Skip to main content
. 2023 Nov 11;40:103541. doi: 10.1016/j.nicl.2023.103541

Table 1.

Sample Characteristics.

Feature Training-Test data
Training vs Test Kstest2-, p-values Range
Training dataset Test dataset
Original sample (n = 96) 71 25



High quality imaging data (n = 88)
Count 64 24
Sex (F/M) 19/45 14/10 4.9, 0.02
Freezing status (F/nF) 28/36 10/14 <0.01, 0.99
Age 69.0 (10) 67.5 (17.75) 0.27, 0.31 50 – 88
Disease duration 5.9 (7.6) 3.0 (3.0) 0.34, 0.09 0.3 – 24.6
H&Y 2 (0) 2 (0.25) 0.05, 0.9 1 – 4
LEDD 678.5 450 0.37, 0.09 0 – 8680
MoCA 25.1 (3.8) 25.9 (3.6) 0.15, 0.9 14 – 30
MDS-UPDRS III 39.7 (14.2) 39.5 (9.4) 0.19, 0.77 13 – 72
MDS-UPDRS total 67.5 (22.3) 63.1 (17.7) 0.18, 0.86 29 – 123

Training dataset comes from Siemens Trio scanner. Test dataset comes from Siemens Prisma scanner. For differences in training and test set two sample Kolmogorov–Smirnov test was run for continuous variables and Chi squared test for sex and freezing status.