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A B S T R A C T   

Objective: Investigate the brain functional networks associated with motor impairment in people with Parkinson’s 
disease (PD). 
Background: PD is primarily characterized by motor dysfunction. Resting-state functional connectivity (RsFC) 
offers a unique opportunity to non-invasively characterize brain function. In this study, we hypothesized that the 
motor dysfunction observed in people with PD involves atypical connectivity not only in motor but also in 
higher-level attention networks. Understanding the interaction between motor and non-motor RsFC that are 
related to the motor signs could provide insights into PD pathophysiology. 
Methods: We used data from 88 people with PD (mean age: 68.2(SD:10), 55 M/33F) coming from 2 cohorts. 
Motor severity was assessed in practical OFF-medication state, using MDS-UPDRS Part-III motor scores (mean: 49 
(SD:10)). RsFC was characterized using an atlas of 384 regions that were grouped into 13 functional networks. 
Associations between RsFC and motor severity were assessed independently for each RsFC using predictive 
modeling. 
Results: The top 5 % models that predicted the MDS-UPDRS-III motor scores with effect size >0.5 were the 
connectivity between (1) the somatomotor and Subcortical-Basal-ganglia, (2) somatomotor and Visual and (3) 
CinguloOpercular (CiO) and language/Ventral attention (Lan/VeA) network pairs. 
Discussion: Our findings suggest that, along with motor networks, visual- and attention-related cortical networks 
are also associated with the motor symptoms of PD. Non-motor networks may be involved indirectly in motor- 
coordination. When people with PD have deficits in motor networks, more attention may be needed to carry out 
formerly automatic motor functions, consistent with compensatory mechanisms in parkinsonian movement 
disorders.   

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease character
ized by a set of cardinal motor symptoms namely, bradykinesia, tremor, 
rigidity, and postural instability (Braak and Del Tredici, 2008). Although 
the primary brain pathology in PD is the loss of dopaminergic neurons in 
the basal ganglia, the basal ganglia are highly interconnected to motor 
and non-motor cortical areas via corticostriatal loops (Braak and Del 
Tredici, 2008). While it is known that the functional connectivity of the 

basal ganglia with sensorimotor cortical regions is altered in people with 
PD (Tessitore et al., 2014), the impact of PD on other functional net
works across the whole brain is not well understood. 

Resting-state functional MRI (rs-fMRI) noninvasively characterizes 
co-activation patterns across brain areas and between brain networks 
(Power et al., 2011). Rs-fMRI offers a unique opportunity to examine the 
interplay between the changes in brain function and the observed motor 
impairments in people with PD. Previous functional imaging studies 
have shown that motor signs of PD are associated with reduced blood 
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flow in sensorimotor cortical regions, putamen, and globus pallidus and 
increased cerebral blood flow to premotor areas (Wu et al., 2009; Turner 
et al., 2003). These studies have been fundamental to understanding 
which brain regions are affected by PD (Wu et al., 2009; Turner et al., 
2003; Filippi et al., 2019). While there are many seed-based imaging 
studies that examine connectivity patterns from prior hypotheses, it is 
also important to study whole-brain network reorganization to identify 
lesser-studied brain regions/functions that might be affected by PD 
(Hacker et al., 2012; Fling et al., 2014; Luo et al., 2014). Understanding 
whole-brain network connectivity is important even for treatment op
tions since, RsFC that includes non-motor regions (after DBS) are shown 
to improve the optimal DBS parameters compared to using RsFC with 
motor-only regions (Boutet et al., 2021). Elucidating the functional 
network changes across the whole brain in a range of different severity 
in people with PD could help the understanding of overall pathophysi
ology of the disease. 

The few whole brain RsFC studies in the literature have looked at 
people with PD in the ON-levodopa medication state (Tahmasian et al., 
2015). However, levodopa is thought to partially normalize brain 
network changes due to PD so the impact of PD on brain network con
nectivity can best be understood when we examine the RsFC in the OFF- 
medication state (Tahmasian et al., 2015; Zhong et al., 2019). Two 
studies looked at whole brain RsFC OFF-medication and found MDS- 
UPDRS III motor scores to be associated with default mode network 
regions, subcortical, somatomotor, cerebellar, pre-frontal lobe, visual 
(cuneus, lingual and calcarine), medial occipital lobe and frontal and 
medial parietal lobe (Hou et al., 2016; Wang et al., 2022). Another study 
identified that cingulate-hippocampal, hippocampal-insular and insular- 
orbital gyrus connectivities predicted ON-medication MDS-UPDRS III 
motor scores using OFF-medication rs-fMRI dynamic connectivity (Li 
et al., 2019). These studies, however, were performed using volume- 
based registration, which could be up to 3 times less efficient for 
registration and for the identification of significant areas (Coalson et al., 
2018). Another caveat was the inclusion of high head movement data, 
an important cofound that, if not controlled, can lead to spurious asso
ciations (Power et al., 2012; Satterthwaite et al., 2019). 

Sample size is becoming an increasingly important factor in repli
cation of the results in neuroimaging studies (Marek et al., 2022). Most 
of the RsFC studies in people with PD have focused on specific brain 
regions on very small sample sizes that may not be reproducible (Badea 
et al., 2017). We used two samples whose size is considered large for this 
type of studies, a real between samples cross-validation, and instead of 
using correlations to establish associations of RsFC and MDS-UPDRS III 
scores, we used a predictive modeling framework that incorporates 
regularization to minimize the risk of over-fitting (McIntosh and 
Lobaugh, 2004; Miranda-Domínguez et al., 2020; Silva-Batista et al., 
2021). We performed a partial least square regression (PLSR) model 
with a training dataset and an independent test dataset to see if we could 
predict disease severity, based on the motor impairments in both data
sets. We have also employed stringent head motion corrections, espe
cially since the people with PD were OFF-medication (Tahmasian et al., 
2015). While we know that the somatomotor and the basal ganglia 
networks are impacted in people with PD, involvement of extra-motor 
networks are still under active investigation (Wang et al., 2022; Sang 
et al., 2015; Baggio et al., 2015; Göttlich et al., 2013; Li et al., 2016). 

The motor impairments in people with PD are likely progressing over 
time and they are related not only to motor, but to non-motor networks 
as well. For instance, akinetic-rigidity symptoms are shown to be asso
ciated with parietal and limbic systems which are non-motor (Wu et al., 
2023a). Altered low-frequency fluctuations in non-motor regions, such 
as anterior cingulate cortex, inferior parietal lobule, superior frontal 
gyrus have been shown in people with PD (Mi et al., 2017). The Default 
Mode Network (DMN) has been a frequent subject of investigation in 
Parkinson’s disease (PD), revealing changes in functional connectivity. 
However, it remains inconclusive whether these changes are also asso
ciated with cognitive alterations (Baggio et al., 2015; Tessitore et al., 

2012; Chen et al., 2022; Hou et al., 2021). Non-motor cortical areas may 
also provide compensatory mechanisms as suggested by studies of mo
bile imaging that shows larger than normal activation of prefrontal 
cortex when people with PD are walking, consistent with a loss of 
automaticity of well-learned motor tasks (Wu et al., 2015). Normally, 
the sensorimotor network becomes disassociated from the attention 
network while healthy people perform automated tasks like walking 
(Bassett et al., 2015). However, people with PD continue to activate 
their attention networks even for automated tasks like natural walking 
(Stuart et al., 2019). 

The objective of this study was to identify the brain networks that are 
associated with disease severity in people with PD, as measured by MDS- 
UPDRS III motor scores. We hypothesized that parkinsonian motor signs, 
as quantified as a whole by the MDS-UPDRS III motor scores, would be 
associated with higher-order cognitive networks, as well as sensori
motor and basal ganglia networks, when measured in the OFF- 
medication state. 

2. Methods 

2.1. Participants 

Data were collected from 96 people who had idiopathic PD clinically 
diagnosed by a movement disorders specialist using UK Brain Bank 
Criteria. Out of a total of 96 subjects, the data from 8 subjects were 
removed because of poor quality MR imaging data. Our final sample size 
consisted of 88 people with PD. Inclusion criteria for subjects were: (1) 
between 50 and 90 years old, (2) no major musculoskeletal or peripheral 
disorders (other than PD) that could significantly affect their balance 
and gait, (3) ability to stand and walk unassisted for 20 feet, and (4) 
without claustrophobia, severe tremor, or any health history such as 
metal implants that would interfere or put the subject at risk near the 
powerful magnetic field of the MRI scanner (implanted devices 
including deep brain stimulators). 

2.2. Standard protocol approvals, registrations, and patient consents 

All participants gave written informed consent in accordance with 
the Declaration of Helsinki. The protocol was approved by the Oregon 
Health & Science University, OHSU (#4131) and the OHSU/VAPORHCS 
joint IRB (#8979). These participants were part of a larger interven
tional study (Clinical Trials NCT02231073 and NCT02236286). 

2.3. Clinical data 

People with PD were assessed in the practical OFF-medication state 
(12 hours overnight withdrawal of antiparkinsonian medication). Motor 
severity was assessed by a certified researcher using Movement Disor
ders Society Unified Parkinson’s Disease Rating Scale motor subscale 
scores (MDS-UPDRS III). Disease duration, medication dosage levels, 
freezing status – defined by the New Freezing of gait questionnaire, and 
cognitive assessment (MoCA) were also collected. For details, refer 
Table 1. 

2.4. MRI data and processing 

Neuroimaging data were obtained in the practical OFF-medication 
state within a week of the motor assessment. Due to a scanner up
grade at the Imaging Center during the phase of the study, MR images 
were acquired using two scanners and used as two samples: a 3 T 
Siemens Trio scanner (considered as training dataset, N = 64) on initial 
subset of participants and a 3 T Siemens Prisma scanner for the reminder 
of participants (considered as test dataset, N = 24). 

Data were processed using modified version of Human Connectome 
Project (HCP) (Glasser et al., 2013) (available in github at https://github 
.com/DCAN-Labs/abcd-hcp-pipeline) which uses FSL, FreeSurfer and 
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ANTs. 

2.4.1. Image acquisition parameters 
Data were collected by a trained and certified scanning technician 

and images were reviewed by a neurologist in the team if suspected 
anatomical abnormalities were found. Subjects were instructed to lie 
still and keep their eyes open. Head padding was provided to keep their 
heads still. High resolution structural T1- and T2-weighted images and 
resting state functional images were obtained using following parame
ters: Siemens Trio scanner: T1-weighted images were acquired using a 
sagittal magnetization prepared rapid gradient echo (MPRAGE) 
sequence (TR = 2300 ms, TE = 3.58 ms, voxel size = 1 mm x 1 mm x 1.1 
mm, slices = 160). T2-weighted images were acquired using the 
following parameters: TR = 3200 ms, TE = 497 ms, resolution = 1 mm 
isotropic, slices = 160. Resting state functional BOLD images were ac
quired in 2 scans of 10 min each with the following parameters: TR/TE 
= 2000/30 ms, resolution = 3.8 mm isotropic, flip angle = 90◦, leading 
to a total of 600 frames. Siemens Prisma scanner: T1-weighted images 
were acquired using a sagittal MPRAGE sequence (TR = 2500 ms, TE =
2.88 ms, TI = 1060 ms, resolution = 1 mm isotropic). T2-weighted 
images were acquired using the following parameters: TR = 3200 ms, 
TE = 565 ms, resolution = 1 mm isotropic, slices = 176. Resting state 
functional BOLD images were acquired in 2 scans of 10 min each with 
the following parameters: TR/TE = 2500/30 ms, resolution =

3.8x3.8x3.8 mm, flip angle = 90◦, leading to a total of 480 frames. 
Diffusion field maps were also acquired to correct for geometric dis
tortions caused by susceptibility artefact. 

2.4.2. Structural image preprocessing 
T1 and T2 images were intensity normalized, brain images were skull 

stripped, then they were aligned to MNI’s AC-PC axis and transformed to 
MNI atlas space using nonlinear registration. The transformation 
involved calculation of a single matrix for each individual to facilitate 
registration both to an intermediary study template (created using high 
quality MRI images from the age matched healthy controls of the study 
group) and to the MNI atlas. This original alignment was refined using 
boundary-based registration. T1-weighted images were then segmented 

using recon-all from FreeSurfer. Segmentations were improved by using 
the enhanced white matter-pial surface contrast of the T2-weighted 
sequence. The final standard space created the CIFTI file format and 
the associated grayordinate spatial coordinate system (91282 anchor 
points) which combined cortical surface and subcortical volume 
analyses. 

2.4.3. Resting state functional MRI preprocessing 
Neuroimaging data were processed using standard methods 

(Miranda-Domínguez et al., 2020; Silva-Batista et al., 2021; Rudolph 
et al., 2018; Ragothaman et al., 2022). Briefly, the resting state func
tional data processing steps involved regression of (1) 6 degrees of 
freedom obtained by rigid-body head motion correction, (2) whole brain 
signal, (3) ventricular signal averaged from ventricular ROIs, (4) white 
matter signal averaged from white matte ROI, (5) first-order derivative 
terms and the squares for whole brain, ventricular and white matter 
signals to account for variance between regressors. Finally, time courses 
were filtered using a second-order Butterworth band-pass filter with 
frequency range from 9 to 80 mHz. 

BOLD data were examined for head-movement by checking for 
framewise displacement (Power et al., 2012) (movement of a frame 
relative to its previous frame) and excluded frames with head-movement 
greater than 0.5 mm as well as sequences of up to 3 low head-movement 
frames if flanked by frames with head-movement greater than or equal 
to 0.5 mm, as previously described (Power et al., 2012). In this study we 
included participants with minimum of 5 min of surviving BOLD data. 
Connectivity matrices were calculated using 5 min of randomly selected 
low head-movement data. 

2.4.4. Functional connectivity and subcortical volume atlases 
BOLD data were reported from cortical and subcortical ROIs, 

including subcortical ROIs that are highly relevant in PD (Ragothaman 
et al., 2022). Cortical areas consisted of 360 ROIs from the HCP (Glasser 
et al., 2016). Subcortical ROIs consisted of 16 ROIs from the MNI PD25 
atlas40 and 8 ROIs from the FreeSurfer ROIs (Table S1) to account for 
PD-related anatomical/pathological changes in subcortical areas. 
Together, these 384 cortical and subcortical ROIs were grouped into 11 
cortical and 2 subcortical networks (Fig. 1). See Supplementary Table S3 
for the number of connections per functional network pair with 
respective number of connections. 

The cortical ROIs were grouped into 11 functional networks (Ji et al., 
2019). The included cortical networks are: Auditory, Cingulo-Opercular, 
Dorsal attention, Default, Frontoparietal, Language, Orbito-Affective, 
Posterior Multi-modal, Somatomotor, Ventral-Multimodal and Visual. 
This network definition originally has 12 networks including primary 
(Visual1) and secondary (Visual2) visual networks. Since we were not 
focusing on primary versus secondary visual networks, we combined 
them as one Visual network. So, we had 11 cortical networks. It is worth 
noting that the so-called language network in the cortical functional 
atlas is a reorganization of a traditionally used Ventral attention 
network from previous work (Power et al., 2011) and encompasses re
gions involved in language processing and attention. For the purpose of 
this study, the language network would be referred to as Language/ 
Ventral-Attention network. We delineated 24 subcortical ROIs that 
were grouped into 2 networks, Subcortical-Basal ganglia and 
Subcortical-Cerebellar to study networks specifically implicated in 
people with PD. 

The subcortical regions consisted of 24 ROIs combined into 2 
subcortical networks, Subcortical-Basal ganglia and Subcortical- 
Cerebellar. It is necessary to study the ROIs and networks specifically 
implicated in people with PD. The standard FreeSurfer subcortical seg
mentation does not provide segmentations for substantia nigra, sub
thalamic nucleus, internal and external pallidum and red nucleus. So, we 
created a subcortical atlas which has a combination of subcortical ROIs 
implicated in people with PD and those that are standardly used in 
FreeSurfer. We used the ROIs from the above mentioned PD25 MNI atlas 

Table 1 
Sample Characteristics.  

Feature Training-Test data Training vs Test 
Kstest2-, p-values 

Range 

Training 
dataset 

Test 
dataset 

Original sample (n 
= 96) 

71 25    

High quality imaging data (n = 88)  
Count 64 24    
Sex (F/M) 19/45 14/10 4.9, 0.02   
Freezing 
status (F/nF) 

28/36 10/14 <0.01, 0.99   

Age 69.0 (10) 67.5 
(17.75) 

0.27, 0.31 50 – 88  

Disease 
duration 

5.9 (7.6) 3.0 (3.0) 0.34, 0.09 0.3 – 
24.6  

H&Y 2 (0) 2 (0.25) 0.05, 0.9 1 – 4  
LEDD 678.5 450 0.37, 0.09 0 – 

8680  
MoCA 25.1 (3.8) 25.9 

(3.6) 
0.15, 0.9 14 – 30  

MDS-UPDRS 
III 

39.7 (14.2) 39.5 
(9.4) 

0.19, 0.77 13 – 72  

MDS-UPDRS 
total 

67.5 (22.3) 63.1 
(17.7) 

0.18, 0.86 29 – 
123 

Training dataset comes from Siemens Trio scanner. Test dataset comes from 
Siemens Prisma scanner. For differences in training and test set two sample 
Kolmogorov–Smirnov test was run for continuous variables and Chi squared test 
for sex and freezing status. 
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(Xiao et al., 2017) to segment subthalamic nucleus, substantia nigra, red 
nucleus, pallidum internal and external, caudate, putamen and thal
amus. We used FreeSurfer to segment the rest of subcortical ROIs, 
namely, accumbens, amygdala, hippocampus and cerebellum. Having 
the PD25 atlas ROIs along with other standard FreeSurfer ROIs helped in 
extracting functional information from subcortical regions known to be 
implicated in people with PD while having access to rest of the regions. 

The PD25 MNI ROIs were in 1 mm space. So, we registered PD25 
MNI atlas to a 2 mm MNI atlas and brought it to 2 mm space using ANTs. 
The FreeSurfer ROIs and PD25 ROIs were combined using FSL’s fslmaths 
command. There was an overlap of caudate and accumbens when the 
two atlases were combined. So, we performed manual corrections using 
ITKsnap under the guidance of a radiologist (JW). 

2.5. Statistical analysis 

Overview: The purpose of this study was to identify the functional 
networks linked to motor severity in PD. In order to ensure reliability 
and reproducibility, we implemented a predictive modeling approach 

with partial least square regression (PLSR) models using training, vali
dation and independent test samples (McIntosh and Lobaugh, 2004; 
Miranda-Domínguez et al., 2020; Silva-Batista et al., 2021; Rudolph 
et al., 2018; Ragothaman et al., 2022). PLSR models predicted the as
sociations between normalized resting state functional connectivity data 
as the independent variable and standardized MDS-UPDRS III motor 
scores as the dependent (outcome) variable (Since we did not attempt to 
determine causality, but rather significant associations between brain 
activity and motor severity, it is irrelevant which set of measurements 
are used as dependent or independent variables). Connectivity values 
were normalized by Fisher z-transform and outcome variables were 
normalized by z-scores. PLSR transforms the dependent and indepen
dent variables into smaller set of components that maximizes the 
covariance between the independent and dependent variables, hence 
facilitating outcome prediction. Associations were considered signifi
cant if models predicted out-of-sample data beyond random chance. 
Mean absolute error (MAE) was used to estimate the accuracy of the 
predictions. Quality of these models were assessed using hold-3-out 
cross-validation and significance of the findings were determined by 

Fig. 1. Cortical functional parcellation schema with network assignment defined by HCP ColeAnticevic parcellation (Ji et al., 2019) and subcortical parcellation 
schema defined by combined FreeSurfer (Fischl et al., 2004) and PD25 atlas (Xiao et al., 2017). Networks are color-coded as indicated in the right section of the 
figure. Number in parenthesis indicates the count of ROIs belonging to each network. 

Fig. 2. Flowchart for the predictive modeling approach employed in this study with a training dataset with leave-3-out-cross-validation (L3OCV) and an independent 
test dataset to detect significant networks that predict motor severity in people with PD using functional connectivity. 
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comparing them to null data generated through permutations and 
percentile-values (ptiles) were determined. The optimized models were 
then applied to predict MDS UPDRS III scores in an independent test 
dataset. Brief descriptions of each step are provided in the following 
subsections. The Fig. 2 shows the flowchart of the predictive modeling. 

Prediction of normalized MDS UPDRS III scores using functional net
works: PLSR models were used to assess the associations between MDS 
UPDRS III scores and functional connectivity by transforming them into 
a set of latent variables that maximize outcome prediction. The number 
of components used in the PLSR models was determined through hold-3- 
out cross-validation to prevent overfitting. 

Optimal Number of Components: For each functional network pair in 
the training dataset, given the relatively small sample size, 3 subjects 
were held out for validation and rest were used to train the model. The 
only tuning parameter was the number of components for the PLSR 
model. The 3 subjects that were held out were used to test the accuracy 
of the predictions using MAE (within the training dataset). The modeling 
data was used to calculate PLSR models with varying numbers of com
ponents. We chose the optimal number of components by testing 
sequentially in the training sample all the possible number of compo
nents. Null data, generated by randomly permuting the assignments 
between connectivity and MDS UPDRS III scores 10,000 times, were 
used to compare the model’s performance against chance. To determine 
the threshold of the significance, we compared the real data against the 
cumulative distribution of the MAE predicting the null-hypothesis data 
and computed Cohen’s d effect size. We selected the optimal number of 
components that maximized the significance of the prediction in the 
permutation stage. 

Calculating optimal models: Once we determined the optimal number 
of components, models were recalculated using all the available subjects 
in the training sample using the optimal number of components. These 
optimal models were employed to predict scores in the independent test 
dataset. 

Model Evaluation Using Independent Dataset: Finally, we estimated the 
model performance on the independent test dataset. The optimal models 
learned from the training dataset were used to predict the MDS-UPDRS 
III motor scores in the independent test dataset and significant func
tional connectivity pairs were again selected comparing test data to the 
permuted null-data. Significance was determined by comparing the 
predictions of real, unshuffled scores against the distribution of null- 
hypothesis data. 

Criteria for results selection based on training and test dataset perfor
mance: The top 5 percentile models with d > 0.5 in training dataset and a 
ptile < 0.05 in test dataset were considered to predict the outcome 
beyond chance. This percentile value, calculated using non-parametric 
methods mentioned above, was not used for network selection. 
Network selection was based on each model’s ability to predict outcome 
in both the training and test samples. 

PLSR implementations were done using MATLAB. To quantify the 
potential effect of age, disease duration, levodopa dosage (LEDD) and 
cognition, Pearson correlations of age, disease duration, LEDD and 
MoCA score with the residuals of the prediction models were computed. 
A p-value < 0.05 after FDR correction for multiple comparisons was 
considered significant for the Pearson’s correlations. 

3. Results 

Three functional network pairs predicted the MDS-UPDRS III motor 
score in both the training dataset and the independent test dataset, 
representing the top 5 % of the 91 network pairs examined using the 
partial least square regression (PLSR) model. These 3 functional network 
pairs had an effect size (d) > 0.5 while predicting motor scores in the 
training dataset compared to null data. These trained models when 
predicting the MDS-UPDRS III motor scores in the test dataset had mean 
absolute error (MAE) < 0.5. 

RsFC between the Somatomotor and Subcortical-Basal ganglia 

network pair had the strongest association between MDS-UPDRS III 
motor scores (11 components, d = 0.62, MAE = 0.48 (ptile = 0.01); 
Fig. 2A), followed by RsFC between Somatomotor with Visual network 
pair (3 components, d = 0.55, MAE = 0.46 (ptile = 0.02); Fig. 2B) and 
finally, the RsFC between Cingulo-Opercular and Language/Ventral- 
Attention network pair (1 component, d = 0.49, MAE 0.50 (ptile =
0.02); Fig. 2C). See Table 2 for summary of results. The correlations 
between the observed and predicted MDS-UPDRS III motor scores were 
r >0.43. See Fig. 3 for visualization and spatial localization of the 
network pairs, correlation coefficients and MAE distributions. See Sup
plementary Table S4 for the ROIs in the significant networks. The beta 
weights of the trained models for each ROI-ROI connection and distri
bution of the RsFC values for the training and test datasets for the 3 
network pairs are shown in Supplementary Fig. SF1. 

We also found that associations between RsFC and MDS-UPDRS III 
motor scores were unlikely to be driven by age, disease duration, LEDD 
or cognition as accounted by the low and insignificant correlations with 
the residuals of the predictions of MDS-UPDRS III motor scores. The 
correlation coefficient and p-values (corrected for multiple compari
sons) of age, disease duration, LEDD and MoCA score with network pairs 
were: Somatomotor and Subcortical-Basal ganglia network pair (r =
0.32, p = 0.13; r = 0.27, p = 0.21; r = 0.19, p = 0.50; r = -0.17, p =
0.43), Somatomotor and Visual network pair (r = 0.19, p = 0.36; r =
0.13, p = 0.55; r = 0.04, p = 0.80; r = -0.22, p = 0.31), and Cingulo- 
Opercular and Language/Ventral-Attention network pair (r = 0.23, p 
= 0.29; r = 0.23, p = 0.29; r = 0.46, p = 0.06; r = -0.15, p = 0.47). The 
scatterplots are shown in supplementary Figs. SF2-SF5. 

We repeated the PLSR analysis, while controlling for LEDD and found 
the results remained significant, with even strong SMN-SBG network 
connectivity (see Table S2 in Supplement). 

4. Discussion 

4.1. Summary of results 

Whole brain RsFC in people with PD OFF-medication identified 
higher-order cognitive and visual networks, as well as Somatomotor and 
basal ganglia networks, that are associated with severity of motor 
dysfunction in people with PD. Connectivity between Somatomotor and 
Subcortical-Basal ganglia networks, Somatomotor and Visual networks 
and Cingulo-Opercular and Language/Ventral-Attention network pairs 
predicted MDS-UPDRS III motor score. We found that connectivity be
tween motor and non-motor networks is associated with motor severity 
in people with PD as accounted by predictive modeling and cross- 
validation using independent samples. Importantly, we also showed 
that our findings are unlikely to be driven by age, disease duration, 
Levodopa medication and cognition. 

The clinical characteristics of the cohort represents people with PD 
who were in Hoehn & Yahr stage 2–3 representing mild to medium 
symptoms. Their MoCA scores were mostly 25–26, with mild cognitive 
impairments. The disease duration ranged between 5 and 10 years. The 

Table 2 
Performance metrics of RsFC networks predicting motor severity in people with 
PD.  

HCP 
Functional 
system pair 

Within 
training 

Test data predictions using 
training dataset 

Optimal # of 
Components 

MAE ES MAE ptile R ptile 

Smn and 
SBG  

0.73  0.62  0.48  0.01  0.53  <0.01 11 

Smn and Vis  0.71  0.55  0.46  0.02  0.53  0.01 3 
CiO and 

Lan/VeA  
0.72  0.49  0.50  0.02  0.43  0.02 1 

MAE – Mean absolute error, ES – Cohen’s Effect size (d), ptile – percentile-value 
computed using non-parametric method, R – correlation between observed and 
predicted MDS-UPDRS III motor score. 
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participants were scanned during their practical OFF medication state, 
we checked for effects of Levodopa medication and there was no sig
nificant effect of medication on the predictions. 

4.2. Somatomotor – Subcortical-basal ganglia network connectivity 
predicts PD motor severity 

The dopaminergic deficit in the striatum is thought to affect the 
striatal projects (through both direct and indirect pathways) leading to 
disruption in the cortical regions such as primary motor and pre-motor 
areas (Braak and Del Tredici, 2008). Consistent with the literature, we 

Fig. 3. Functional connectivity network pairs that predict the MDS-UPDRS III motor scores. The column in the left shows the spatial representation of the functional 
networks on a very inflated brain; middle column shows the scatter plot of correlation between the observed and predicted MDS-UPDRS III motor scores; column on 
the right shows the null distribution of the MAE, dotted line represents the threshold for significant prediction and dark black line shows the MAE for the actual 
prediction made. MAE – mean absolute error. 
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showed that the strength of connectivity between the Somatomotor and 
Subcortical-Basal ganglia networks were predictive of motor dysfunc
tion severity in people with PD (Wu et al., 2009). Alterations within the 
somatomotor network is among the most identified networks in people 
with PD across different stages of the disease and different analysis 
methods as summarized by reviews (Tessitore et al., 2014; Strafella 
et al., 2018). In addition to alterations within somatomotor network, 
most ROI based studies have shown reduced connectivity between 
Somatomotor and striatal networks in people with PD (Sharman et al., 
2013; Agosta et al., 2014; Wang et al., 2021). In particular, connectivity 
between the SMA and putamen has been shown to be negatively 
correlated with the MDS-UPDRS III motor score (Wu et al., 2009). 
Another study by the same group showed decreased connectivity be
tween premotor cortex, pre-SMA and putamen in people with PD 
compared to healthy adults (Wu et al., 2011). The Somatomotor 
network identified in our study includes not only motor execution ROIs 
like M1/S1, but also motor planning ROIs like SMA and pre-SMA. 
Involvement of motor planning regions like SMA, pre-SMA, premotor 
cortex along with the somatomotor regions like M1/S1 may suggest 
network level changes at the motor planning level disrupting motor 
execution. 

4.3. Somatomotor – Visual network connectivity predicts PD motor 
severity 

We found that connectivity between Somatomotor and Visual net
works predicted motor severity in people with PD. The connectivity 
between Somatomotor and Visual networks (related to motor severity 
identified in our study in people with PD) maybe due to (a) reduced 
connectivity responsible for impairments in spatial orientation or (b) 
increased connectivity acting as a compensatory network for impaired 
use of somatosensory inputs in people with PD. In a recent Rs-fMRI 
study, Somatomotor-Visual network connectivity was reported to be 
more different than other networks, with PD group showing reduced 
RsFC (Gratton et al., 2019). Another study showed that motor, visual 
and subcortical resting state networks predict walking duration (as a 
function of gait) and the motor impairment attributed to dopaminergic 
and cholinergic transporters identified using neurotransmitter-receptor/ 
transporter density maps (Wu et al., 2023b). Reduced RsFC between 
Somatomotor and sensory networks have been attributed to impaired 
multisensory processing and sensory integration, leading to impair
ments of kinesthesia, perception of motion, abnormal postural align
ment and motor impairments like freezing of gait (Patel et al., 2014). For 
example, freezing of gait is often triggered by specific visual contexts, 
such as narrow doorways (Cohen et al., 2011). 

Alternatively, the association of PD motor severity with 
Somatomotor-Visual network connectivity in this study could also 
represent a compensatory mechanism for the impaired subcortical 
control of movement and/or impaired kinesthesia. People with PD are 
known to benefit from visual cueing, particularly for people with 
freezing (Schlick et al., 2016; Gilat et al., 2021). Anticipatory postural 
planning for step initiation has been shown to improve with a visual cue, 
but only if vision of the leg is included (Russo et al., 2022). A recent EEG 
study on visual cueing in people with PD has shown activation in the 
visual regions correlated with cueing and gait improvements and 
attention processing and those with worse attention seem to recruit 
more visual regions (Stuart et al., 2021). 

Excessive connectivity between the visual and somatomotor network 
could also reflect a propensity for visual hallucinations in people with 
PD. However, only 16 out of 88 people had reported hallucinations in 
our cohort in the MDS-UPDRS question 1.2 and most of them had a mild 
score of one. 

4.4. Cingulo-Opercular – Language/ventral attention network 
connectivity predicts PD motor severity 

This is the first study to find that connectivity between the Cingulo- 
Opercular (CiO) and Language/Ventral attention (Lan/VeA) networks 
predicted motor severity in people with PD. CiO and Lan/VeA are 
considered to be part of higher-order attention network. The CiO 
network is generally attributed to maintaining tonic attention (Sada
ghiani and D’Esposito, 2015), whereas Lan/VeA is related to detecting 
unattended or unexpected stimuli and triggering shifts of attention 
(Menon and Uddin, 2010). People with PD also exhibit speech impair
ments and encounter language problems that are caused due to the 
impaired cognitive functions such as verbal working memory and set 
switching (for further details see full special issue of Language and 
Parkinson’s disease (Bastiaanse and Leenders, 2009). While this study 
did not collect data to evaluate language problems, we indeed were able 
to identify altered connectivity in networks that later could lead to this 
problem. Studies have also shown that simple motor performance in 
people with PD recruits brain networks involved in more complex tasks, 
such as the anterior cingulate cortex (Carbon et al., 2007) and dorsal 
anterior insula (Tinaz et al., 2016). Increased connectivity was also 
observed between the Ventral Attention network and the Cognitive 
network in people with PD while breaking motor arrest (freezing of gait) 
in a virtual-reality, motor task (Shine et al., 2013). Whereas healthy 
older adults show short term activation of the prefrontal cortex when 
staring to walk, this activity quickly subsides, reflecting automaticity. In 
contrast, people with PD show persistent activation of attention net
works while walking (Stuart et al., 2019). 

While the Ventral Attention (VeA) network used in this study con
tains regions responsible for language processing and attention switch
ing (Ji et al., 2019) interestingly, this network also includes parts of the 
cortical vestibular network (specifically, the superior temporal sulcus 
and temporo-parieto-occipital junction) (Frank and Greenlee, 2018). 
These regions include the parieto-insular vestibular cortex (PIVC) and 
the posterior insular cortex (PIC), considered to be a core part of the 
vestibular system, yet they overlap with the CiO and VeA networks. 
PIVC is known to encode head and body movements and is involved in 
estimating heading direction while PIC is attributed to coordination of 
visual and vestibular cues (Frank and Greenlee, 2018). People with PD 
have difficulty sequentially rotating their eyes, then head, then trunk, 
then legs while turning and have difficulty balancing in a condition 
requiring vestibular integration (eyes closed on a compliant surface) 
(Earhart et al., 2007). 

4.5. Strengths and limitations 

Our predictive modelling method uses cross-validation, null-hy
pothesis test and comprises independent training and test datasets to 
increase reproducibility of our results. We also used whole brain analysis 
approach that enabled us to identify non-motor networks involved in 
motor symptoms in people with PD and OFF-medication. We also 
created a unique, subcortical network consisting of regions specifically 
implicated in people with PD to identify if other subcortical regions 
played a role in motor symptoms. Our study is one of the few to include a 
large cohort of people with PD and OFF-medication. We have imple
mented stringent correction methods for motion artifacts, particularly 
important in studying movement disorders like PD (Tahmasian et al., 
2015; Gratton et al., 2019). During our registration process, we also 
registered the MRIs of individuals with PD to an intermediary age- 
matched atlas to account for structural changes related to aging. 
Together, these methodological rigors address the potentially con
founding imaging factors. 

Although our original sample consisted of 96 people with PD, we lost 
data from a few subjects due to excessive head movement in the scanner, 
and they predominantly belonged to the training sample. The data lost 
came from patients with worse motor severity and longer disease 
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duration, compared to the group average. As the disease progresses, 
neck posture tends to deteriorate, that could be a reason for the 
increased head motion. Nevertheless, the number of subjects in our 
study are larger than most imaging studies with people who have PD. 
Although the training and test dataset had differences in the disease 
duration and levodopa dosage, they were not statistically significant. 
The RsFC atlas we used was created from the HCP dataset, which 
comprised of individuals with an average age of 25. However, during the 
registration process we registered the MRIs of individuals with PD to an 
age-matched intermediary atlas created from our age-matched control 
cohort to control for the age-related anatomical changes. Future studies 
could use RsFC atlases made from older adults or implement individu
alized connectivity-based analysis that can be used for personalized 
prediction. While majority of people with PD experience non-motor 
symptoms such as depression, apathy and cognitive impairments 
related to abnormalities in the brain, we focused on motor impairments 
of PD and not on cognitive or other non-motor impairments. However, a 
majority of our subjects had a MoCA score of above 25, indicating mild 
cognitive impairments. Using large samples and methods like brain- 
wide associations will be more helpful to identify brain association for 
various non-motor symptoms. Our PD cohort included freezers and non- 
freezers as well as tremor-dominant and PIGD-dominant groups but was 
underpowered to look at differences between sub-groups. However, our 
previous publications from same cohort examined the relationship be
tween PIGD severity (Ragothaman et al., 2022), freezing of gait 
(Miranda-Domínguez et al., 2020) and functional connectivity. Future 
studies could look for specific changes caused due to freezing or PIGD 
impairments. 

5. Conclusions 

We demonstrate that along with motor networks, connectivity of the 
Cingulo-Opercular and Visual networks are also associated with motor 
severity of PD. Involvement of higher-order cognitive networks may 
explain the attention deficits experienced by people with PD and 
involvement of visual network may explain why some people with PD 
benefit from visual cueing. Characterization of these functional con
nectivity network changes associated with parkinsonian motor signs 
could help us understand the compensatory role played by non-motor 
regions in people with PD. 
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