3−/−/Hbbth3/+

Parameters WT Foxo3−/− Hbbth3/+ Foxo3−/−/Hbbth3/+

RBC (109/L) 10 400 ± 300 9000 ± 100* 6700 ± 700* 7500 ± 600†

HGB (g/dL) 15.0 ± 0.3 14.8 ± 0.1 8.2 ± 0.3* 9.2 ± 0.7†

HCT (%) 54.6 ± 1.6 52.8 ± 0.9 29.3 ± 5.2* 34.5 ± 3.9†

MCV (fL) 52.8 ± 1.2 58.5 ± 0.8* 41.2 ± 1.4* 45.1 ± 3.0†

MCH (pg) 14.6 ± 0.2 16.4 ± 0.2 12.7 ± 1.6* 12.5 ± 0.4

MCHC (g/dL) 27.4 ± 0.5 28.0 ± 0.3 30.2 ± 4.1 27.2 ± 1.4†

Retic (%) 3.6 ± 0.3 6.6 ± 0.5* 24.0 ± 5.7* 28.3 ± 7.0

n (mice) 9 10 7 10

HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, MCH
concentration; MCV, mean corpuscular volume; Retic, reticulocytes.
*P < .05 between WT and Foxo3−/− or Hbbth3/+.
†P < .05 between Hbbth3/+ and Foxo3−/−/Hbbth3/+.
indications of FOXO3 activity, were analyzed (supplemental Figure 3)
in erythroid progenitors and early erythroblasts before exhibiting
apoptosis. These populations were identified as TER119−, c-KIT+,
CD71Hi cells and to contain both burst forming unit–erythroid (BFU-
e) cells and colony forming unit–erythroid (CFU-e) cells50,51

(supplemental Figure 3A). As anticipated, the erythroid progenitor
compartment (TER119−, c-KIT+, CD71Hi) was expanded while there
was no difference in TER119−, c-KIT+, CD71LO in β-thalassemic
mice (supplemental Figure 3A). Foxo3 transcripts were elevated in
Hbbth3/+ relative to in WT early erythroblasts (supplemental
Figure 3B). FOXO3 protein expression in the nucleus was also
enhanced in erythroid progenitor (TER119−, c-KIT+, CD71Hi)50 cells
as measured by immunofluorescence analysis (supplemental
Figure 3C). Together, these results indicate that FOXO3 is acti-
vated prematurely in β-thalassemic erythroid progenitors.

Because the proapoptotic TP53 is in a regulatory network with
FOXO3,31,37 we examined the status of TP53 in Hbbth3/+ eryth-
roblasts. Immunofluorescence staining also detected a similar
pattern of slight increased nuclear TP53 protein expression,
trending higher in Hbbth3/+ TER119−, c-KIT+, CD71Hi 50 pro-
genitors compared with in WT controls, albeit the difference was
not statistically significant (supplemental Figure 4). Together, these
studies suggest that FOXO3 may mediate the increased apoptosis
in Hbbth3/+ erythroblasts.

Loss of FOXO3 reduces erythroblast apoptosis and

improves RBC production in a β-thalassemia mouse

model

To further dissect the role of FOXO3 in the pathophysiology of
β-thalassemia, we generated double-mutant Foxo3−/−/Hbbth3/+

mice. In agreement with FOXO3 mediation of erythroid cell
apoptosis, loss of FOXO3 in Hbbth3/+ mice improved the anemia
(Table 1; Figure 2A), with an observed increase in RBC production
by ~10%, and in hemoglobin content by 1g/dL (Table 1). These
significant results were notable specifically in the context of
β-thalassemia. Importantly, apoptosis was markedly reduced in
Foxo3−/−/Hbbth3/+ erythroblasts (Figure 2B; supplemental
Figure 5A). These results were specific to loss of Foxo3 and not
due to a FOXO1 compensation in Foxo3-deleted cells, given the
absence of any significant upregulation of Foxo1 transcript that
encodes for the other FOXO protein that is expressed in erythroid
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
cells (supplemental Figure 5B) and that shares targets with
FOXO3.17,36 Together these results suggest that FOXO3 upre-
gulation is proapoptotic in the β-thalassemic erythroid compart-
ment. However, loss of FOXO3 did not rescue the splenomegaly in
Hbbth3/+ mice, indicating persistent extramedullary hematopoiesis
(Figure 2C). In agreement with the FOXO3 antioxidant func-
tions,17,30 ROS levels were increased in the bone marrow
(supplemental Figure 6A) and spleen (supplemental Figure 6B) of
double-mutant Foxo3−/−/Hbbth3/+ relative to Hbbth3/+ erythro-
blasts, suggesting that improved erythroblast survival in Foxo3−/−/
Hbbth3/+ mice was despite increased ROS accumulation in
erythroid compartments of double-mutant mice (supplemental
Figure 6). These findings also support the notion that the upre-
gulated FOXO3 mitigates ROS accumulation in β-thalassemic
erythroblasts. Furthermore, these results indicate that the apoptotic
phenotype in β-thalassemic erythroblasts, and its alleviation in
Foxo3−/−/Hbbth3/+ erythroblasts (Figure 2; supplemental Figures 5
and 6), are likely independent of oxidative stress.

Earlier studies have shown FOXO3 to be key in regulating cell
cycle in addition to apoptosis in a context- and stress-dependent
manner.17,18,20,21,27,30,36,46,52 RNA-sequencing analyses14

revealed deregulated expression of many apoptotic genes in
Foxo3−/− erythroblasts relative to WT controls (supplemental
Figure 7A, previously published RNA-sequencing analyses14).
Furthermore, using a Fluidigm Platform we interrogated the
expression of a panel of apoptotic genes by qRT-PCR analysis in
double-mutant Foxo3−/−/Hbbth3/+ erythroblasts. Among these, we
found that the expression of BCL2 family member p53 up-regu-
lated modulator of apoptosis (PUMA) transcript and protein, but
not Bcl-2 Interacting Mediator of cell death (BIM; also known as
Bcl-2-like protein 11; BCL2L11), both targets of FOXO3 and
TP53,53,54 was greatly augmented in Hbbth3/+ erythroblasts
(supplemental Figure 7B-C). Notably, PUMA’s expression was
significantly downregulated in double-mutant Foxo3−/−/Hbbth3/+

erythroblasts (supplemental Figure 7B). However, generating
double-mutant Puma−/−/Hbbth3/+ erythroblasts by crossbreeding
was not productive, likely because of the linkage of Puma and
β-globin genes on mouse chromosome 7, thus excluding the
possibility to further examine the physiological role of PUMA as a
mediator of β-thalassemic erythroid apoptosis using this approach.

P21 ablation reduces β-thalassemia erythroid

apoptosis without significantly improving RBC

formation

Next, we focused on P21,55 which is another common target of both
FOXO3 and TP53.17,30,31,56,57 We found that p21 transcripts were
significantly upregulated in Hbbth3/+ erythroblasts throughout
maturation (Figure 3A). P21 protein expression was also greatly
enhanced in mouse Hbbth3/+ erythroblasts (Figure 3B). Importantly,
expression of P21 protein was also significantly elevated in human
erythroblasts differentiated from CD34+ cells derived from patients
with β-thalassemia (n = 2), strongly suggesting conservation of P21
upregulation between mouse and human β-thalassemic erythro-
blasts and potential pathological mechanisms (Figure 3C-D).

Given that under certain stress conditions, P21 regulates apoptosis
in addition to inhibiting cell cycle,55,58 we addressed the potential
contribution of P21 to the enhanced apoptosis by generating
p21−/−/Hbbth3/+ mice. We opted for an in vivo approach to avoid the
P21 REGULATES B-THALASSEMIA ERYTHROID APOPTOSIS 6877
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impending artifacts of in vitro targeting on erythroblast maturation
and apoptosis.59 The double-mutant p21−/−/Hbbth3/+ mice were
born following a non-Mendelian pattern and only a small subset
survived to the adulthood. The subsequent experiments were carried
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
using this p21−/−/Hbbth3/+ adult group. We found that loss of P21
on a β-thalassemic background significantly alleviated apoptosis as
observed in p21−/−/Hbbth3/+ relative to Hbbth3/+ bone marrow
erythroblasts (Figure 4A; n = 6) and to a lesser extent in the spleen
P21 REGULATES B-THALASSEMIA ERYTHROID APOPTOSIS 6879



Table 2. Blood parameters in Hbbth3/+ vs p21−/−/Hbbth3/+

Parameters WT p21−/− Hbbth3/+ p21−/−/Hbbth3/+

RBC (109/L) 10 500 ± 900 10 500 ± 300 7900 ± 900† 8200 ± 400

HGB (g/dL) 15.4 ± 1.1 15.3 ± 0.3 8.5 ± 0.8† 8.8 ± 0.4

WBC 103/mL 4.3 ± 2.2 5.3 ± 1.9 14.9 ± 6.7† 9.0 ± 3.9‡

Lympho (K/μL) 3.3 ± 1.9 3.6 ± 1.9 11.3 ± 5.9† 6.7 ± 2.9‡

EO (K/μL) 0.10 ± 0.11 0.11 ± 0.09 0.23 ± 0.15 0.18 ± 0.17

Retic (%) 3.8 ± 0.5 3.6 ± 0.5 28.4 ± 2.0† 28 ± 4.1

n (mice) 9 6 7 6

EO, eosinophils; HGB, hemoglobin; Lympho, lymphocytes; WBC, white blood cells.
†P < .01 between WT and Hbbth3/+.
‡P < .05 between Hbbth3/+ and p21−/−/Hbbth3/+.
erythroblasts (Figure 4B; supplemental Figure 8), suggesting that,
indeed, upregulated P21 mediates apoptosis in the β-thalassemic
erythroblasts. Despite P21 being a potent inducer of cell cycle
arrest, the decrease in apoptosis was associated with significantly
reduced cycling of p21−/−/Hbbth3/+ relative to Hbbth3/+ erythro-
blasts, as evidenced by Ki67 cell cycle marker (Figure 4C). Com-
bined with decreased cell cycling, ROS levels were also reduced in
the p21−/−/Hbbth3/+ relative to Hbbth3/+ bone marrow erythroblasts
and almost normalized to WT levels (Figure 4D-F). Unexpectedly
however, even with decreased bone marrow apoptosis and
improved erythroblast survival, loss of P21 did not ameliorate
erythroid cell production in β-thalassemic mice (supplemental
Figures 8A-G and 9; Table 2). RBC numbers, reticulocytosis, and
related parameters in p21−/−/Hbbth3/+ mice relative to Hbbth3/+ mice
were not significantly different (Table 2). Although loss of P21 led to
reduced circulating EPO (supplemental Figure 8I) that signals the
improvement of Hbbth3/+ erythropoiesis, it did not alleviate the
splenomegaly, extramedullary erythropoiesis (supplemental
Figure 8A-B), or elevated ROS levels in β-thalassemic spleen
erythroblasts (supplemental Figure 8A-I; Table 2). Altogether these
results suggest that reducing apoptosis in β-thalassemic erythro-
blasts does not improve RBC production or attenuate ineffective
erythropoiesis.

Decreased cycling of p21−/−/Hbbth3/+ relative to Hbbth3/+ erythro-
blasts was surprising. To gain further insight into mechanisms that
regulate p21−/−/Hbbth3/+ cycling, we analyzed p21−/−/Hbbth3/+

erythroblasts by confocal microscopy immunofluorescence staining
for the expression of FOXO3 and TP53 because these proteins
both regulate erythroid cell cycling17 (Figure 5A). Although FOXO3
nuclear expression was substantially enhanced in p21−/−/Hbbth3/+

TER119− c-KIT+, CD71Hi cells, indicating FOXO3 activation in
precursors upstream of the formation of erythroblasts (Figure 5Ai), in
contrast, we observed that the nuclear expression of TP53 protein
had decreased specifically in these double-mutant erythroblast
precursors relative to controls (Figure 5Aii). These studies suggest
that the upregulated FOXO3, and possibly FOXO3-reduction of
ROS levels, are likely mediating the cell cycle inhibition in p21−/
−/Hbbth3/+ erythroblasts. In addition, these results identify the inter-
play between P21, FOXO3, and TP53 in regulating Hbbth3/+

erythroblast cycling and apoptosis. To explore the mechanism of
reduced ROS levels in p21−/−/Hbbth3/+ erythroblasts, and consid-
ering that FOXO3 is implicated in regulating mitochondria45,60,61

and ROS levels,17,30,46,62,63 we analyzed mitochondrial parameters
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that modify, and respond to, levels of ROS and cell cycle stage.64-66

We found that mitochondrial network fusion is significantly increased
in Hbbth3/+ vs WT erythroblasts as analyzed by Mitotracker Green
(Figure 5B). We further found that mitochondrial fragmentation was
markedly increased in p21−/−/Hbbth3/+ even as compared with
Hbbth3/+ erythroblasts, especially in gate III (Figure 5C). These
findings were unexpected because mitochondrial fragmentation is
often associated with apoptosis. However, these findings may
explain the reduced ROS levels and cell cycling in p21−/−/Hbbth3/+

erythroblasts. Thus, the increase in mitochondrial fragmentation is
associated with cell cycle inhibition, reduced ROS levels, and
decreased apoptosis in p21−/−/Hbbth3/+ relative to Hbbth3/+

erythroblasts.

Discussion

Here, we found that P21 (CDKN1A) expression is upregulated
in both mouse and human β-thalassemic erythroid cells; we
further showed that the elevated P21 mediates apoptosis in adult
β-thalassemic Hbbth3/+ bone marrow and, to a much lesser extent,
spleen erythroid cells. Notably, given that loss of P21 is not lethal in
mice,67,68 the in utero death of p21−/−/Hbbth3/+ mice suggests that
the upregulated P21 expression is necessary for the survival
of β-thalassemic Hbbth3/+ embryos. Our results indicate that,
paradoxically, the greatly enhanced P21 expression supports
β-thalassemic erythroblast cell cycling (Figure 4C). P21 functions
in a molecular network with FOXO3 and TP53, that are
both transcriptional regulators of cell cycle inhibition and
apoptosis.36,69-72

The cyclin-dependent kinase inhibitor P21 is mostly known for its
function in cell cycle arrest through regulation of cyclin-dependent
kinase proteins.55 In addition, many complex functions are attrib-
uted to P21, including both proapoptotic and antiapoptotic prop-
erties.55,73-75 The proapoptotic function of P21 is TP53 dependent
or independent, and mediators of proapoptotic P21 function are
poorly defined.72 Our genetic studies identify proapoptotic func-
tions for P21 in the context of β-thalassemic erythropoiesis, and
also provide evidence supporting the notion that P21 mediates
apoptosis in a TP53-independent manner.

Our results also identify FOXO3 as a mediator of β-thalassemic
erythroid apoptosis, presumably upstream of P21, although we did
not address this directly in the context of β-thalassemia. FOXO3 is
upregulated in the Hbbth3/+ erythroid compartment in which P21 is
elevated (and TP53 is not downregulated). Loss of P21 is asso-
ciated with upregulated FOXO3 but also notably decreased TP53
expression in the erythroid compartment. Loss of FOXO3 clearly
improved RBC production in Hbbth3/+ β-thalassemic mice. This
improvement was significant in the context of β-thalassemia, with a
gain of 1 g/dL of hemoglobin (as in Foxo3−/−/Hbbth3/+ erythro-
blasts), equivalent to 1 unit of blood, may notably reduce the
transfusion schedule in patients with β-thalassemia. Given the
erythroid phenotype in Foxo3−/− mice,17,27 these results were
unanticipated. We had previously found that loss of FOXO3 results
in increased circulating EPO and ROS-mediated constitutive acti-
vation of both protein kinases Janus kinase 2 and mammalian target
of rapamycin complex 1 that sustain EPO receptor signaling and
cell growth.27 In addition, we had shown that inhibiting Janus
kinase 243 or mammalian target of rapamycin complex 1 with
rapamycin27 improves RBC production and reduces anemia in
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
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Hbbth3/+ β-thalassemic mice.27 However, decreased apoptosis,
increased survival of Foxo3−/−/Hbbth3/+ erythroblasts (Figure 2B;
supplemental Figure 5), and improved RBC production (Table 1;
Figure 2A) had no impact on reticulocytosis or splenomegaly;
suggesting that either the increased apoptosis is downstream of
ineffective erythropoiesis in β-thalassemic mice (Table 1),
apoptosis alone is insufficient to sustain β-thalassemic ineffective
erythropoiesis, or, alternatively, mechanisms other than apoptosis
drive β-thalassemic ineffective erythropoiesis. Because FOXO3’s
function is critical to RBC production and reticulocyte matura-
tion,17,19 including mitochondrial removal and enucleation,14,27 the
quality of RBC formed in Foxo3−/−/Hbbth3/+ mice may be
compromised or, at best, suboptimal. Thus, the potential benefits
of targeting FOXO3 has to be first carefully examined before
considering using this approach for improving RBC production in
β-thalassemia therapies.

Overall, our results showed that reducing apoptosis and signifi-
cantly improving Hbbth3/+ erythroblast survival does not ameliorate
poor RBC production (in p21−/−/Hbbth3/+ mice) nor reduces the
extramedullary erythropoiesis in the β-thalassemic Hbbth3/+ mouse
model (p21−/−/Hbbth3/+ or Foxo3−/−/Hbbth3/+ mice). The combi-
nation of reduced apoptosis and erythroid cell division results
in no gain in RBC numbers or in reducing reticulocytosis in
p21−/−/Hbbth3/+ mice. Notably, loss of P21 in Hbbth3/+ mice had a
much lesser effect on the splenic erythroid cells, including spleen
apoptosis (reduction by >75% in apoptosis of bone marrow
CD45TER119+ cells vs <25% in the spleen in p21−/−/Hbbth3/+ vs
Hbbth3/+ mice), erythroid cell numbers, and ROS levels. The lack of
improvement observed in the spleen occurred despite reduced
EPO levels, suggesting distinct regulation of β-thalassemic
erythroid cell maturation in the spleen vs the bone marrow.
Reduced ROS levels with the loss of P21 was not associated with
improved β-thalassemia RBC production or erythroblast survival in
the spleen (Figures 4 and 5; supplemental Figures 8 and 9). These
findings indicate that, although increased apoptosis is associated
with the expansion of the erythroblast pool, in this β-thalassemic
Hbbth3/+ mouse model, it is likely that apoptosis is not the main
driver of β-thalassemic erythroid cell expansion in the β-thalassemic
Hbbth3/+ mouse model. Altogether, these findings raise the possi-
bility that ineffective erythropoiesis and apoptosis in β-thalassemia
are uncoupled, at least in mice (see “Graphical abstract”). Spe-
cifically, reduced/elimination of apoptosis in the bone marrow does
not significantly affect β-thalassemic extramedullary hematopoiesis
or splenomegaly (in both p21−/−/Hbbth3/+ and Foxo3−/−/Hbbth3/+

mouse models).

Our findings suggest that the spleen is critical in regulating
β-thalassemic erythroid cell survival in the mouse; these data also
highlight the differences in the kinetics of erythroid cell maturation,
survival, and ROS levels in the spleen vs bone marrow under
homeostasis and in the context of β-thalassemia. These findings
further support the idea that the microenvironment, including
macrophages,76,77 modulate gene regulation, and is critical in
controlling β-thalassemic erythropoiesis.78,79 Although apoptosis
may contribute to ineffective erythropoiesis, apoptosis does not
explain the extent of the β-thalassemic erythroid defect. Studies of
macrophages, iron overload, and ROS regulation may reveal
6882 LIANG et al
mechanistic regulations of ineffective erythropoiesis in β-thalas-
semia that are distinct from apoptosis.

Our findings indicate that a network of P21, FOXO3, and TP53
coordinates erythroid cell cycling and apoptosis in β-thalassemia
mice in an unanticipated fashion, presumably to balance cell cycle
and apoptosis.
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