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Abstract

Multi-omic analyses are necessary to understand the complex biological processes taking place at the tissue and cell level, but also to
make reliable predictions about, for example, disease outcome. Several linear methods exist that create a joint embedding using paired
information per sample, but recently there has been a rise in the popularity of neural architectures that embed paired -omics into the
same non-linear manifold. This work describes a head-to-head comparison of linear and non-linear joint embedding methods using
both bulk and single-cell multi-modal datasets. We found that non-linear methods have a clear advantage with respect to linear ones
for missing modality imputation. Performance comparisons in the downstream tasks of survival analysis for bulk tumor data and cell
type classification for single-cell data lead to the following insights: First, concatenating the principal components of each modality is
a competitive baseline and hard to beat if all modalities are available at test time. However, if we only have one modality available at
test time, training a predictive model on the joint space of that modality can lead to performance improvements with respect to just
using the unimodal principal components. Second, -omic profiles imputed by neural joint embedding methods are realistic enough to
be used by a classifier trained on real data with limited performance drops. Taken together, our comparisons give hints to which joint
embedding to use for which downstream task. Overall, product-of-experts performed well in most tasks and was reasonably fast, while
early integration (concatenation) of modalities did quite poorly.
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INTRODUCTION
In the past years, there has been a tendency to produce more and
more multi-modal -omics data [1], i.e. to measure multiple differ-
ent data modalities from the same sample. This has enabled the
discovery of complex biological mechanisms and lead to deeper
understanding of biological processes (e.g. [2, 3]). For example,
with joint profiling of genetic and transcriptomic data from the
same individuals we can uncover eQTLs (expression quantitative
trait loci), i.e. genetic variants that influence the expression of
particular genes [4].

A prime example of such multi-modal datasets is that of The
Cancer Genome Atlas (TCGA), which contains mutation, gene
expression, DNA methylation and copy number profiles from the
same tumor sample for thousands of primary tumors from differ-
ent cancer types [5]. More recent advances in single-cell technol-
ogy have enabled the simultaneous profiling of different -omics
from the same single cell, for example gene expression and DNA

methylation [6] or gene expression and protein expression [7]. A
review of multi-modal single-cell technologies can be found in [8].

This rapid progress in our ability to generate data has naturally
increased the need for computational tools to deal with the chal-
lenges of analyzing increasing amounts of multi-modal data. One
popular class of such tools is called joint dimensionality reduction
or joint embedding and involves projecting all modalities into
the same lower-dimensional space [9–11]. The ’joint space’ then
attempts to encode the information shared by all modalities and
filter out modality-specific signals. This not only reduces the
effects of experimental noise, but also helps us uncover relation-
ships between modalities.

Several joint embedding methods have been proposed and
many of them have been especially designed for -omics data.
The majority of such methods are extensions of single modality
dimensionality reduction such as factor analysis or principal
components analysis. For example, Multi-Omics Factor Analysis
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(MOFA+) [10] is a generalization of probabilistic Principal Compo-
nents Analysis (PCA) for multi-modal data, as it uses variational
inference to find a linear projection that minimizes the total
reconstruction error of all modalities. Through the use of appro-
priate prior distributions, MOFA+ also tries to learn a ’sparse’
space with a small number of factors and a small number of fea-
tures contributing to each factor. Other methods do not focus on
reconstruction, but to find projections that maximize a criterion.
For instance, Multiple Co-Inertia Analysis (MCIA) [11] maximizes
the covariance between the input profiles and the latent represen-
tation, while AJIVE [12] finds the directions of maximum variance
for the concatenated principal components of all modalities.

Recently, the use of neural networks and deep learning
for dimensionality reduction has gained popularity in several
domains, including computational biology and mainly single-cell
transcriptomics [13]. This is motivated by the fact that neural
networks can identify non-linear patterns in the data which are
expected to be present in -omics data (e.g. synthetic lethality [14]
or enhancer synergy [15]). A widely-used model in such settings
is the Variational AutoEncoder (VAE) [16], which uses a neural
network to learn a probabilistic mapping from an input profile to
a latent variable (encoder), while a second network (decoder)
learns the inverse mapping (from the latent variables to the
input). VAEs have also been used in multi-modal settings. For
example, totalVI learns a joint embedding of gene and protein
expression profiles from Cellular Indexing of Transcriptomes and
Epitopes (CITE)-Seq data by concatenating the two feature sets
(early integration) [17]. Another interesting example is UniPort,
which learns an embedding of only one (pre-defined) modality,
but learns a joint latent space by requiring that both modalities
can be reconstructed from these latent features [18].

Advances in multi-modal deep learning from other fields, such
as computer vision, can also be applied in computational biology.
One such model which also uses VAEs is called Product of Experts
(PoE) autoencoder [19]. It uses one encoder for each input modality
and combines the different encoder outputs to yield the final joint
embedding. The formulation of PoE makes it usable in settings
where some modalities are not observed. The Mixture of Experts
(MoE) [20] autoencoder modified the way the single-modality
embeddings are combined for the joint embedding by (a) using a
mixture instead of multiplying the single-modality posteriors, (b)
changing the latent distribution from normal to Laplace and (c)
employing a gradient estimator with lower variance [20]. These
lead to improved performance with respect to PoE [20], although
the superiority of MoE is not that well-established in the machine
learning literature [21]. Both models have been applied in single-
cell multi-omic datasets (e.g. [22, 23]). For example, Minoura et al.
[23] used MoE to identify regulatory relationships between gene
expression and chromatin accessibility, as well as to predict one
modality from the other.

The large number of available methods calls for comparisons
between them. Cantini et al. compared nine linear joint embedding
methods at various tasks using both bulk and single-cell data
[9]. The main finding of this study was that there was large
variability on the ranking of methods depending on the task,
but a few methods, such as MCIA [11] tended to rank near the
top for most tasks. Another observation made by the authors was
that most of the tested methods were designed for bulk data,
but nevertheless also performed reasonably well on single-cell
data. Next to being restricted to linear methods, a limitation
of this study is that the authors used a single-cell dataset of
only 206 cells, which is too small to be representative of modern
single-cell experiments, which enable multi-omic single-cell
profiling at much larger scales. For example, with SNARE-Seq and

ISSAAC-seq it is possible to measure gene expression and
chromatin accessibility in over ten thousand cells [24, 25], and
a recent CITE-Seq study profiled gene and protein expression in
more than half a million cells in a single experiment [26]. There-
fore, possible differences in scalability among these methods
were not taken into account. In another study, Brombacher et al.
compared the performance of several deep-learning-based joint
representation learners as a function of the number of cells in
the datasets [27]. This study was focused on single-cell data and
did not compare to any well-established linear methods.

In this paper, we compare several neural network architectures
for joint representation learning to each other as well as to two
popular linear methods that also showed promise according to
Cantini et al. [9]. An overview of the methods included in the
comparison is shown in Figure 1 and Table S1. We evaluate the
models’ ability to impute missing modalities, to learn a coherent
latent space, and to perform well on downstream tasks using both
bulk and single-cell data. Moreover, when appropriate, we employ
simple baselines that do not make any use of joint dimensionality
reduction to put the observed performances into perspective
(Figure 2). We show that these baselines are sometimes tough to
beat, especially for downstream supervized tasks. Additionally, we
show that non-linear methods are needed for accurate imputa-
tion of missing modalities and that these methods generated -
omic profiles are realistic enough to be used by classifiers expect-
ing real profiles.

RESULTS
Non-linear methods show superior imputation
on TCGA
We first compared two linear joint embedding methods, MCIA
([11], Figure 1A) and MOFA+ ([10], Figure 1B) against five non-
linear, neural-network-based joint dimensionality reduction
methods using the TCGA data. We included two simple non-linear
architectures as baseline: concatenated VAE (ccVAE, Figure 1C)
works by concatenating the modalities and feeding them to a
common encoder. When imputing one modality from the other,
all inputs of the missing modality are set to zero as in totalVI
[17] (Figure 1E). Cross-Generating VAE (CGVAE, Figure 1D) uses
separate encoders and learns a joint space by (a) forcing each
encoder’s output to be able to reconstruct all modalities, and
(b) an additional loss term penalizing the difference between
the learnt embeddings of each modality based on Wasserstein
distance (Materials and Methods). We also benchmarked three
existing VAE-based joint embedding methods, namely UniPort [18]
(Figure 1F), product of experts (PoE, [19], Figure 1G) and mixture of
experts (MoE, [20], Figure 1H). MCIA and MOFA+ cannot be readily
applied to new unseen samples (out-of-sample extension), but
since they are linear methods, we enabled this by fitting linear
mappings from the input to the embedding space and vice-versa.
See Materials and Methods for more details about all methods
and their training.

Using 6752 samples from 33 tumor types from the TCGA
with gene expression (GE), methylation (ME) and Copy Number
Variation (CNV) data available, we learned joint embeddings for
GE + ME and GE + CNV, and evaluated the ability to impute
a missing modality using a held-out test set of 844 samples
(Figure 2A). We also compared against a baseline Generalized
Linear Model (GLM) trained to perform regression from one
modality to the other without any joint embedding. The results
are summarized in Figure 3A and B and Tables S2 and S3, where
each model’s performance is measured as the log-likelihood of the
test data given the model’s predictions (Equation 1, Materials and
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Figure 1. Schematic representation of the eight joint representation learning models benchmarked in this work. On the left, the linear methods: MCIA
(A) and MOFA+ (B); in the middle the baseline non-linear methods: ccVAE (C) and CGVAE (D); and on the right the existing non-linear methods: totalVI
(E), UniPort (F), PoE (G) and MoE (H). Yellow arrows indicate important features of each method such as the latent embeddings conditioned on one or
both modalities.

Methods). UniPort only encodes one modality (reference) (Figure 1F)
and learns a joint space that can be used to reconstruct both
modalities using separate decoders. We used GE as the reference
modality here, which means that with UniPort we could only
impute ME or CNV from GE, but not vice versa.

Despite the fact that we also tested hyperparameter configu-
rations without any hidden layers (using a validation set of 844
samples, independent of the training and test sets), we found
that, for all five models, the optimal configuration for this task,
based on the validation set, was non-linear with either one (ccVAE,
UniPort, PoE) or two (CGVAE, MoE) hidden layers. The selection
of the remaining hyperparameters was highly dependent on the
choice of model and dataset (Table S4).

Figure 3A and B shows that both MCIA and MOFA+ failed to
outperform the simple regression baseline in three out of the
four cases and only performed well at imputing DNA methyla-
tion patterns from gene expression. Furthermore, concatenating
a measured modality with a vector of zeros’s for the missing
modality and passing the data through ccVAE for imputation
lead to very bad performances, considerably worse than all other
methods (Figure 3A and B).

CGVAE, PoE, MoE and UniPort performed better than the other
three methods, but only PoE was significantly better than the
GLM baseline in all four cases (FWER < 0.05, Wilcoxon test).
CGVAE and MoE offered significant improvements with respect to
the baseline in general, but they both failed at predicting CNVs
from GE (Figure 3B). UniPort was also significantly better than
the baseline at predicting ME and CNV from GE (FWER < 0.05,
Wilcoxon test).

Overall, we observed large improvements in imputation
performance with respect to the baseline for the prediction of

methylation from gene expression (almost 2-fold increase in log-
likelihood), while in most of the remaining cases the differences
were marginal (albeit statistically significant). Taken together,
we can conclude that PoE is the best performing method in the
imputation task.

We additionally compared the coherence of the latent space
of the different joint embedding methods by testing whether
decodings of the same point in the latent space are classified
as the same cancer type by a neural network trained to predict
the cancer type using the measured training data (Figure 2B).
The predictive performance of the CNV-based cancer type clas-
sifier was quite bad with respect to those of the GE- and ME-
based classifiers, therefore we restricted the comparison only
to the GE and ME dataset (Table S5). Remarkably, PoE and MoE
(the top-performing methods at imputation) had the two worst
latent space coherence performances (Table 1). The latent space
of ccVAE was more coherent, giving decodings from the same
cancer type in 75% of the cases, second to CGVAE with 81%.
UniPort and MOFA+ ranked third and fourth respectively, per-
forming slightly better than PoE (Table 1). Note that MCIA is not a
generative model, so we cannot sample from its latent space and
therefore it is not included in this experiment.

From these results, we conclude that there is a discrepancy
between imputation and coherence as no architecture is very good
at both at the same time. On the other hand, we found that in all
tasks the top-performing method was a non-linear one.

Limited practical utility of joint embedding
methods for survival analysis
We then tested whether the pretraining of joint dimensionality
reduction would lead to performance gains in the supervized
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Figure 2. Sketch of our evaluation schemes for (A) modality imputation, (B) generation coherence, (C–E) downstream supervized tasks. Panel (C) shows
the training of a classifier in the joint space of one modality, and (D) the baseline method. In panel (E), we impute the missing modality and feed the
measured and the imputed profile into the baseline of panel (D).

Table 1: Generation coherence evaluation. Coherence is
measured as the fraction of times the decodings of random
points from the latent space are from the same class (cancer
type for TCGA, cell type for RNA+ATAC-Seq and CITE-Seq).
Higher is better. Note that MCIA is not generative and cannot be
evaluated in this setting

Model TCGA (GE+ME) RNA+ATAC CITE-seq

MCIA N/A N/A N/A
MOFA+ 0.53 0.84 0.62
CGVAE 0.81 0.85 0.56
ccVAE 0.75 0.89 0.49
TotalVI N/A N/A 0.47
UniPort 0.57 0.83 0.33
PoE 0.50 0.74 0.30
MoE 0.27 0.78 0.50

downstream task of survival analysis (Figure 2C and D). Specif-
ically, we used the latent features learned by each model to
fit a pan-cancer Cox proportional hazards model to predict
progression-free survival using age, gender and cancer type as
covariates (Materials and Methods). We tested these methods
with either one modality as input (and then take the latent
representation related to that modality), as well as with two
modalities as input.

As baseline, we used a model with only the covariates men-
tioned above. Additionally, we compared to three more simple
models: two single-omic models based on the 32 principal com-
ponents of each data modality (PCA, orange and green bars in
Figure 3C and D) and a multi-omic model whose input was the
concatenation of the 32 principal components of the two modali-
ties (Figure 2D, red PCA bars in Figure 3C and D).

We evaluated using the Akaike Information Criterion (AIC). The
AIC measures the quality of a model’s fit to the data by taking the
number of model parameters into account, as it is in principle
easier for models with more parameters to overfit to the training
data. The results of this experiment (the lower the AIC the better)
are shown in Figure 3C and D and Tables S6–S7.

Our baseline model using only the patients’ sex, age and cancer
type (and no -omics) information already provided a statistically
significant fit (FWER < 0.05) compared to a null model with only
an intercept (result not shown). The inclusion of the 32 principal
components of gene expression or methylation (PCA) lead to
large improvements (Figure 3C). In fact, combining the principal
components of these modalities outperformed all but one joint
embedding method. PCA on the copy number data only yielded
a minor reduction in AIC with respect to the baseline (Figure 3D).
Gene expression is the most predictive single modality of the three
in this task.
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Figure 3. Missing modality imputation and survival analysis performance on the TCGA dataset. (A) Imputing GE from ME and vice-versa, and (B) GE
from CNV and vice-versa. Performance is measured in both cases as the log-likelihood (y−axis, equation 1) of the 844 test samples given the predictions
of each model (x−axis) for those data (higher is better, signified by upwards-pointing arrows). The dashed horizontal lines represent the performance
of the GLM baseline. The median log-likelihood for ccVAE at predicting ME from GE is –70 987.14 and CNV from GE –74 111.33 (not shown to ease
visualization of the remaining models). Test samples whose log-likelihood is further than 1.5 times the interquartile range from the median sample are
marked as outliers. (C) Predicting progression-free survival using the joint embeddings on the TCGA dataset with GE+ME. The y−axis shows the AIC
(lower is better as signified by downwards arrow) achieved by different models trained in the joint space of GE and ME using either one (GE, ME) or two
modalities. The performance of baseline models using PCA as well as only the covariates is also shown, while the best performance achieved by any
method is indicated by a dashed line. The y−axis is scaled to include all observed AIC values. (D) As in (c), but for the GE+CNV dataset.

Cox models trained on the latent space of joint embedding
methods using both gene expression and methylation (GE+ME)
did improve upon the baseline, but were all outperformed by PCA,
with ccVAE, CGVAE and PoE ranking second, third and fourth
respectively when both modalities are included (Figure 3C). MCIA
had the worst performance in this setting, but still provided a
significant fit (FWER < 0.05).

As for models trained on the latent space of gene expres-
sion and copy number (GE+CNV, Figure 3D), joint pre-training
sometimes proved detrimental as CGVAE provided a very poor
fit, comparable to what could be expected by chance (FWER >

0.05) and MOFA+ and MCIA barely outperformed the covariate
baseline. However, PoE did outperform all other methods, with
PCA second and ccVAE ranking third (Figure 3D).

When we restrict our comparison to methods that only use one
modality, we hypothesized that a joint embedding will be benefi-
cial, as the joint pre-training can provide additional information
from other modalities. For gene expression (the most informative
single modality), this was in general not the case, as only three of
the seven joint embedding methods (MOFA+, CGVAE and UniPort)

trained on the joint space of gene expression and methylation
(GE+ME) outperformed training only on GE data. UniPort’s gene
expression embeddings gave the best predictions, even outper-
forming all methods that use both GE and ME. Cox models that
use the gene expression data embedded in the GE+CNV joint
space performed worse than the Cox model trained on the PCA
of the GE data, with the exception of UniPort, which was again
the top-performing method. This implies that the common infor-
mation between gene expression and copy number is at large
not related to disease progression, possibly because CNV data
have relatively small prognostic power (Figure 3D). Nevertheless,
UniPort did manage to capture information related to survival
from this dataset and is potentially a promising method for jointly
embedding bulk data along with PoE.

On the other hand, training a model on the joint methylation
space (GE+ME) does improve the AIC performance when
comparing to training on only ME data for all joint models
(Figure 3C). Moreover, gene expression informed by methylation
outperformed gene expression informed by copy number for all
five models (Figure S1). These results indicate that the joint

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad416#supplementary-data
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embedding space of gene expression and methylation does
encode information about the metastatic potential of tumors.

Finally, we devised a method to test whether each latent factor
encodes for joint signal shared by both modalities or is modality-
specific (Quantification of Joint Signal, Supplementary material).
This method works by estimating the mutual information
between a latent factor and each input data modality and
is applicable only to VAE-like methods that can encode each
modality separately. Applying it on the models we trained on the
TCGA data, we found that in many of the cases, the latent space is
a mixture of joint and modality-specific factors, although we did
observe models with mostly joint factors, with factors of PoE being
slightly more associated with both modalities than other methods
(Figure S2A and B). Our analysis also showed that most latent
factors of the MoE model trained on the GE+CNV dataset were
not significantly associated with either modality, which might be
an explanation of the relatively poor performance of MoE on this
dataset.

Similar patterns hold for paired single-cell RNA
and ATAC-Seq data
To evaluate the methods on single-cell data, we first used a
dataset of 10 412 peripheral blood mononuclear cells (PBMCs)
containing both gene expression and chromatin accessibility pro-
files for each cell. The dataset was split into training (80%),
validation (10%) and test sets (10%) stratified per cell type.

We found that PoE, MoE and UniPort did the best at imputation,
outperforming the baseline (Figure S3A, Table S8), while ccVAE
and CGVAE had the best generation coherence, although all other
methods followed closely (Table 1). In all models, non-linear
architectures with two hidden layers were selected based on the
validation loss and only the PoE model used dropout and batch
normalization (Table S9).

We also compared the pre-trained models on the supervized
task of cell type classification (Figure 2C), using the same train-
validation-test split as above. For each model, we trained two
cell type classifiers: a linear SVM and a two-layer MLP (Materials
and Methods). The input features for the classifiers were the
cell embeddings of either RNA (q(z|x1)), ATAC (q(z|x2)), or both
(q(z|x1, x2)). This specific 20-class problem is rather simple, as a
MLP trained on the 32 PCs of the RNA data achieved a Matthews
Correlation Coefficient (MCC) of 0.90, while concatenating the 32
PCs of both modalities was even better with a MCC of 0.93 (Figure
S3B and C, Table S10). None of the tested joint embedding methods
was able to do better than these numbers; the best MCC values
were achieved by MOFA+ (0.87) and PoE (0.86) using RNA-only
embeddings.

In summary, for this single-cell dataset, Uniport and PoE per-
formed well at imputation, while ccVAE did quite poorly and PCA
was a very strong baseline for downstream supervized classifi-
cation. These results in all three tasks (imputation, coherence,
classification) are very much in line with our findings on the
bulk TCGA data. What was different, is that most of the latent
factors learned by the models in this dataset were not found
to share significant information with both modalities according
to our mutual information-based test. Instead, they were mostly
modality-specific (Figure S2C).

Neural architectures impute and scale better on
a large CITE-Seq dataset
We then compared the same seven joint embedding methods
plus totalVI on a CITE-Seq dataset profiling PBMCs from eight
different individuals [7]. We used six individuals for training (117

730 cells), one for validation (16 718 cells), and one for testing
(17 646 cells). The dataset also contains cell type annotations
for each cell. These annotations are provided at three different
levels of granularity: level-1 is the most coarse labeling with eight
different classes, level-2 uses 30 classes, and level-3 is the most
fine-grained labeling with 57 classes [7].

The best configurations for the non-linear models were as
follows (Table S11): the PoE architecture was composed of two
layers, while all others had three. Only totalVI used dropout and
totalVI, ccVAE and CGVAE used batch normalization. We tried to
train MCIA on this training set with 750 GB of RAM but it did not
terminate due to insufficient memory after several computation
hours so it is not included in this comparison.

We first compared the methods on missing modality impu-
tation, using a similar GLM-based baseline method as before
(Figure 2A). All methods, including the baseline, performed sim-
ilarly at imputing RNA (RNA) from protein expression (ADT),
with MoE having a slight edge over the rest, followed by CGVAE
(Figure 4A, Table S12). Pairwise Wilcoxon rank sum tests showed
that the performance differences were statistically significant
(FWER < 0.05) despite the small absolute differences in median.
By inspection of the imputation performance per (level-2) cell type
and clustering the cell types based on their median imputation
log-likelihood, we found three distinct clusters of cell types (Figure
S4). This shows that there is one group of cell types for which all
models can perform good imputations. These include common
cell types, such as T cells and B cells. For all six methods, there
was a positive Spearman correlation between the abundance of
a cell type and the accuracy of imputation (ρ = 0.50-0.56, Figure
S6). The performances of the six methods across 30 (level-2)
cell types were highly correlated, with the pairwise Spearman
correlations ranging between 0.959 and 0.997, with a median of
0.966 (Figure S6).

Imputation of ADT from RNA followed the pattern of the TCGA
experiments, with MOFA+, ccVAE and totalVI performing worse
than the GLM baseline, as did PoE. CGVAE was the top method
(Figure 4 and Table S12). In this experiment, we observed much
smaller variance in the imputation log-likelihood compared to
the RNA for most models (Figure 4A and Figure S5), with most
of the outlier cells (i.e. cells for which the imputation is less
accurate than the rest) being erythrocytes and platelets. The effect
of cell type abundance on the performance was less prominent
for imputing ADT, with Spearman correlations ranging from 0.08
to 0.43 for the joint embedding methods, although the GLM was
slightly more affected (ρ = 0.48, Figure S6)). Again, we observed
high concordance on the performance of the eight methods that
imputed ADT from RNA across the 30 cell types (ρ ∈ [0.798, 0.987],
with a median of 0.938, Figure S6)).

It is possible that the observed association between RNA
imputation performance and cell type abundance is due to bias
towards abundant cell types introduced by the pre-selection of
genes, as this association was less prominent for imputing protein
expression. To test this hypothesis, we replaced the 5000 most
variable genes with 819 (level-2) cell type marker genes, derived
using COSG [28] (Supplementary Methods). We found that our
set of 5000 most variable genes was significantly enriched for
these COSG-derived marker genes, with 694 (85%) overlapping
markers (P-value < 1e-6, chi-squared test, Table S13). Experiments
using the joint embedding models that predict RNA from ADT re-
trained on this set of COSG-derived marker genes show consistent
improvement (with respect to training on the 5000 highly variable
genes) in median imputation performance across all cell types
and more so for the less abundant cell types (Figure S7).
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Figure 4. Evaluation on the CITE-Seq dataset. (A) Missing modality imputation performance for gene expression (RNA) from protein expression (ADT)
and vice-versa. Performance is measured as the log-likelihood (y−axis, equation 1) of the test samples (cells) given the predictions of each model (x−axis)
for those data (higher is better). The distribution of the per-cell log-likelihoods is shown. The dashed horizontal lines represent the performance of the
baseline GLM. Cells further than 1.5 times the interquartile range from the median are marked as outliers. (B) Cell type classification performance (MCC,
y−axis, higher is better) achieved by training a multilayer perceptron (MLP) in the joint space of the different models when using: only gene expression
(RNA), only protein expression (ADT), and both RNA and ADT data. The error bars denote 95% confidence intervals calculated by bootstrapping the test
cells 100 times. (C) Per-class (cell type) performance of the same classifiers as in (B). Brighter colors denote a higher per-class F1 score and therefore
better performance. For each model we show three columns (RNA+ADT, RNA only, and ADT only, signified by top row, wherever applicable). Arrows show
the cell types highlighted in the results. Note that class CD4+ Tem_4 is not present in the test data and therefore not shown in the per-class evaluations
(because its precision and recall is always 0 and the F1 score is thus undefined), but it was taken into account when calculating the MCC in (B).

To evaluate generation coherence (Figure 2B), we built neural
networks that predict the level-2 cell type from the RNA or the
ADT data (Table S5). We found that MOFA+ and CGVAE had the
highest performance followed by MoE, ccVAE and totalVI. PoE
again performed badly in this task (Table 1).

Multi-modal pre-training partly compensates for
an unmeasured modality at test time
For cell type classification (Figure 2C), we used the level-3 labels
containing in total 57 different classes (cell types). We used the
same data split as for the imputation and followed the experiment
set-up of the RNA+ATAC-Seq dataset, comparing two cell type
classifiers: a linear SVM and a two-layer MLP (Materials and
Methods). As in the previous analyses, we also used another
simple method that projects each modality to its 32 principal
components and trained the same classifiers (Figure 2D).

We again found that joint unsupervized pre-training on the
same dataset does not yield any considerable advantage to
downstream performance if both modalities are available at test
time, as concatenating the PCs of gene and protein expression

(RNA+ADT) gave competitive performance using both classifiers
(Figure 4B, Figure S8, Table S14). PoE embeddings did perform
slightly better than the PCA baseline using the SVM classifier
(Table S14, Figure S8), while CGVAE, ccVAE and UniPort did not
perform well in this task. We also observed that – similar to the
RNA+ATAC-Seq dataset – the MLP (Figure 4B and C) outperformed
the SVM classifier (Figure S8) regardless of the input data, which
shows that at least some of the classes are not linearly separable
and require non-linear modeling. We thus focus on the MLP
classifier onwards.

Next, we evaluated all methods when only one modality is
available at test time and compared the models that are pre-
trained in the joint space against a classifier trained on the
PCs of the single modality. In this setting, there was a drop in
the performances with respect to the case when both modal-
ities are always available. However, we observed considerable
improvements caused by the joint pre-trainining using MOFA+,
PoE, totalVI and MoE, as demonstrated in Figure 4B (orange and
green bars). A MLP trained on the RNA latent space of PoE or
MOFA+ performed only slightly worse than the best performance
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that was achieved when having two modalities available. When
measuring only protein expression, we obtained similar results,
with joint pre-training using MOFA+, PoE, and MoE providing a sig-
nificant performance gain with respect to the baseline (Figure 4B).
Furthermore, ADT data embedded on the joint RNA+ADT space
gave worse performance than RNA data embedded on this space
for all methods, except for CGVAE, for which the two modalities
performed almost equally. This implies that the two joint spaces
are not equivalent and that RNA is ’the dominant modality,’
although we corrected for the fact that RNA has more features
than ADT (Materials and Methods).

As for the RNA+ATAC-Seq data, most latent factors of CGVAE
and ccVAE had significantly large mutual information with only
RNA (Figure S2D), while CGVAE and MoE learned one joint fac-
tor. PoE, the best-performing of the non-linear models, learned
slightly more joint factors (4), 10 of its factors were only sigifi-
cantly associated with RNA and another set of 10 factors only with
ADT. Finally, MoE and PoE embeddings of ADT data outperformed
all other non-linear methods at cell type classification in the
absence of RNA information (Figure 4) and this is inline with our
observation that these two models had the most factors signifi-
cantly associated with the ADT data (Figure S2D). These suggest
that our mutual information-based test can provide insights into
the performance of VAE-based joint embedding methods. Impu-
tation of RNA from ADT on the test set of the CITE-Seq dataset
by 6 models trained using 5000 most variable genes (x-axis) of 819
marker genes (y-axis) as RNA features. Performance is measured
as the mean log-likelihood of a test cell across all genes. Cells of
the same cell type are then aggregated using their median value
to reach one average performance for each cell type (dot). The cell
type abundance in the dataset is signified by the size of the dot.
To gain a better understanding of the performance differences
between the different models, we examined the performance per
class as measured by the F1 score (Figure 4C). First, we observed
that a very rare class of γ δ T cells (gdT cell 2) is very hard to
differentiate among other T cell types. Only the PCA of protein
expression data and CGVAE with both modalities was able to
do better than random on this class (red arrow in Figure 4C). λ

memory B cells are predicted accurately using PCA on the RNA
data, but the performance of the ADT principal components and
all joint embedding methods is worse (blue arrow in Figure 4C).
This could imply that the information needed to distinguish this
cell type is only in the RNA and therefore it is not present in the
joint space (RNA+ADT), so joint pre-training is detrimental for
the performance for this specific class. On the other hand, pro-
liferating natural killer cells and plasmablasts (green arrows) are
also only predicted well by RNA, but embedding RNA on the joint
RNA+ADT space of PoE and MoE did not hurt the performance for
those classes.

Finally, to test the potential bias towards the set of highly
variable genes, we investigated the effect of using the COSG-
derived marker genes (Supplementary Methods) on cell type clas-
sification. Table S15 contrasts the MCC achieved by the MLP
trained in the latent spaces of models trained with the 5000 most
variable genes and with the 819 COSG-derived marker genes as
RNA features. The use of COSG-derived marker genes lead to
improvements in cell type classification for CGVAE, ccVAE and
MoE, but not for the two best-performing methods (PoE and PCA
baseline).

Imputed modalities are useful for cell type
classification
Next, we considered whether it is possible to use the joint
embedding methods to impute the missing modality and then

classify the test cells using the MLP on the concatenated principal
components of the two modalities (one measured, one imputed,
Figure 2e). When only RNA is available for the test data, we
used MOFA+, CGVAE, PoE, MoE and UniPort to impute the
corresponding ADT profiles, and combined the measured RNA
and imputed ADT profiles to be used by the cell type MLP classifier
operating on the PCs of both modalities. Figure 5A shows that for
MoE and PoE this approach led to higher MCC than a simple
classifier trained on only RNA data. However, this approach did
not outperform classification models trained on the joint space
of RNA (Figure 2C) that also only require RNA measured at test
time (denoted as joint unimodal in Figure 5), with the exception
of CGVAE whose joint space classifier underperformed. MOFA+
did not do well in this task.

If we only use ADT data on the test set, we find that imputing
RNA and then using a multi-modal model was detrimental for
most models, but doing so using PoE did lead to comparable
classification performance with respect to a model trained only
on ADT (Figure 5B).

Because we actually have both modalities measured for all
test cells, we can compare the predictions made by the multi-
modal MLP when using either both measured profiles or when
one of them is imputed (Table S16). When we use imputed protein
profiles alongside gene expression, the multi-modal classifier
predicts the same class as when using the measured protein
profiles for 39.0%, 81.4%, 90.0%, 88.2% and 79.0% of the cells when
the imputation is done using MOFA+, CGVAE, PoE, MoE and Uni-
Port, respectively. The corresponding agreement rates when we
combine measured protein profiles with imputed RNA profiles are
73.6%, 72.1%, 86.7% and 64.1%, respectively for MOFA+, CGVAE,
PoE and MoE (Table S16). Remember that it is not possible to
embed ADT values and reconstruct RNA profiles using UniPort.

We additionally used this set-up to further test how realistic
the generated profiles are. If we have measured RNA at test time,
we can impute the corresponding protein profiles, project them
to their 32 PCs and feed them into the ADT classifier (Table S16).
Although this does not have any practical utility and leads to
worse performances than using the multi-modal classifier, we
found that the predictions of the ADT classifier after performing
this imputation matched the predictions of the same classifier
made using the measured data really well for MoE and PoE, with
agreements of 73.9% and 79.4%, respectively (Table S16). When
doing the reverse experiment, i.e. imputing RNA from protein pro-
files, projecting to the RNA PCs and feeding into the RNA classifier,
the agreement rates were lower, with exception of MOFA+. These
agreement rates are smaller than those we found when feeding
one measured and one imputed modality into the multi-modal,
but they are still significantly higher than what we would expect
if the classifier was randomly guessing when predicting using
imputed profiles.

The relatively large correspondence between predictions made
with measured and imputed profiles is additional evidence for the
high imputation quality of non-linear joint embedding methods.
This experiment further demonstrates the superiority of the PoE
models at imputing -omics profiles (Table S16).

Joint embedding methods scale linearly with
training set size
We tested the scalability of the different methods by measuring
the time required to perform one epoch of training as a function of
training set size. To this end, we used random sub-sets of the CITE-
Seq dataset of various sizes ranging from 5% to 100% of the full
size. We observed a linear relationship between training set size
and run-time for all methods (Figure S9). MoE is by far the slowest
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Figure 5. Comparison of training a cell type classifier in the joint space (joint unimodal, Figure 2C) versus using the joint space to impute a missing
modality and using a classifier trained on both modalities (impRNA/ADT + multimodal, Figure 2E). Panel (A) shows the case when only RNA is available
at test time, and (B) when only ADT measurements are available at test time. Performance is quantified by the MCC (higher is better). The left-most
bar (light blue) and attached dashed line correspond to the performance of a MLP trained only on the measured modality, while the other dashed line
(orange) shows the highest performance achieved by any model that used both measure d modalities (0.89).

of all and has the largest slope, meaning that it consistently is
slower with respect to the rest as the training set size increases.
The linear method MOFA+ is surprisingly not remarkably faster
than the neural network-based methods. ccVAE has the least
steep slope and becomes the fastest for large datasets, but given
its poor performance in imputation and classification, this is not
a sufficient reason to prefer this method. PoE, which was the best
model overall in terms of performance, ran at a reasonable speed,
though both UniPort and totalVI were slightly faster.

DISCUSSION
We presented a comparison of established linear joint embedding
methods to novel neural-network-based methods that can learn
non-linear mappings in both bulk and single-cell multi-omics
data. We also included simple appropriate baselines that do not
employ any joint dimensionality reduction in each experiment,
which are often omitted in similar studies (e.g. [9]).

We found that non-linear methods developed in other fields
(PoE and MoE) generally outperformed the linear and simple
non-linear ones at imputing missing modalities. On the other
hand, these methods underperformed with respect to baseline
non-linear methods in terms of generation coherence. Regarding
downstream supervized tasks, we observed that joint embedding
can lead to improved performance when only a single modality
is available in the test data, which verifies previous results for
linear methods [29]. If data from both modalities are available at
test time, joint embedding did not provide a significant advan-
tage in the tasks that we tested here. Although early integration
approaches were not successful at imputation, we found that
totalVI outperformed ccVAE at cell type classification, which hints
that there are potential benefits from the use of a conditional VAE
framework. Finally, we showed that UniPort, a method originally
proposed for single-cell data, can also be applied to bulk datasets,
as it outperformed both MOFA+ and MCIA on all tasks on the
TCGA data.

Interestingly, we additionally showed that joint embedding
methods can be used to impute missing modalities which can
be fed to a multi-modal classifier trained only on real data.
This means that the tested models are able to generate realistic
enough -omic profiles. On the other hand, these profiles were
projected to the principal components space before being fed
to the classifier, which provides an additional denoising step. In
most cases, this approach of imputing and classifying with two
modalities was worse than training a model in the joint space
using one modality. This is not surprising, as imputation errors are
bound to be propagated into the classifier despite the denoising.
On the other hand this approach did show improvement over
using a supervized model trained on a single modality.

To make sure we fairly compare all methods, we performed
an extensive hyperparameter search to find the best settings
for each one. We used a held-out validation set to calculate the
validation loss for each hyperparameter combination and select
the optimal combination. The performances of the methods were
estimated using another held-out test set comprising previously
unseen data points. If, for some reason, the validation loss is not
predictive of the performance at a specific downstream task – as
we have previously shown can be the case for VAEs trained on
RNA-Seq data [30] – then the chosen hyperparameters for a given
model might not be the optimal ones for the downstream task.
Our results here hint that this might be the case in our setting
too. Many complex models did well at imputing one modality
from the other, which is part of the loss function for training
them, but showed less impressive results in other downstream
tasks. Therefore, if the goal of learning a joint embedding is to
perform well at a specific downstream task, we recommend to
employ a semi-supervized training scheme, where labeled data
are used during the embedding learning process. With these
labeled data one can simultaneously minimize the sum of the
joint embedding loss and the supervized loss of a model trained
on the target task with inputs from the joint latent space as in
[31, 32].
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Examining the results on generation coherence, we found that
CGVAE and ccVAE did better than UniPort, PoE and MoE on both
bulk and single-cell data, while they typically underperformed
in the other tasks. ccVAE uses a single encoder for the concate-
nation of both modalities, which might be beneficial for genera-
tion coherence, as the latent space is directly and concurrently
influenced by matched samples from all modalities. However, the
architecture of CGVAE is identical to that of MoE and PoE with
separate encoders per modality. What makes CGVAE different
from these models is an additional loss term that penalizes the
Wasserstein distance between the posterior distribution of the
latent variables given a pair of input modalities. This encourages
the latent embeddings from both modalities to be the same for
the same input sample. Coherence of MoE and PoE could be
potentially be improved by adding such a loss term, but that also
introduces an additional hyperparameter to weigh the contribu-
tion of that loss component with respect to the total loss. Here, we
used the CGVAE model as a reference, thus we did not tune this
hyperparameter value.

Our results showed that our adaptation of MOFA+ [10] with
out-of-sample extension was in some cases competitive with
state-of-the-art neural-based embedding methods, especially in
the CITE-Seq data. The addition of the linear regression on the
latent variables can be seen as an additional regularization step
[33] which stabilizes the model and might partly explain the
good performance. In addition, MOFA+ has the advantage that it
provides useful diagnostic messages about the input data as well
as the learnt space. For instance, it automatically removes latent
factors that explain too little variance. It would be interesting and
useful to extend this concept to non-linear models and beyond
the Gaussian likelihood used by MOFA+, for instance in order
to detect uninformative latent variables. Here, we proposed a
solution in that direction for VAE-based methods based on mutual
information, which helped us classify factors as joint, modality-
specific, or uninformative. Using this method, we found that joint
embedding methods sometimes learn to allocate specific factors
to each modality instead of finding the common biological signal.

Cantini et al. concluded that many of the linear joint embedding
methods they tested performed well on single-cell data [9]. Here,
we used a more recent single-cell dataset with many more cells
and found that one of the best methods in the benchmark of
Cantini et al., MCIA, was not even possible to train despite using
a considerable amount of computational power. This points to
an advantage of VAEs: they have been designed to work with
stochastic or batch gradient descent to accommodate large train-
ing datasets [16]. Of the nine methods tested by Cantini et al. [9],
only MOFA+ [10] and scikit-fusion [34] offer batch training mode
and GPU acceleration and are therefore applicable to the latest
generation of single-cell datasets with at least tens of thousands
of cells. Many of the other methods, such as MCIA, include an
eigendecomposition or singular value decomposition step, which
can get very expensive for large sample and feature sizes, in
terms of both time and memory. Accelerated versions of these
operations (e.g. [35]) might alleviate this burden.

An important consequence of our experimental set-up is, that
the number of data points used to train the joint embedding
methods is equal to the number of points used to train the
downstream supervised models. In practice, additional unlabeled
multi-modal data might be available, which can be used during
the learning of the joint space. In such cases, especially as the
amount of unlabeled data increases, we expect an additional
benefit of joint embedding, even if both modalities are available
at test time.

Moreover, we followed the common approach of selecting the
most variable features of high-dimensional modalities to include
for joint embedding. In experiments on the CITE-seq dataset, we
noted an association between RNA imputation performance and
cell type abundance, which was partly alleviated when replacing
variable genes with COSG-derived marker genes as RNA features.
In addition, for some models the level-3 cell type classification
also improved when using the COSG-derived marker genes, but
for this classification task the best overall performances were still
achieved using variable genes.

There are several possible explanations why cell type-specific
marker genes show improved performance. One possible reason is
that the most variable genes are indeed biased towards abundant
cell types. But, likewise, another reason might be that the marker
genes introduce a bias towards rare cell types, although this
might be less likely because the imputation of abundant cell
types also improved when using the COSG-derived marker genes.
Alternatively, it might be that cell-type specific marker genes are
easier to predict than the highly variable genes, because they have
a more binary-like expression pattern (low in most cell types,
high in one cell type or vice versa). Further exploration on the
utility of exploiting prior knowledge on the cell types present
in a dataset (if available) for feature pre-selection is a promising
research direction relevant for both multi-omic and single-omic
embedding methods.

As a final note, it is worth pointing out that next to learning
a joint embedding space, it is interesting to learn a latent rep-
resentation of the signal that is unique to each modality. In the
linear setting, this has been achieved by AJIVE [12], which treats
directions with significant variance that are orthogonal to the
joint space as the modality-specific or ’individual’ space. When
dealing with non-linear embeddings, however, finding these indi-
vidual spaces is more complicated. One possible solution could be
to use adversarial losses to ’force’ part of the latent space to not
be useful for reconstructing the other modality.

MATERIALS AND METHODS
Notation
We consider datasets of N samples where we measure M differ-
ent modalities (gene expression, DNA methylation etc.) for each
sample i with the m-th modality represented by a feature vector
xm

i ∈ R
Dm . We seek to find a joint latent representation for the xm

i ’s
denoted by zi ∈ R

d, where d < Dm for all m, which contains the
common information of all modalities. The j-th element of xm

i , is
denoted as xm

ij . The joint embeddings are learned using a model –
for example an encoder neural network – that learns the parame-
ters θi of the distribution p(zi | x1

i , ..., xM
i , θi). For instance, the most

common choice for the posterior of z is a Gaussian distribution
with diagonal covariance, in which case θi corresponds to d mean
and d standard deviation values for each sample that are learned
by the encoder. The entire set of samples from the m-th modality
is represented by the matrix Xm ∈ R

N×Dm .
In the case of autoencoder-like methods, the learned latent

representations are used during training to reconstruct the input
data by learning the parameters φ of the ’generative’ distribution
p(xm

i | zi, φm
i ) for each modality m. The reconstruction quality

of each modality from the latent space is assessed using the
log-likelihood (LL) as defined in equation 1. As it is common in
the literature, we assume that the likelihood factorizes over the
features. The reconstructed modality is denoted as X̂m, consisting
of row vectors x̂mT

i . In the following, we omit the conditioning on
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θ and φ for simplicity.

LL(xm
i , zi) = 1

Dm

Dm∑
j=1

log(p(xm
ij | zi, φ

m
i )) (1)

Algorithms for joint representation learning
We compared two linear methods, MOFA+ [10] and MCIA [11], four
existing neural architectures (totalVI [17], UniPort [18], product of
experts [19] and mixture of experts [20]) and two simpler, base-
line non-linear joint representation learners. The six methods,
visualized in Figure 1, are briefly described below. Details about
training and hyperparameter optimization are provided in the
Supplementary Methods.

Linear methods
MOFA+ infers a common low-dimensional latent space from a
set of high-dimensional data modalities [10]. Each modality is
mapped into the common latent space using a projection matrix
Wm, such that x̂m

i = Wm · zi. MOFA+ makes use of prior distribu-
tions for W that ensure both shrinkage and differential activity of
each latent dimension across modalities and employs variational
inference to find the matrices that minimize the sum of the
per-modality negative log-likelihoods [10]. MOFA+ only support
Gaussian, Poisson and Bernoulli likelihoods.

MCIA attempts to find projections that maximize the covari-
ance between features of each modality and a common latent
space called the reference structure [11].

To allow for out-of-sample generalization for these methods,
we need the projection (encoding) matrices that map a sample xm

i

to zi and, as we are interested in imputing one modality from the
other, we also need the inverses of these linear mappings (decod-
ing matrices). Neither of these methods provide all the necessary
matrices in their standard implementation, so we estimated them
as follows: Using the training data, we fit a linear regression to
predict zi from xm

i , for each modality m and for the concatenation
of all modalities. The weights of those fitted regressions from
the input data to the MOFA+/MCIA output are used as encoding
matrices to embed unseen samples. We obtain the decoding
matrices similarly (predicting xm

i from zi), but this time we use
multivariate GLMs to deal with the different distribution of each
data modality (see Datasets and preprocessing).

Baseline non-linear embedding methods
The simplest method to combine different modalities is to con-
catenate the features into one vector xi = [(x1

i )
T, ..., (xM

i )T]T and
use them to train a VAE (ccVAE). The concatenated vector xi is
fed into a probabilistic encoder that learns q(zi | xi) and separate
decoders are used to decode each modality from zi. The model is
trained by minimizing the sum of the negative log likelihood plus
a Kullback-Leibler divergence term (KL) between q(zi | xi) and the
prior distribution of the latent variables p(z) (equation 2). We used
Gaussian distributions with diagonal covariance for both the prior
and the posterior of z [16]

LccVAE =
∑

i

[
−

M∑
m=1

LL(xm
i , zi) + KL(q(zi | xi) || p(z))

]
(2)

Another simple non-linear joint representation learning archi-
tecture consists of one VAE for each data source. To force the
encoders to embed the data in a common space we want the
decoders to be able to reconstruct any modality from the latent

representation of any encoder. To do so, we minimize the sum of
the reconstruction losses for all possible combinations of input
and output (reconstructed) modalities. We further add a loss term
penalizing the second-order Wasserstein distance between the
posterior distribution of z given each input data source. This
encourages the output of different encoders (i.e. the learned
embeddings of the same sample) to be similar. The loss function
of this model, which we call Cross-Generating Variational Autoen-
coder (CGVAE), is shown in Equation 3, where W2 is the second-
order Wasserstein distance.

LCGVAE =
∑

i

[
−

M∑
m=1

M∑
n=1

LL(xm
i , zn

i )+

M∑
m=1

KL(q(zm
i | xm

i ) || p(z))+

M−1∑
m=1

M∑
n=m+1

W2(q(zm
i | xm

i ), q(zn
i | xn

i ))

]
(3)

Existing non-linear embedding methods
TotalVI [17] is an extension of scVI [13] for CITE-Seq data. It
performs early integration by concatenating the RNA and protein
data (like ccVAE) and passing them through an encoder, but
uses a conditional VAE [36] to encode for covariates of interest
such as library size and batch. The joint embeddings along with
covariates are fed into two separate decoders to reconstruct the
two modalities and the model is trained by minimizing the recon-
struction loss.

UniPort was mainly designed for integrating unpaired datasets
from different modalities, but it also enables joint embedding
of paired data [18]. It does so by using a single encoder and
two decoders. The encoder embeds one pre-selected modality
(reference modality) into a latent space, which is in turn fed into
two separate decoders. This forces the encoder to learn features
that are predictive of both modalities, but has the downside that
only the reference data can be projected into this latent space.
Throughout this work, we used gene expression as the reference
modality for UniPort.

The Product of Experts (PoE) approach [19] uses a single VAE per
data modality, but combines all the per-modality latent represen-
tations into one final posterior distribution for z. This distribution
q(zi | x1

i , ..., xM
i ) is given by multiplying the individual densities

q(zi | xm
i ) with each other as well as with the prior p(z). If q and

p are chosen to be Gaussian, then the resulting product is also a
Gaussian (up to a normalizing constant). In practice, PoE models
are trained by sampling latent vectors from both the joint q(zi |
x1

i , ..., xM
i ), as well as the individual q(zi | xm

i ), passing each of those
through all decoders and summing the different reconstruction
losses. For more details on the loss function of PoE, see the original
publication [19].

Mixture of Experts (MoE) [20] uses the mixture of the individual
densities so that q(zi | x1

i , ..., xM
i ) = 1

M

∑
m q(zi | xm

i ). In addition,
following the original publication [20], when training MoE, we
replaced the Gaussian priors and posteriors of z with Laplace
distributions and employed the DReG gradient estimator [37] to
reduce the variance of the gradient estimates.

Datasets and pre-processing
TCGA dataset
The TCGA dataset [38] consists of 8440 samples of tumors –
including a few adjacent normal samples as well – for which
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GE, CNV and DNA methylation (ME) are measured for 33 differ-
ent tumor types. For GE, we used the batch-corrected data [39],
standardized to zero mean and unit variance per gene with a
Gaussian likelihood. For CNV, we used the per-gene copy number
data [40] estimated using GISTIC2 [41]. The copy number esti-
mates were discretized using the GISTIC2 thresholds into one of
five possible categories: homozygous deletion, heterozygous dele-
tion, normal copy number, low-level amplification and high-level
amplification. As the data are discrete, we used the categorical
log-likelihood. For ME [42], we restricted to samples measured
with the Illumina 450K chip. We grouped CpG sites that lie within
1000 bp from the transcription start site of the 24 994 protein-
coding genes (Ensembl version 79), averaging the beta values
within each group ignoring missing values. If all CpG beta values
of a group were missing for a particular sample, we set that
feature value to 0. Finally, to accomodate the use of a beta log-
likelihood, we replaced all zero’s with a small number (ε = 10−6)
and all one’s with 1 − ε. For each data modality, we selected the
5000 most variable features based on median absolute deviation.
Clinical (meta-)data for the samples were collected from [43].

Paired RNA and ATAC-Seq data
We downloaded a dataset of 11 910 PBMCs from https://support.
10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/
pbmc_granulocyte_sorted_10k. We filtered out cells with fewer
than 1000 or more than 25 000 measured genes and similarly cells
with fewer than 5000 or more than 70 000 detected ATAC peaks.
We additionally removed cells with more than 20% of their RNA-
Seq reads mapping to mitochondrial genes, leaving us with 10 412
cells. We used Seurat [7] to select the 3000 most variable genes
after correcting for the relationship between mean and variance
using a LOESS curve and the 5000 most frequently observed ATAC
peaks.

Raw RNA-Seq counts are modelled with a negative binomial
log-likelihood with mean μ and dispersion φ, following the mod-
eling of totalVI [17]. The decoder predicts the value of μ for
each gene in each sample, while each gene has the same disper-
sion parameter φ across all samples. These dispersion values are
model parameters that are optimized using the Adam optimizer
along with the weights of the neural network. ATAC peaks were
binarized in each sample (0 reads or at least 1 read) and modelled
with a Bernoulli log-likelihood.

CITE-Seq data
We used a CITE-Seq dataset [7] containing single-cell expres-
sion profiles for RNA and surface proteins of peripheral blood
cells measured using RNA-Seq and anti-body-derived tags (ADTs)
respectively. Using scvi-tools [44], we merged antibody tags target-
ing the same protein and removed doublets and cells with more
than 12% mitochondrial-derived RNA. Additionally, we only kept
cells with at least 150 detected proteins and a protein library size
between 2000 and 30 000.

We selected the 5,000 most variable genes with the same
approach as for the RNA+ATAC dataset above and again modelled
the raw RNA counts with a negative binomial distribution with
gene-specific dispersion. We retained all 217 protein features and
modeled the raw counts with a two-component mixture distri-
bution as in totalVI [17]: The first component corresponds to the
non-specific binding of the ADT’s (background) and is assumed to
follow a negative binomial distribution for each protein with both
the mean (μ) and dispersion (φ) being free parameters optimized
along with the network’s weights. The second component (fore-
ground) is also a negative binomial per protein with the same φ

as the background and a mean equal to α ·μ, where α is a number
greater than 1 that is an output of the decoder for each protein
and each cell. For each cell-protein pair, the decoder also outputs
the mixing coefficients of the two components.

Experiments and evaluation
Missing modality imputation
We split each dataset into a training, a validation and a test set. We
evaluated the ability of joint embedding methods on predicting
(imputing) one data modality from the other, by holding out one
modality at a time from the test data (Figure 2A).

We used the log-likelihood of the held-out data given the model
predictions as evaluation measure. For example, when imputing,
say ME from GE, we give each GE profile (xGE

i ) as input to the GE
encoder which calculates q(zi | xGE

i ). We take the mean of that
distribution as the final embedding vector of sample i and feed it
to the ME decoder. The log-likelihood of the decoded ME profile
then defines the performance. ccVAE requires both modalities
to be fed as input, so, similar to [17], we replaced the missing
modality with a vector of zeroes and passed the concatenated
vector to the encoder. As a baseline imputation method, we
trained a GLM to perform regression from one modality to the
other using for each modality the same log-likelihood as described
in the previous section.

For the TCGA data, the splits (80–10–10%) were stratified per
tumor type to account for the vast imbalances between them.
We trained then models using two modalities at a time: GE +
ME and GE + CNV. Similarly, on the RNA+ATAC-Seq data, we
performed a 80–10–10% split stratified per cell type. As the inter-
individual variations are very large in the CITE-Seq dataset, to
avoid information leaks stemming from using cells from the same
individual during training and testing, we split the cells based on
the eight donors. Specifically, we used all cells from six individuals
for training, one individual for validation and one for testing.
Although this split is not stratified per cell type, it provides a more
realistic and less biased evaluation.

Generation coherence
Given a point in the latent space, we expect all decoders to
generate instances of each modality with similar properties [20].
We assessed this by randomly drawing from p(z) and checking
whether the decoded profiles reflected ’similar’ samples. As these
are generated profiles, we cannot check whether they come from
the same individual, so we tested whether they resemble profiles
from the same cancer type or cell type.

Specifically, we trained five two-layer perceptrons, one for each
modality (GE, ME and CNV for TCGA, RNA and ATAC for the
RNA+ATAC-Seq datasets, and RNA and ADT for CITE-Seq), where
the input is a modality profile and the target output is the cancer
type or the (level-2) cell type, respectively. Again using ME and GE
as an example, for each model, we randomly sampled 2000 points
from the prior distribution of z and decoded each point using both
decoders to generate 2000 ME and 2000 GE matched profiles. We
then fed the generated profiles into the corresponding perceptron
classifier and compared the predictions of the two classifiers for
the generations of the same randomly-sampled point in the latent
space. Joint decoding quality, also called latent space coherence,
was measured as the agreement rate of the two classifiers, i.e. the
fraction of random z’s whose decoded profiles are predicted to
be from the same cancer type. This experiment is illustrated in
Figure 2B.

Here, we are not interested in whether the predicted labels
of the random points are correct or not, as long as the two

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
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perceptrons make the same prediction for profiles generated from
the same value of z. However, this percent agreement is only
meaningful if the perceptrons are well-trained and can accurately
discriminate among cancer/cell types. As we see in Table S5,
the cancer type predictor trained on CNV data network was not
accurate, thus we did not perform this experiment in the GE +
CNV dataset.

Survival analysis on the TCGA dataset
We compared the latent features obtained from the different
joint embedding methods on their ability to predict disease pro-
gression. To this end, we performed survival analysis using Cox
regression (Figure 2C) with Progression-Free Survival (PFS) as the
outcome variable [45]. We used the entire dataset to fit the models
and centered and scaled each latent feature to zero mean and unit
variance. To compare the generalization capability of the different
models, we used the AIC [46], which is defined as 2k−2ln(Ls), where
k is the number of parameters the Cox model has to estimate,
and Ls is the model’s likelihood. The model with the lowest AIC
value provides the best trade-off between fitting the data well
and not using too many parameters. It has been shown that
model selection using AIC is asymptotically equivalent to using
cross-validation [47]. Therefore, the model with the lowest AIC is
considered to generalize best to new, unseen data. The lower and
upper bound of AIC values are specific to a dataset and a model
class and impossible to calculate analytically.

To distil effects of each individual modality, this evaluation
took place using the joint embeddings of either both modalities
(q(z | x1, x2)) or of only one modality at a time (e.g. q(z | x1)). See
Supplementary Methods for more details.

We included the patients’ sex (2 one-hot encoded features), age,
and cancer type (33 one-hot encoded binary features) as covari-
ates in all models to account for the effects of these variables. A
model with only the covariates (i.e. without any -omics features)
was used as a baseline. We also compared to three stronger
baselines per dataset, namely the 32 principal components of
each modality and the concatenation of these pairs of 32 latent
features (Figure 2D). The number of principal components was
not tuned and was selected to be similar to the dimensionality
of the joint embedding spaces.

Cell type classification on single-cell data
We followed the same experimental set-up for both the RNA+ATAC-
Seq and the CITE-Seq dataset. We compared the performance of
the different embeddings when both modalities are available
for all samples, and when both modalities are available for the
training and validation data, but only one modality is measured
in the test data.

For each joint embedding method, we thus obtained three
latent vectors: (1) using only RNA, (2) using only proteins (or
chromatin accessibility) and 3) using both RNA and proteins (or
RNA and chromatic accessibility) (Supplementary Methods).

We trained two different classifiers for each feature vector: a
linear Support Vector Machine (SVM) and a two-layer perceptron.
For the SVM, we chose the best value for the weight of the L2
regularization from the values [10−4, 10−3, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0,
10.0, 20.0] using the validation data and the Matthews Correlation
Coefficient (MCC) as criterion. For the perceptron, we set the
number of hidden neurons to 64, the learning rate to 0.0001 and
trained for 150 epochs minimizing the cross-entropy loss between
the ground truth and the predicted cell type labels. The epoch with
the lowest validation loss was chosen for evaluating the network.

We additionally built baseline classifiers that did not use any
joint embedding, but were trained on (a) the 32 principal compo-
nents of the RNA data, (b) the 32 principal components of the ADT
or ATAC data and (c) the concatenation of a and b. We used the
same classifiers with the same settings as above and again did not
tune the number of principal components for the task.

Finally, Figure 2E shows a third evaluation scheme for cell type
classification. In this setting, we again assume that only one
modality is measured at test time, but instead of using the joint
space of that modality, we used the trained joint embedding meth-
ods to impute the missing modality for each cell. The imputed
profiles are then projected to the 32 PC space and fed into the
baseline multi-modal classifier (Figure 2D).

We then compare the predictions of the multi-modal classifier
when using two measured modalities versus one measured and
one imputed modality as well as to a classifier trained on the joint
space of the measured modality (Figure 2C). We only performed
this experiment on the CITE-Seq dataset.

Because we observed that predicting the level-2 assignments
was a relatively easy task, in the CITE-Seq dataset (Table S5), we
used the more fine-grained level-3 labeling to make the problem
more challenging. The train-validation-test split was identical to
the one used for the imputation experiments.

CONCLUSION
In conclusion, both linear and non-linear joint embedding meth-
ods are applicable in many different biological problems, but it is
necessary to compare them to appropriate baseline methods to
identify the added effect of employing them.

Key Points

• Imputation of missing modalities requires non-linear
modeling.

• The performance of joint embedding methods should
always be compared to the performance of the concate-
nated principal components of each modality.

• Training a classifier in the joint space increases down-
stream supervized performance if only one modality is
measured at test time.

• Artificial -omics profiles generated by non-linear joint
embedding methods can be used for supervized tasks
with limited performance drops.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjourn
als.org/.
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