Skip to main content
. 2023 Nov 10;9(11):e22169. doi: 10.1016/j.heliyon.2023.e22169

Table 2.

Corrosion studies of alloy in supercritical CO2 with impurities or stress.

Reference Materials Temperature,
Pressure and
Duration
Impurity or Stress Notes
Huenert et al.
2011 [70]
13CrMo44, T24, X20CrMoV12-1,
Alloy B, DMV 310 N, T92
0.1 MPa
/3 MPa
500–700 °C
250 h, 1000 h
30%H2O, 69%CO2, 1%O2/30%H2O, 70%CO2 The increase of pressure of corrosive gases speed up the carburization kinetics and oxidation kinetics.
Mahaffey et al.
2014 [71]
SS347,
800H,
AFA
2900 psi
550 °C, 650 °C
1000 h
99.999%CO2/99.95%CO2 Research-grade CO2 has greater weight gain compared to industrial-grade CO2.
Nguyen et al.
2015 [72]
Model alloys, Fe–9Cr, Fe–20Cr, Fe–20Cr–20Ni with 0.1 % Ce or 2 % Mn 0.1 MPa
650 °C
1000 h
Ar–20%CO2/Ar–20%CO2–20%H2O Water vapor significantly reduces the oxygen absorption rate and chromia scaling rate of Fe–20Cr–20Ni.
Nguyen et al.
2015 [73]
Fe–20Cr
Fe–20Cr–20Ni
With Si (0.1,0.2,0.5 wt%)
0.1 MPa
818 °C
240 h
Ar–20%CO2-
20%H2O
Fe–20Cr alloy fails to form protective Cr2O3 scale in wet CO2.
Mahaffey et al.
2016 [74]
Haynes230 20 MPa
650 °C, 750 °C
1000 h
10 ppm O2/
100ppmO2
Oxygen impurities significantly enhanced oxidative corrosion of the material and oxide exfoliation was observed.
Mahaffey et al.
2018 [75]
Alloy 625 20 MPa
750 °C
1000 h
Research-grade RG+100ppmO2/RG+1pctCO Both O2 and CO impurities increase the weight gain of alloy.
Pint et al.
2018 [76]
Alloy 625 0.1 MPa, 30 MPa
750 °C
5000 h
CO2(0.1 MPa,30 MPa)/
Air (0.1 MPa)
The oxide scale formed in Alloy 625 in s-CO2 at 30 MPa is thicker and the grain size of Cr2O3 is smaller than in air.
Olivares et al.
2018 [77]
Alloy 282, Alloy 230b, HR160, HR120,
Alloy 188a
20 MPa,1 atm
700–1000 °C
1000 h
CO2(20 MPa),
Air (1 atm)
Several high-nickel chromia-forming alloys behaved protectively in CO2 and air, forming scales containing principally a layer of Cr2O3.
Oleksak et al.
2018 [78]
Grade 22, Grade 91, 347H, 310 S,
Alloy 282, Alloy 740H, Alloy 617, Alloy 625, Alloy 230
0.1/20 MPa
550–750 °C
1500–2500 h
CO2/95%CO2,
4%H2O,1%O2/95%CO2, 4%H2O,1%O2, 0.1%SO2/Air/
Effect of pressure on oxidation is small. The addition of SO2 significantly enhanced the rate for austenitic Fe alloys.
Oleksak et al.
2019 [79]
Alloy 625, Alloy 600, Alloy 745, Alloy 230, Alloy 263, Alloy 282 0.1 MPa,
750 °C
2500 h
95%CO2–4%H2O–1%O2 Several nickel alloys form protective oxide layers under the set impurity conditions.
Pint et al.
2019 [80]
304H, 25SS, 310HCbN, Alloy 625, 230, 617 B, 282 (heat 1,2),
Super Alloy 247
30 MPa,
750 °C
2500 h
Research grade CO2/Industrial grade CO2/
CO2+1%O2+
0.25%H2O
For alloys in impurity-containing environment, the increase in pressure results in a thicker reaction product.
Gui et al.
2019 [81]
T91 15 MPa
600°C–650 °C
1000 h
Stress Stress increases the corrosion rate of T91.
Lehmusto et al.
2020 [82]
Alloy 316,
Alloy 120,
Alloy 625,
Alloy 740,
20 MPa
700 °C
1500 h
Air (not quantitative) Corrosion is exacerbated by the entry of impurity air, especially 316 and 120.
Xie et al.
2020 [83]
Model alloys Ni-(20, 30) Cr with (0,1,5,15 %) Fe 0.1 MPa
800 °C
500 h
Ar–20%CO2-
20%H2O
Corrosion in wet CO2 avoids scale peeling.
Oleksak et al.
2020 [84]
304H, 347H,
310 S, E-Brite
Grade 22
Grade91
0.1 MPa
550 °C
2500 h
95%CO2,4 % H2O, 1 % O2,
(0.1%SO2)
The addition of SO2 has little effect on low-chromium steels, but enhances the corrosion of high-chromium steels.
Kim et al.
2020 [85]
Ni–16Cr–9Fe 0.1/20 MPa
650 °C
700 h
Stress
Air/CO2/
S–CO2
Creep rupture life of alloys in S–CO2 is shorter compared to air and CO2 environments.
Akanda et al.
2020 [86]
P91 0.1 MPa
650 °C
1000 h
Stress
thickness: 0.5 mm, 2.54 mm
Alloy thickness has a large effect on mechanical properties, the mechanical properties of thinner P91 are severely degraded by exposure.
Li et al.
2021 [87]
SS310
Alloy 740
30 MPa
600 °C
1000 h
100 ppm H2O
/100 ppm O2
Addition of H2O impurity significantly enhanced the oxidation, while the presence of O2 led to the opposite trend
Rozman et al.
2021 [88]
MARBN-type9Cr 0.1 MPa
650 °C
Stress
Air/CO2
Carbides forming beneath growing oxides promote environmentally-assisted cracking, accelerating failure in CO2.
Pei et al.
2021 [89]
Nickel-based single crystal superalloy 0.1 MPa
1000 °C, 105 °C
600 h
Stress:
40 MPa,
60 MPa,
120 MPa
The external tensile stress did not change the layered structure of the alloy oxide layer, but increased the oxidation rate of the alloy.