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Abstract

Model quality evaluation is a crucial part of protein structural biology. How to distinguish high-quality models from low-quality
models, and to assess which high-quality models have relatively incorrect regions for improvement, are remain a challenge. More
importantly, the quality assessment of multimer models is a hot topic for structure prediction. In this study, we propose GraphCPLMQA,
a novel approach for evaluating residue-level model quality that combines graph coupled networks and embeddings from protein
language models. The GraphCPLMQA consists of a graph encoding module and a transform-based convolutional decoding module.
In encoding module, the underlying relational representations of sequence and high-dimensional geometry structure are extracted
by protein language models with Evolutionary Scale Modeling. In decoding module, the mapping connection between structure and
quality is inferred by the representations and low-dimensional features. Specifically, the triangular location and residue level contact
order features are designed to enhance the association between the local structure and the overall topology. Experimental results
demonstrate that GraphCPLMQA using single-sequence embedding achieves the best performance compared with the CASP15 residue-
level interface evaluation methods among 9108 models in the local residue interface test set of CASP15 multimers. In CAMEO blind
test (20 May 2022 to 13 August 2022), GraphCPLMQA ranked first compared with other servers (https://www.cameo3d.org/quality-
estimation). GraphCPLMQA also outperforms state-of-the-art methods on 19, 035 models in CASP13 and CASP14 monomer test set.

Keywords: protein model evaluation; protein language model; graph neural network; multimer model evaluation

INTRODUCTION
Protein structure prediction plays an important role in biologi-
cal research. In recent years, the development of deep learning
has greatly advanced the transformation and progress of protein
structure prediction. Many high-accuracy deep learning structure
prediction methods have been developed, such as AlphaFold2 [1],
RoseTTAFold [2], ESMFold [3], RGN2 [4] and PAthreader [5]. More
impressively, the collaboration between the European Molecular
Biology Laboratory and DeepMind has predicted structures for
over 200 million proteins and made them freely available at
the AlphaFold Protein Structure Database [6]. While AlphaFold2’s
internal confidence estimate is important, it may not be the only
metric for assessing the quality of a predictive model. With the
breakthrough of structure prediction, the reliability and usability
of models are crucial parts, which are directly related to the
efficiency of target discovery and drug design. Model quality

assessment is important for structure prediction. Needless to
say more, model quality assessment can further improve the
accuracy of protein structure [7], and can also screen out the
relatively best structure from multiple candidate models, which
is critical for experimental scientists to analyze and verify.

Since CASP7, many methods for assessing the quality of pro-
tein models have been developed [8–10]. In particular, single-
model evaluation methods have received increasing attention
and research, because they require only one model as input and
show similar or better performance than consensus methods
[11, 12]. Features and networks are important for single-model
quality assessment using deep learning. Features can explicitly
describe the properties of proteins that include protein struc-
tural and nonstructural features. For structural feature repre-
sentation, some methods calculate inter-residue distances from
atomic coordinates of protein models, and transform distances
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through spatial mapping to reflect the local structure and overall
topology [13, 14]. However, these methods only describe sim-
ple low-order distance relationships of protein geometric models
and may ignore infrastructural connections in high-dimensional
spaces. For nonstructural feature representations, the Rosetta
energy [15, 16] and statistical potential of the model represent
the physicochemical information of the protein, such as ProQ3
[17] and VoroMQA [18]. Particularly, sequence information implies
the evolutionary relationship of proteins, which can improve the
accuracy of model quality, such as ProQ4 [19] and DeepAccNet-
MSA [7]. These methods just use sequence alignment information,
it is more important to establish sequence–structure relationship.
In addition, for our in-house model quality assessment method,
DeepUMQA [20] designed the residue-level USR [21] feature to
characterize the topological relationship between the residuals
and the overall structure. The improved version DeepUMQA2 [22]
significantly improves the accuracy of model quality assessment
by introducing co-evolution and template information, supple-
mented by an improved attention mechanism network frame-
work. However, there is still space for improvement in network
architecture.

Deep learning networks can capture potential connections
within proteins. Various neural networks that contain convolu-
tion, LSTM and graph networks, are used in model quality assess-
ment methods, as ProQ3D [23], AngularQA [24] and GraphQA [25].
These methods use specific neural network architectures and
build only one learning module. The learning mode of the network
may be single, and the connection between the network architec-
tures is not well utilized. Building blocks for specialized learning
may help improve prediction accuracy. DeepAccNet utilizes 3D
convolutional networks to obtain local atomic structure infor-
mation, and then uses 2D convolutions to predict model quality.
In addition, AlphaFold2 utilizes evolutionary blocks to encode
sequence information and predict atomic coordinates and struc-
tural quality in structural modules. Therefore, in model quality
assessment, the network forms an encoder-decoder architecture,
which can establish the connection among sequence, structure
and quality to help improve the accuracy of model quality. The
previous research studies show that structure, sequence, physico-
chemical information and deep learning network architecture are
crucial for model quality assessment.

Protein language models are widely used in protein modeling
and design tasks, which are trained unsupervised on protein
databases to obtain embedding representations. In protein mod-
eling tasks, sequence embeddings from protein language models
are used to infer structural information, such as IgFold [26], ESM-
Fold [3] and RGN2 [4]. In sequence design tasks, structural embed-
dings from backbone atomic coordinates are used to predict pro-
tein sequences by networks, as ESM-IF1 [27]. These methods show
that protein language models establish an abundant connection
between sequence and structure, which open the possibility of
using language models in model quality assessment.

In this work, we propose GraphCPLMQA based on a deep
graph coupled neural network framework using protein language
models. Embeddings representations are generated by the protein
language model ESM, which reflect sequence and structural prop-
erties. The embeddings that supplemented by structural features
are input into a deep graph coupled network. The network con-
sists of two parts: (i) the graph encoding network learns the latent
connection between sequence and structure. (ii) the transform-
based convolutional decoding network obtains the mapping
relationship between structure and quality to evaluate protein
models. The results show that representations from language

models and graph-coupled neural networks can learn the implicit
relationship among the sequence, structure and quality, which
further improve the accuracy of model quality.

MATERIALS AND METHODS
Overview
In this section, we described the GraphCPLMQA method in three
parts, including training datasets, input features for proteins
and network architecture. In addition, we provide two versions
according to different sequence embedding types, namely the full
version of GraphCPLMQA (GraphCPLMQA-MSA) and the single
sequence version of GraphCPLMQA (GraphCPLMQA-single). The
pipeline is shown in Figure 1.

Train dataset
The training dataset of GraphCPLMQA was constructed from the
Protein Data Bank (PDB). A total of 15, 054 proteins were selected
from the PDB (19 November 2021) based on the following criteria:
(i) minimum resolution <=2.5 Å, (ii) protein length within 50 ∼ 400
residues, (iii) sequence similarity to any protein in the dataset
<35%.

For each protein of the training set, three different approaches
were used to generate decoys (structure models): structural
dihedral adjustment, template modeling and deep learning-
guided conformational changes (Supplement Figure S1). For
structural dihedral adjustment, dihedral angles were fine-tuned
on experimental structure (proteins from PDB). Each adjustment
was followed by a fast relaxation process. For template modeling,
RosettaCM [28] and I-TASSER-MTD [29] were used to generate
diverse structural models by utilize template structures with
different accuracy and fragment libraries. For deep learning-
guided conformational changes, our in-house method RocketX
[30] was used to generate models by setting different geometric
constraint weights. In addition, the constrained conformations
were refined to produce diverse models. Finally, after filtering
for similar structures, a total of 1,378, 676 protein models were
obtained and utilized for training graph coupled network.

Protein language embedding features
Most current model quality assessment methods use one-hot
encoding for sequence embedding. However, there is sometimes
a problem with only using one-hot encoding. One-hot encoding
cannot effectively represent the similarity or difference between
amino acids, as it may fail to capture the underlying relation-
ships in protein sequences. In addition, mapping sequences to
structures using one-hot encoding may burden model quality
assessment networks focused on structure learning. To character-
ize the structural information of protein models, some methods
describe the relative positions of residues in different coordinate
systems, such as 3DCNN, Ornate, DeepAccNet and DeepUMQA.
However, these methods do not consider the implicit connections
of residues in higher-dimensional spaces.

In this work, embeddings of protein sequences and geometric
structures from ESM were employed to capture sequence–
structure relationships. We have devised two distinct versions
of the methods to assess protein model quality, namely the
GraphCPLMQA method, which utilizes the MSA language model,
and the GraphCPLMQA-Single, which employs a single sequence
language model. For GraphCPLMQA-Single, the residue-level
sequence embedding (1280-dim) of the query sequence is
generated by ESM2 [3] at the last layer of the network. For
GraphCPLMQA, the MSA of the input structure model is first

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Figure 1. (A) The workflow of GraphCPLMQA. We extract the features in (B) and (C) along with the embedding representation from the protein
structure where Single/MSA means that the input is single-sequence or MSA information corresponding to getting a single-sequence embedding or
MSA embedding. In the sequence-structure encoding module, we generate the relational representation of sequence and structure, which inputs to the
structure-quality decoding module. Finally, the graph coupled network outputs the results of evaluating the model.

produced through HHbits [31] searching against UniRef30 [32] and
BFD [33], and then the searched MSA is fed into the ESM-MSA-1b
[34] language model to derive residue-level sequence embeddings
(768-dim) and row-attention embeddings between residues (144-
dim) from the last layer (12th) of the network. Both versions of
GraphCPLMQA utilize the ESM-IF1 [27] to generate the structural
embedding (512-dim) of the input backbone atomic coordinates. It
should be noted that the input sequence length of ESM is limited
to 1022, and the sequence length exceeding this limit will be
processed. If the length of the input sequence is >1022 but <2044,
the sequence is truncated into two sequences from the middle,
and they are input into the ESM language model to obtain the
corresponding embedding representation. These representations
are then sequentially reassembled as feature inputs to the model
evaluation network. For information on protein language models,
see Supplementary Table S1.

Triangular location and residue level contact
order
To describe the protein structure, the triangular location feature
was designed, which is inspired by the residue-level USR from

DeepUMQA [20]. The feature characterizes the orientation and
distance of the local structure in the overall topology. To construct
the triangular location feature, the farthest point Pi

2 was identified
for the Cα coordinate of residue Pi

1 in the protein structure, and Pi
2

was taken as the center to find the farthest point Pi
3 (excluding

Pi
1). These three points formed a triangle Si, with N (number of

residues) small triangles outlining the fundamental shape of the
protein structure. In each triangle Si, the side lengths were D1,2

i ,
D1,3

i , D2,3
i , and the average distance from all residues to these

three points were calculated as Dave1
i , Dave2

i , Dave3
i . Finally, a local

coordinate system �i was constructed with Pi
1 to characterize the

position of the triangle in space. The local coordinate system
described the orientation of the local structure in the overall
topology. The calculation process is as follows:

ex = Pi
3 − Pi

1∥∥∥Pi
3 − Pi

1

∥∥∥
(1)

V = Pi
2 − Pi

1 (2)

ey = V − Vex

‖V − Vex‖ (3)

� = Euler
(
ex, ey, ex × ey

)
(4)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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where Vex denotes the projection length of V on ex multiplied by
ex to obtain a projection vector. In the above equation, Euler repre-
sents the mapping function from the local coordinate system to
the Euler angles.

Contact order [35] is used to describe the overall topology com-
plexity. We further extend to residue-level features to describe the
complexity of local structures and between local structures. The
calculation process is as follows:

Oi =
∑
i �=j

∣∣i − j
∣∣

RiN
(5)

Oij =
∣∣i − j

∣∣
dij

(6)

where i, j are indeces of residue; Ri is the number of adjacent
residues within 15 Å for residue i; dij is the distance between
residue i and residue j; N is protein length.

Protein node features and edge features
The positional order and properties of amino acids are critical
to protein structure. The relative position encoding method in
Transformer [36] was employed to encode the sequence order.
Each residue i finds the closest K residues in the space and
records their relative indexes, which are converted into node
features through the position encoding formula. See Supplemen-
tary Text S1 for specific details. The properties of amino acids are
represented by Meiler [37] and Blosum62 [38]. To characterize the
information of the secondary structure, DSSP [39] was used. The
voxelization [14] of protein structures with rotation-translational
invariance further complements the overall topological informa-
tion, see Supplementary Text S2 for specific details. To capture
the spatial arrangement of residues within the protein structure,
vectors between backbone atoms are used to represent dihedral
and plane angles. Local vector s�

ij is used to describe the relative
positional relationship of residues, and the rotation transforma-
tion Qij represents the relationship between each local spatial
structure (see Supplementary Text S3 for details). To map the dis-
tances from the main chain atoms to a high-dimensional space,
different interval Gaussian functions are employed to disperse
the distances. In addition, distance map features are computed
between the Cβ atoms and the tip atoms [7], which complement
the edge information of the graph network. The inter-residue
Rosetta energy terms are used to represent the physicochemical
information of the protein. The detailed dimension information of
all features is in the Supplementary Table S2.

Sequence-structure encoding module
In the encoding module, a protein graph is typically represented as
G = (V ,E ,X ). In the G protein graph, V = {υ1, υ2, . . . , υN} is the set
of residues, E = {

εij
}

i �=j is the set of edges between residues, where

each εij ∈ R
de is the feature vector between residue i and residue

j, and X = {
xi ∈ R

3×5
}

represents the coordinates C, O, N, Cα , Cβ

coordinates of the backbone atoms for residue i.
In the triangle graph transformer [40], the residual embedding

vplm
i and attention between residues eplm

i from the protein language
model are input the module. It allows for a deeper exploration
of spatial geometric information and the potential relationship
between sequence and structure. For the graph transformer layer,
each residue i attends to all other residues j using multi-head

attention as follows [40]:

qi, ki = ϕi
(
vi, vj

)
, (7)

mij = ψij
(
εij

)
, (8)

Cij = e〈qi ,kj+mij〉
∑N

t=1 e〈qi ,kjt+mit〉 (9)

Where ψij, ϕi represent trainable linear functions, which map
from vi, vj, εij to qi, ki, mij, respectively. 〈X, Y〉 = XTY√

Ad
is used to

scale the dot product attention operation between two matrices,
Ad is the dimension of attention. The attention for residue i is
computed with all residues j as follows, and weighs the updated
sequence embedding hi with the original sequence embedding hi

by gating follows [40]:

hi = ‖k

N∑
j=1

Cij
(
Wjhj + mij

)
, (10)

Ci = sigmoid
(

s

(
hi − hj, hi, hj

))
, (11)

hupdate
i = C1hi + C2hi, (12)

Where Wj ∈ R
dn×dm is attention head learning matrix; 
s is

trainable linear function R
3dn×1. In the above, ‖ denotes splicing

operation of multiple heads; k is number of heads; C1, C2 are Ci

and 1 − Ci.
In invariant point attention [1], outputs of the triangle graph

transformer are combined with the node and edge features of
the model structure itself and input into the network to obtain
geometric space constraints (rotations and translations) that are
strongly associated with the sequence information. For the con-
struction of the network layer, please refer to AlphaFold2’s invari-
ant point attention mechanism.

To further fine-tune the node information, an Equivalent Graph
Neural Network (EGNN) [41] is utilized. In the EGNN architecture,
each node i searches the K nearest residual nodes in the Euclidean
space to form a new graph Ĝ =

(
V̂ , Ê , X̂

)
. For the new graph Ĝ, the

output of the invariant point attention is further updated through
the global linear attention layer and the graph equivariant layer
as follows:

m̂ij = φ̂m
(
ν̂i, ν̂j, Fourier

∥∥x̂i − x̂j

∥∥ , ε̂ij
)

(13)

x̂update
i = x̂i + β

∑
i �=j

(
x̂i − x̂j

)
Ŵm̂ij (14)

v̂update
i = φ̂v

⎛
⎝∑

i �=j

m̂ij, ν̂i

⎞
⎠ (15)

Where φ̂m, φ̂v are graph network trainable linear layers; Ŵ
is learnable matrix; Fourier

∥∥x̂i − x̂j

∥∥ is fourier transform of the
distance between node coordinates x̂i; β is (N − 1)−1. The proof
of equivariance is provided in Supplementary Text S4.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Structure-quality decoding module
In the decoding embedding module, we extract the node repre-
sentation ν̂i and the edge representation ε̂ij from the output of the
encoding module. Moreover, the representations and structural
features are used by a new network function W∗ to generate new
nodes v∗

i and edges ε∗
ij where the function utilizes the new param-

eters. These all features are combined to generate a structure-
quality representation as follows:

mcat
ij = title

(
v̂i ⊕ v∗

i

) ⊕ ε̂ij ⊕ ε∗
ij (16)

where ⊕ denotes the concatenation of feature vectors; title indi-
cates horizontal striping of node features into edge features.

In the structure-quality decoding module, a residual network
based on a transform strategy is employed, which consists of
main residual blocks and branch residual blocks (Error-Block and
Cutoff-Block). Each residual block comprises three 2-dimensional
convolutional layers with different expansion rate coefficients
and a normalization operation. We take the GELU [42] activation
function and inverted bottleneck method, which is one important
design in every transformer block [43]. Moreover, the convolu-
tional network layer is added in the residual block of the branch to
improve the prediction of distance error and threshold, as follows:

Mupdate
ij =

[
Convr

(
GELU

(
Norm

(
mcat

ij

)))]
IB

(17)

where Convr are 2-dimensional convolutional networks with dif-
ferent dilation coefficients r = p2

(
p : 1, . . . , 4

)
; IB is the operation

of inverted bottleneck.
The distance-error Me

ij and the distance-threshold Mt
ij are

obtained from the base-transformer residual network. Me
ij is the

predicted distance error between the real structure and the model
structure, and the distance threshold Mt

ij is the distance value

within 15 Å where the threshold range is from lDDT [44]. Finally,
we calculate the local quality score as follows:

Mij = Me
ij � Mt

ij (18)

PreLDDTi =
∑

j

∑
s∈T

(
Mij

)
s∑

j Mt
ij

(19)

Where � denote distance error dot product distance thresholds
to get the error within the threshold s in 0.5, 1, 2, 4.

Training procedure
The graph-coupled network model is trained using a combina-
tion of model quality and geometric constraint loss terms. To
improve the efficacy of the sequence-structure encoding mod-
ule, we use actual geometric structure information (real residue
coordinates and distances) to constrain the encoding output (pre-
dicted residue coordinates and distances) by the mean square
error between atomic coordinates and the L1 loss function. This
approach helps in decoding the underlying information of struc-
ture and quality. In the decoding module, we compute the cross-
entropy loss for the distance error and threshold, where the loss
term for the threshold is the binary entropy. Finally, the loss
function of the model quality is the mean squared error (MSE).
The total loss is the sum of the losses of the geometric constraint
and quality assessment as follows:

Loss
(
pred, real

) = Lgeometric + LpredlDDT (20)

where pred and real are the predicted and real value. Regarding
L, it corresponds to the respective loss function. In addition,

to preserve the model during training, only 4% of the dataset
structure is used for validation. For optimization, we utilized the
AdamW [45] optimizer with a learning rate of 0.001, which decays
at a rate of 1%. The top five models were trained with a batch
size of one protein model for 100 epochs, which took ∼120 h on
a single A100 GPU. For relevant information on neural networks,
see Supplementary Table S3.

RESULTS
We use the constructed structure dataset to train the graph
coupled network, which is used to test the non-redundant CASP
proteins. Moreover, we participated in the blind test of CAMEO and
analyzed the quality assessment data. During the test, the global
quality assessment (Global QA) and the accuracy of the local
structure quality (Local QA) were used. Local QA describes the
quality of each residue, where lDDT is used to evaluate the residue
quality. Global QA describes the overall quality of the protein
model structure by calculating the mean value of the Local QA.
Pearson, Kendall [46], AUC [47], Mean absolute error (MAE), MSE
and Top1loss [48] are commonly used evaluation metrics for
Global QA. Similarly, Pearson, Spearman [49], Kendall, AUC, MAE
and MSE are used as evaluation metrics for Local QA. Pearson
estimated the correlation between the predicted and real quality
of local residues or overall structure. Greater values indicate a
stronger correlation and improved performance of the method.
The error between the predicted quality and the real quality was
measured using MAE and MSE, with the magnitude of the value
indicating the gap from the real quality. A smaller value indicates
better performance in predicting the quality. These metrics help
assess the performance of models in terms of their accuracy and
ability to make predictions.

Test set construction
The performance of GraphCPLMQA is thoroughly tested on
the model quality assessment datasets of CASP13, CASP14 and
CASP15. GraphCPLMQA also participated in the continuous
blind test of quality evaluation in CAMEO. All the test sets are
constructed from the data provided by CASP and CAMEO official
websites. The CASP13 and CASP14 test sets (CASP monomer test
sets) were constructed by collecting models that were evaluated
by all comparison methods and had a sequence similarity of
<35% to the proteins in the training set. The CASP13 dataset
collects 9390 structural models of 70 individual targets, and the
CASP14 dataset collects 9645 models of 69 individual targets.
The CASP15 test set (CASP multimer test set) was constructed
by collecting structural models whose experimental structures
had been released and length did not exceed 3000 residues and
collected 9108 models of 34 multimer targets. Our training data
(19 November 2021) was constructed before the CASP15, and the
impact on the data is completely isolated in time. The CAMEO
blind test set consists of 6 months CAMEO data (20 May 2022
to 13 August 2022), which contains 1590 models of 189 proteins.
Details of data can be found in Supplementary Tables S4–S6.

Results on the recent CASP15 multimer test set
With the precision breakthrough of Alphafold2 in monomers,
research into multimers has become a top priority. Similarly,
assessing the quality of multimer interfaces is a future frontier
and presents a challenge. The lack of effective MSA information
greatly increases the difficulty of predicting and evaluating multi-
mers. However, GraphCPLMQA-Single employs a single-sequence
embedding to assess interface quality, as shown in Figure 2 and
Supplementary Table S7.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Figure 2. Test results for interface residues in the CASP multimer test set (CASP15). (A) The histograms reflect the results of GraphCPLMQA-Single
versus other methods of CASP15 on Pearson and MAE. (B) The pirate graph shows the Pearson correlation of different methods in predicting the quality
of the multimer interface and the quality of the real multimer interface, where the horizontal line is the mean line. (C) The histogram depicts the
performance analysis of different methods on CASP15 homo-oligomers and hetero-oligomers. (D) The scatterplot shows GraphCPLMQA-Single compared
with the top method GuijunLab-RocketX and the second method ModFOLDdockR in recent CASP15 interface local quality evaluation. (E)–(H) For model
T1181_TS367_5, different methods predict the quality distribution at the multimer interface.

GraphCPLMQA-Single is compared with nine methods in
CASP15 for predicting multimer interfaces. On Pearson met-
rics, GraphCPLMQA-Single has improved by 23.6% compared
with ModFOLDdockR [50, 51] (266), and its interface quality
prediction ranks second in CASP15 (Supplementary Figure S2A).
ModFOLDdockR is a variant optimized for ranking based on
ModFOLDdock, which is a multi-model QA server that brings
together a series of single-model, clustering and deep learning
methods to form a method consensus. On the MAE metric,
we observed that our method outperforms GuijunLab-RocketX
(089), which is considered one of the top-performing methods for
CASP15 multimer evaluation, in terms of predicting interface
local quality (Figure 2A). In other metrics, our method also
achieves the highest performance with Spearman (0.617), Kendall
(0.45), AUC (0.844), MSE (0.035), MAE (0.144), compared with
other methods (Table 1). For each target, our method predicts
results with higher stability and accuracy than other methods
(Supplementary Figure S2B).

We compare with ModFOLDdockR (266) on each target. The
results show that prediction accuracy of GraphCPLMQA-Single
outperforms ModFOLDdockR (Figure 2D). Evaluation of the model
interface for T1181, the predicted quality of GraphCPLMQA-Single
is closer to the real quality, where the quality corresponds to the
change of color (low: blue, high: red). Furthermore, we analyzed
the performance of the evaluation method on different types

of multimers (homo-oligomers and hetero-oligomers) as shown
in Figure 2C and Supplementary Table S7. Interestingly, the
performance of our method on different types of multimers is
basically consistent. GraphCPLMQA-Single remains at the highest
accuracy for evaluating interfaces in both homo-oligomers and
hetero-oligomers.

The above results show that the performance of GraphCPLMQA-
Single surpasses other CASP15 methods. Although GraphCPLMQA-
Single is trained on monomer data, it performs well on multimer
interface evaluation. GraphCPLMQA-Single shows potential
for extension to evaluate multimer interfaces, which may be
attributed to the following reasons. First, the network has learned
the evaluation mode of the local structural quality on proteins;
second, the network takes the input protein structure as a whole,
regardless of whether it is a multimer or a monomer; finally, the
features of the network can describe structural and sequence
information of the multimer. However, our method still has
deficiencies in the interface evaluation of the CASP15 multimer
test set. It can be seen from Supplementary Figure S2D and E
that the accuracy of both ends of the abscissa is relatively low,
which is arranged from short to long according to the length of
the target, and the accuracy of the middle part is relatively high
and stable. This shows that the length of the multimer model will
have a certain degree of impact on the evaluation accuracy of
GraphCPLMQA-Single.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Table 1: Comparison of GraphCPLMQA-Single with other methods on models of CASP15

Methods Local interface QA

Pearson Spearman AUC MSE MAE

GraphCPLMA-Single 0.654 0.617 0.844 0.035 0.144
GuijunLab-RocketX 0.594 0.552 0.809 0.048 0.16
FoldEver 0.3 0.289 0.662 0.059 0.2
APOLLO 0.2 0.219 0.544 0.092 0.259
LAW 0.183 0.179 0.433 0.129 0.315
MASS 0.165 0.178 0.443 0.273 0.456
ModFOLDdockR 0.418 0.414 0.737 0.05 0.171
ModFOLDdockS 0.386 0.379 0.724 0.05 0.173
ModFOLDdock 0.239 0.242 0.608 0.097 0.242
Venclovas 0.272 0.286 0.647 0.158 0.32

Note: The data come from the CASP15 official website.

Table 2: Results of ZJUT-GraphCPLMQA (server 46) on CAMEO blind test set (from 20 May 2022 to 13 August 2022)

Methods Local QA Global QA

Person Kendall AUC MSE MAE Person Kendall AUC MAE Top1loss

ZJUT-GraphCPLMA 0.891 0.680 0.942 0.015 0.081 0.924 0.741 0.967 0.077 0.007
DeepUMQA2 0.878 0.630 0.941 0.013 0.083 0.908 0.687 0.966 0.066 0.016
DeepUMQA 0.835 0.613 0.923 0.017 0.099 0.874 0.684 0.956 0.074 0.015
QMEANDisCo3 0.829 0.613 0.925 / / 0.885 0.664 0.962 0.354 0.035
ModFOLD8 0.771 0.507 0.894 0.026 0.127 0.824 0.557 0.920 0.094 0.066
ProQ3D_LDDT 0.769 0.499 0.887 0.038 0.151 0.824 0.530 0.904 0.137 0.024
ProQ3 0.749 0.481 0.881 0.039 0.156 0.825 0.559 0.914 0.129 0.028
VoroMQA_v2 0.733 0.505 0.880 0.051 0.176 0.824 0.584 0.926 0.166 0.015
ProQ2 0.717 0.441 0.859 0.050 0.176 0.812 0.520 0.900 0.159 0.035
ModFOLD6 0.716 0.474 0.877 0.052 0.182 0.811 0.536 0.906 0.160 0.077
ProQ3D 0.708 0.428 0.853 0.037 0.151 0.811 0.509 0.892 0.112 0.032
QMEAN3 0.705 0.509 0.886 0.165 0.333 0.807 0.611 0.921 0.357 0.021
VoroMQ_sw5 0.596 0.395 0.828 0.051 0.188 0.766 0.515 0.878 0.160 0.023

Note: ZJUT-GraphCPLMQA is developed based on the GraphCPLMQA.

Results on the CAMEO blind test
We developed the server ZJUT-GraphCPLMQA (server 46) based
on the GraphCPLMQA method to participate in CAMEO-QE. In
addition, more than 3134 protein models have been evaluated.
In the competition, other participating servers included Deep-
UMQA2 [22], DeepUMQA [20], QMEANDisCo3 [9], ProQ3D_LDDT
[23], VoroMQA_v2,QMEAN3 [52], ProQ2 [53], ModFOLD8 [8],
ProQ3D [23], ModFOLD6 [54], VoroMQA_sw5 [18]. We download
the test data on the CAMEO official website (from 20 May
2022 to 13 August 2022). Among the 128, 018 residues in the
CAMEO blind test, the evaluation accuracies of GraphCPLMQA
for local residuals are Pearson (0.891), Kendall (0.680), AUC
(0.942) and MAE (0.081), all of which exceed the accuracies
of other servers, and MSE (0.015) is inferior to DeepUMQA2
(Table 2). The local Pearson and Kendall distributions of target
proteins are shown in Figure 3C and D. In the Global QA, the
Pearson and AUC accuracy of GraphCPLMQA are 0.924 and 0.967,
higher than QMEANDisCo 3, and the accuracy of MAE (0.077)
is second only to DeepUMQA2. An analysis was conducted on
the quality predictions of different servers for the protein model
8D1X_D_20_1. The quality distribution predicted by our server
and the real quality trend are shown in Figure 3E. Furthermore, in
Supplementary Figure S3A–D, the model quality corresponds to
the change of color, and it can be clearly seen that the accuracy of
our prediction is higher. There are other models of case in Supple-
mentary Figure S4, and blind test results in the Supplementary
Figure S5.

Results on the CASP monomer test set
For 9390 protein models of CASP13 and 9645 protein models of
CASP14, GraphCPLMQA and GraphCPLMQA-Single compare per-
formance with state-of-the-art methods on the CASP monomer
dataset (Figure 4, Supplementary Figure S6). In the monomer
test set, GraphCPLMQA achieves the highest accuracy on both
Global QA and Local QA metrics, surpassing other comparable
methods. Among the compared methods, QMEANDisCo [9]
and DeepAccNet-MSA were one of the best-performing model
quality assessment methods in CASP13 and CASP14, respec-
tively. GraphCPLMQA is analyzed using Pearson and MAE with
QMEANDisCo and DeepAccNet-MSA for residues of all models.
In terms of global quality, GraphCPLMQA had a Pearson of
0.927, representing a 3% improvement over DeepAccNet-MSA
(Supplementary Tables S8 and S9). We analyzed the quality
distribution of the T1042 and T0962 models, and the results
predicted by GraphCPLMQA are basically the same as the real
quality, where the range of color is the reference real quality
distribution (Figure 4E and F). There are other models of case in
Supplementary Figure S7. GraphCPLMQA-Single uses a single-
sequence embedding for comparison with methods that use
single-sequence information. Similarly, GraphCPLMQA-Single
outperforms other methods using single-sequence information
on all metrics, such as DeepUMQA, QMEANDisCo, ModFOLD8,
DeepAccNet, etc. GraphCPLMQA-Single shows similar perfor-
mance to DeepAccNet-MSA using MSA. In addition, the scat-
terplots of GraphCPLMQA and GraphCPLMQA-Single compared

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Figure 3. The results of ZJUT-GraphCPLMQA (our server) and other servers on CAMEO blind test (20 May 2022 to 13 August 2022). (A, B) Histograms
depict the results of our method versus other methods on the Kendall and Top1loss metrics. (C, D) These plots reflect the distribution of results of
our method compared with other servers in terms of local indicators of target proteins. Each point in the graph represents the statistical results of all
models for a protein target. (C) The diamond is the mean and the range of confidence interval is 0.9. (D) The black horizontal line is the mean and the
range of the standard deviation is 0.3. (E) On protein model 8D1X_D_20_1, real quality distribution versus predicted distribution for other servers.

with other methods in Supplementary Figures S8–S15. The
above results show that embeddings from language models and
graph-coupled networks improve the accuracy of model quality
assessment. The impact of different parts on the accuracy of the
method can be seen in the ablation studies.

Ablation studies
The impact of the features and network architecture for
GraphCPLMQA and GraphCPLMQA-Single on the non-redundant
CASP monomer test datasets were analyzed (Figure 5, Sup-
plementary Figure S16, Tables S10–S13). At the sequence
feature level, we compare the performance of GraphCPLMQA
using MSA embedding with GraphCPLMQA-single using single
sequence embedding. In terms of various evaluation metrics,
the performance of GraphCPLMQA with MSA embedding was
superior to that of the counterpart without MSA (Figure 5A). This
suggests that the MSA contains richer structural information
compared with single sequence. The embeddings derived from
MSA provide better guidance for evaluating model quality.
Furthermore, we analyze in detail the impact of components
on method performance below.

To investigate the impact of the components, we modified the
full version of GraphCPLMQA by removing some features and
changing the network architecture. Different network models
were retrained to test the results and analyze the effect of these
modifications. First, GraphCPLMQA1 was created by replacing
the transformer strategy inverted bottleneck of GraphCPLMQA
with residual block in the decoding module, and GELU [42] was
replaced with ReLU [55] to create GraphCPLMQA1. Regarding
local metrics, there was a varying degree of decline in the

prediction accuracy, while there was no significant change
observed in global metrics. This indicated that the transformer
strategy could further capture the local structural information.
Second, the structural embeddings were removed from the
language model in GraphCPLMQA1, leading to a decline in
performance for GraphCPLMQA2. The high-dimensional structure
features may imply some properties of protein structure that
contribute to better learning of the network. Then, we changed
the output mode of the encoding module (GraphCPLMQA3) and
the connection architecture between modules (GraphCPLMQA4)
on the GraphCPLMQA2 model. These operations may relatively
weaken the sequence–structure relationship in the encoding
module so that the encoding result has an impact on the decoding
structure–quality relationship. Finally, based on GraphCPLMQA2

model, the triangle position and residual-level contact order
features were removed (GraphCPLMQA5). The reduction in
accuracy on the local metrics implies that these characteristics
can supplement the portrayal of the local structure.

On the GraphCPLMQA-Single model, we analyze the effect of
different single sequence language models on the performance
of the method. Specifically, the network models GraphCPLMQA-
Single1 and GraphCPLMQA-Single2 were retrained with the
high-dimensional sequence embedding of the ESM-1b [56] and
ESM-1v [57] language models, respectively. The use of these
embeddings resulted in a noteworthy decrease in performance.
Furthermore, the input pattern of sequence embedding was
explored using the GraphCPLMQA-Single3 network model.
GraphCPLMQA-Single3 used the sequence embeddings of all lay-
ers of the ESM-1v language model by taking the mean. Although
GraphCPLMQA-Single3 is based on GraphCPLMQA-Single2 using

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Figure 4. Performance comparison between GraphCPLMQA and other methods on the CASP monomer test set. (A) For the all residues of CASP13
monomer test set, GraphCPLMQA and GraphCPLMQA-Single were compared with other methods based on the Pearson correlation between the predicted
and real quality of residues. (B) The pirate graph reflects the comparison results of the global indicator Pearson on CASP13 where the horizontal bar is
the mean line. (C) For the all residues of CASP14 monomer test set, GraphCPLMQA and GraphCPLMQA-Single were compared with other methods based
on the MAE between the predicted and real quality of residues. (D) In the boxplot, the horizontal line is the median, and the box is the mean. (E, F) The
predictions are compared with the true quality results.

Figure 5. The impact of various components on the performance of GraphCPLMQA in CASP monomer test set. (A) Variation of network architecture and
features are on the overall performance of our method. (B) Prediction results of GraphCPLMQA and GraphCPLMQA-Single on T1052 monomer model.
The real quality distribution range is as standard.

ESM-1v
embedding, the results still show that this approach introduces
significant noise that may affect the accuracy of the predictions.
For GraphCPLMA-Single4, we removed the loss of geometric
constraints and retrained the network model. The performance
of the method decreased on all metrics, indicating that geometric
constraints may potentially guide local accuracy evaluation.

Compared with AlphaFold2
For the results of AlphaFold2 prediction in CASP14, we used
the official website code of AlphaFold2 (https://github.com/
deepmind/alphafold) to predict 69 sequences of CASP14. AlphaFold2
produced five output models for each sequence, resulting
in a total of 345 models with pLDDT. GraphCPLMQA and
GraphCPLMQA-Single assessed each model quality of AlphaFold2,
respectively. The quality of GraphCPLMQA assessment exceeds

the self-assessment of AlphaFold2 on MAE (Supplementary Fig-
ure S17). Out of the 345 AlphaFold2 models, 253 evaluated results
exceeded AlphaFold2 pLDDT. On the 207 AlphaFold2 structures
without template information, GraphCPLMQA had 150 better
evaluated results. GraphCPLMQA-Single performed slightly better
than AlphaFold2 pLDDT on all structures, including those without
a template. In addition, the ability to select AlphaFold2 models
was also evaluated (Supplementary Figure S17B). Specifically, for
the AlphaFold2 dataset, the best structure was selected from
the five predicted models of AlphaFold2 and compared with the
best predicted model (rank_0) of AlphaFold2. On the test set,
we had 26 structures in lDDT better than the best structure
of AlphaFold2. Although the gap with AlphaFold2’s selection
model is small, this shows that GraphCPLMQA has reached the
accuracy of AlphaFold2’s selection in model quality assessment,
and AlphaFold2 can only evaluate and select the model it
predicts.

https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad420#supplementary-data
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Figure 6. Results of our evaluation of AlphaFold2 structures compared with the AlphaFold2 pLDDT self-assessment on AlphaFold2 dataset. (A–D) Line
graphs correspond to different AlphaFold2 models, and the graphs contain the results of our evaluation, the pLDDT of AlphaFold2 and the real lDDT.
(E–H) Gray represents the native structure, sky blue is the structure of AlphaFold2 and red represents misfolding.

Furthermore, we analyzed the evaluation of GraphCPLMQA
on AlphaFold2 medium and high precision models versus its
self-evaluation. Figure 6A–D corresponds to Figure 6E–H where
gray represents the real structure, sky blue is the structure of
AlphaFold2 and red represents the region with relatively large
folding error. On the AlphaFold2 structure with medium qual-
ity (Figure 6A, C), we could basically predict the distribution of
local quality and it was very close to the real distribution. The
predicted local AlphaFold2 structure is not consistent with the
native structure. In the case of AlphaFold2 pLDDT, it is possible
that AlphaFold2 is not precise in local quality assessment, or
even results in an opposite assessment, as indicated by the red
area. This mets that the accuracy of AlphaFold2 local structure
prediction is closely related to the evaluation of local structure.
To some extent, the pLDDT of AlphaFold2 may not reflect the
quality of the local structure. For the high-quality AlphaFold2
structure (Figure 6B, D), our evaluation results were more con-
sistent with the distribution of the real quality. However, most
predicted results of AlphaFold2 were higher than the real quality.
The results show that our method helps to complement the
deficiencies that exist in the pLDDT of AlphaFold2. In future
studies, GraphCPLMQA may also provide a valuable reference
for predicting models in AlphaFoldDB that do not have native
structures.

CONCLUSION
In this study, we propose GraphCPLMQA, a novel approach for
evaluating model quality that combines graph coupled networks
and embeddings from protein language models. GraphCPLMQA
utilizes sequence and structure embeddings, as well as additional
model features, to establish the relationship among sequence,
structure and quality. By predicting protein model quality scores,
GraphCPLMQA outperforms other state-of-the-art assessment
methods in terms of accuracy on the CASP15, CASP13, CASP14 and
CAMEO test sets. GraphCPLMQA also achieves excellent results in
the continuous evaluation of CAMEO-QE.

Key Points

• In this study, we propose GraphCPLMQA, a novel
approach for evaluating residue-level (local) model qual-
ity that combines graph coupled networks and embed-
dings from protein language models.

• We design a graph-coupled network based on an
encoder-decoder module to establish a potential map-
ping relationship between sequence, structure and qual-
ity, which takes full advantage of the high-dimensional
embedding of protein language models.

• To describe the protein structure and its complexity, we
designed the triangle location feature and residue-level
contact order.

• Compared with CASP15 local/per-residue interface eval-
uation methods, GraphCPLMQA using single-sequence
embeddings achieved the best performance among 9108
models in the local residue interface test set of CASP15
multimers. In CAMEO blind test (20 May 2022 to 13
August 2022), GraphCPLMQA ranked first compared
with other servers (https://www.cameo3d.org/quality-
estimation). GraphCPLMQA also outperforms state-of-
the-art methods on 19 035 models in CASP13 and CASP14
monomer test set.
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