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ABSTRACT: Converting abundant biomass-derived feedstocks
into value-added platform chemicals has attracted increasing
interest in biorefinery; however, the rigorous operating conditions
that are required limit the commercialization of these processes.
Nonthermal plasma-based electrification using intermittent renew-
able energy is an emerging alternative for sustainable next-
generation chemical synthesis under mild conditions. Here, we
report a hydrogen-free tunable plasma process for the selective
conversion of lignin-derived anisole into phenolics with a high
selectivity of 86.9% and an anisole conversion of 45.6% at 150 °C.
The selectivity to alkylated chemicals can be tuned through control
of the plasma alkylation process by changing specific energy input.
The combined experimental and computational results reveal that the plasma generated H and CH3 radicals exhibit a “catalytic
effect” that reduces the activation energy of the transalkylation reactions, enabling the selective anisole conversion at low
temperatures. This work opens the way for the sustainable and selective production of phenolic chemicals from biomass-derived
feedstocks under mild conditions.
KEYWORDS: Biomass-derived feedstock, Biomass valorization, Nonthermal plasmas, Alkylation, Phenolics

1. INTRODUCTION
Biomass is an integral part of the global carbon cycle and plays
a strategic role in mitigating climate change. Lignin accounts
for 25%−35% dry weight of woody biomass and is the only
abundant renewable source of aromatics.1−3 The valorization
of industrial lignin from the waste stream of commercial
cellulosic biorefinery, where 60% of lignin is burned as low-
value solid fuel, has been well-advocated to improve the
biobased economy.4−7 Fast pyrolysis is a common approach
for lignin utilization, though the lignin-derived bio-oils are
compositionally complex, comprising various functional
groups, and thus selective defunctionalization strategies are
entailed for the synthesis of market-responsive bioproducts. So
far, synthetic routes of hydrocarbon fuels from lignin-derived
feedstocks have been intensively investigated,8 however the
scale-up of these routes is limited by excessive H2 consumption
and low market value of the products compared with other
value-added compounds. Thus, new and cost-efficient
synthetic streams for valuable bulk or functionalized aromatic
chemicals are required to expand the lignin value chain.9−11

Phenolics are important platform chemicals in the synthesis
of a range of new, drop-in polymer building blocks.12 For
instance, phenol is one of the critical commodity chemicals
that can be used in the packaging and clothing industries.13

Phenolics are the building blocks of phenol resins, and phenol

is used for the production of bisphenols. As phenolics are
currently produced mainly from petroleum-derived or coal-
derived feedstocks (e.g., coal tar), the valorization of biomass-
derived feedstocks for sustainable synthesis of value-added
platform chemicals such as phenolics provides a promising
route to support the transition to the zero-carbon circular
economy.14−16 Nevertheless, most of the existing synthetic
routes require rigorous reaction conditions (i.e., high temper-
ature and/or high pressure) and high-cost hydrogen (Table
S1), while still facing significant challenges including waste
disposal, corrosion, and catalyst deactivation by coking and
sintering.17−19 Therefore, developing innovative and sustain-
able technologies for the selective synthesis of phenolic
bioproducts from lignin-derived feedstocks under mild
conditions has attracted increasing attention.

Nonthermal plasma (NTP) technology provides an
emerging and promising alternative to traditional catalytic
processes for the transformation of lignin-derived feedstocks
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into chemicals under mild conditions. During NTP processes,
the bulk gas kinetic temperature remains low, while highly
energetic electrons with a mean electron energy of 1−10 eV
are initially generated, which enables the activation of reactants
(e.g., anisole) and background gas to form a cascade of
chemically reactive species such as excited atoms, ions, and
molecules that could facilitate chemical reactions.20−22 This
unique nonequilibrium feature of NTP enables thermody-
namic unfavorable chemical reactions to proceed at atmos-
pheric pressure and low temperatures,23−27 thus, to avoid using
high temperature and/or high pressure required in catalytic or
thermal processes. In addition, plasma processes can be
switched on and off instantly, offering the flexibility to be
combined with intermittent renewable energy sources (e.g.,
wind and solar energy) for decentralised plasma electrification
toward chemical energy storage.28

Despite these favorable prospects, NTP has been so far used
in the activation of lignocellulose but limited in the conversion
of lignin-derived feedstocks,29−31 and it remains a significant
challenge due to the complex chemistry involved in this
process. Anisole was chosen as a model compound for its
simplicity and relevance to lignin-derived compounds,
specifically those containing methoxy moieties. While anisole
may not encompass the entire complexity of lignin-derived
mixtures, it serves as a useful and well-defined model
compound for studying plasma-assisted conversion of lignin-
derived compounds. To date, the reaction mechanism in the
plasma transformation of biomass-derived feedstocks is
unknown, while the role of plasma generated reactive species
in these processes is not clear, both of which limit the potential
for the tunable and selective synthesis of targeted chemicals
from biomass-derived feedstocks. An atomic level under-
standing of this synthesis process using a combination of in situ
plasma diagnostics, density functional theory (DFT) calcu-
lations and plasma kinetic modeling would offer a promising

way to elucidate the reaction pathways of hydrogen-free
anisole-to-phenol-and-cresol conversion and to get new
insights into the potential role of plasma-induced reactions
in the selective and tunable synthesis of chemicals from
biomass-derived feedstocks.

Here, we report a highly selective, tunable, and hydrogen-
free plasma process for the synthesis of phenolics from anisole
at ambient pressure and low temperature (∼150 °C). The
influence of key processing parameters, anisole feed rate, Ar
flow rate, discharge power, and specific energy input (SEI) on
the plasma synthesis process was evaluated to explore the
feasibility for tuning the selectivity of phenolic bioproducts. A
unique combination of in situ spectroscopic diagnostics, DFT
calculation, and plasma kinetic modeling was developed to gain
new insights into different reaction pathways for the selective
plasma synthesis of phenolics from lignin-derived anisole.

2. RESULTS AND DISCUSSION

2.1. Plasma-Enhanced Synthesis of Phenolics

Figure 1 shows the effect of anisole feed rate, Ar flow rate, and
discharge power on the anisole conversion and phenolics
selectivity. Phenolic compounds (phenol and cresols) and
methylanisoles were found as the dominant products (Figures
S1−S3 and Table S2), while BTX (benzene, toluene, and
xylenes) was also produced with low selectivity. The COx-free
methane-rich gas (mainly CH4 and H2) was formed with a
total selectivity of 2.0−3.0%; thus, gas production in this
process is insignificant and will not be the focus in this work.

Increasing the anisole feed rate from 1.5 to 9.0 mL/h
enhances the selectivity of phenolics from 66.4% to 85.8%
(Figure 1a), while the selectivity of phenol and cresols varies
from 41.4% to 29.3% and 25.1% to 56.5%, respectively (Figure
S1b). The conversion of anisole decreases with the anisole feed
rate, which can be attributed to the decreased plasma power
density per anisole molecule at a fixed discharge power. In

Figure 1. Performance of plasma-enhanced conversion of anisole. Influence of (a) anisole feed rate, (b) Ar flow rate, and (c) discharge power on
the conversion of anisole and selectivity of phenolics. (d)−(f) Alkylation ratios as a function of reciprocal SEI for different process parameters in
(a)−(c).
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contrast, the energy efficiency for the conversion of anisole
increases almost linearly with an increase in anisole feed rate
(Figure S1a). A clear trade-off between energy efficiency and
anisole conversion can be found. High anisole feed rate
contributes to low energy cost due to the increased converted
anisole despite the decrease of anisole conversion.

Figure 1b shows that the conversion of anisole increases
with the elevated Ar flow rate and reaches a plateau at 250
mL/min, while further increasing the flow rate (to 350 mL/
min) substantially reduces the performance of the plasma
process. The optimum flow rate is found as 250 mL/min to
maximize the conversion of anisole (45.6%), selectivity of
phenolics (86.9%), and energy efficiency (136.1 g/kWh)
simultaneously. As shown in Table S1, this plasma process can
achieve high phenolics selectivity at low temperature without
using high-cost hydrogen in comparison to thermal catalysis
processes. Generally, a higher argon flow rate lowers the
anisole concentration and thus enhances the energy dissipated
on each reactant molecule. However, increasing the argon flow
rate also decreases the SEI and the residence time of anisole in
the plasma zone, reducing the collisions of anisole with
energetic electrons and reactive species. Therefore, the effect of
argon flow rate on the conversion of anisole and energy
efficiency is strongly dependent on the balance between these
opposite effects: (i) enhanced anisole conversion due to the
positive effect of lowered anisole concentration; and (ii)
reduced anisole conversion due to the negative effect induced
by the decreased SEI and residence time.

Figure 1c shows that the conversion of anisole is nearly
doubled from 27.2% to 46.0% when increasing the discharge
power from 7 to 13 W. The selectivity of phenolics shows a
similar evolution to the conversion of anisole, rising from
61.6% to 86.7%, while the phenol selectivity increases from
34.9% to 53.2% (see Figure S3b). Increasing power dissipated
in the plasma area at a fixed residence time enhances the total
number of filaments produced in the discharge. The increased
formation of microdischarges can create more reaction
channels and reactive species, facilitating the plasma
conversion of anisole.32 Nevertheless, the energy efficiency
shows an opposite trend, decreasing moderately with the
discharge power. Thus, balancing anisole conversion and
energy efficiency is important for the further technological
development of this process.

Retaining the methyl groups in the anisole transformation
can effectively improve the atom economy. The alkylation ratio
is determined based on the abundance of alkylated products to
evaluate the alkylation-related reactions in the plasma process.
When increasing the anisole feed rate to 6.0 mL/h, cresols
replace phenol as the dominant products (see Figure S1),
suggesting the synthesis of alkylated compounds can be tuned
by changing the anisole feed rate. As shown in Figures 1e and
S2, increasing the argon flow rate from 150 to 350 mL/min
significantly reduces the SEI from 3.7 to 1.7 kJ/L but
simultaneously increases the alkylation ratio from 1.0 to 1.5.
Conversely, increasing the discharge power simply lowers the
alkylation ratio. These findings indicate that the formation of
alkylated compounds is suppressed at a low anisole feed rate,
low argon flow rate, and high discharge power; these all have
one common feature, high specific energy input. Interestingly,
we found that the alkylation ratio is independent of anisole
conversion or product selectivity but closely related to the SEI.

As shown in Figure 1d−f, a strong negative correlation can
be identified between the alkylation ratio and the SEI. A similar

finding was reported in thermal catalytic conversion of 4-
ethylphenol that isomerization and transalkylation are
thermodynamically favorable at low temperatures.33 In this
study, our results reveal the relationship between SEI and
alkylation-related reactions, providing a route for tuning the
selectivity to alkylated products by SEI for future investigations
of the plasma process.
2.2. Role of Plasma-Generated Species
2.2.1. Electron Properties. The conversion of anisole is

initiated by plasma-induced highly energetic electrons. Insights
into the properties of electrons (i.e., electron temperature and
density) could shed light on the reaction pathways. The
methods for the calculation of electron properties are given in
Supporting Information Section 4. As shown in Figure 2a,

increasing discharge power enhances the electron density while
the mean electron energy remains constant at around 6.4 eV.
The maximum electron density reaches 5.0 × 1018 m−3 at a
discharge power of 13.0 W. In Figure 2c, the electron energy
distribution functions (EEDFs) prove that most electrons
possess electron temperatures within the range of 0−10 eV,
and the intersection of the curves takes place at around 8.5 eV.
According to the EEDFs and improved electron density,
increasing the discharge power generates more high-energy
electrons. To summarize, enhancing SEI produces more highly
energetic electrons that enhances the formation of more
chemically reactive species involving in the activation of
anisole.
2.2.2. Ar Excited Species. Ground-state Ar species can be

activated to the metastable states through collision with highly
energetic electrons (R1). As seen in Figure 2d, the energy

Figure 2. Relationships between the energy density and plasma-
induced electrons and reactive species. (a) Calculated mean electron
energy and electron density as a function of discharge power. (b)
Scheme of the ternary relationship among the SEI (corresponding to
the discharge power), relative intensity of Ar atomic line at 763.51 nm
from OES, and calculated rate constants of Ar* formation reactions.
(c) Calculated EEDF under different reduced electric fields E/N. (d)
Energy fraction consumed in different electron-impact reactions of Ar
as a function of the reduced electric field E/N (green zone illustrates
the range of operating conditions in this study). NTP system: Ar flow
rate 100 mL/min; anisole feed rate 3.0 mL/h.
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fraction consumed in the Ar excitation reactions dominates
among different electron-impact reactions within the range of
the operating conditions. Previous studies emphasized the
significance of metastable states of working gas to the plasma
chemical processes,34 and more specifically, the metastable
argon can effectively enhance the conversion of reactants by
creating otherwise infeasible reaction pathways.35 Accordingly,
we believe both the electrons and electron induced metastable
Ar contribute to the anisole conversion; even so, the electron
energies are more likely to be consumed in the formation of
argon excited species.

Ar e Ar e+ * + (R1)

The formation of Ar excited species can be confirmed by the
strong Ar atomic lines in the emission spectra (Figure S4). The
relative intensity of the Ar atomic line at 763.51 nm was used
as a probe to evaluate the prevalence of Ar excited species.36

Figure 2b demonstrates the ternary relationship among the
SEI, the relative intensity of the Ar atomic line at 763.51 nm,
and the rate coefficients for Ar* generation reactions. Notably,
the rate coefficients of Ar* formation and the population of Ar
excited species correspond well with the SEI. As the rates of
the electron impact reactions are strongly correlated with the
abundance of electrons, increasing SEI improves the electron
density and therefore facilitates the transformation of argon
into other internal degrees of freedom.37

These findings suggest that the excited Ar atoms are the key
reactive species in plasma, and the abundance of these species
is closely related to the SEI. Increasing SEI enhances the
electron density and the prevalence of Ar metastable states,
which facilitates the cleavage of etheric C−O bonds in anisole
and thus reduces the formation of alkylated products in this
process.
2.2.3. Vibrational Excited Anisole Molecules. Besides

the argon atoms, the reactant molecules can also be activated
by chemically reactive species in the plasma. More specifically,
the dominant metastable argon may activate anisole molecules
prior to their transformation mainly via the vibrational
excitation, as the molecular vibrational excitation significant
contributes to plasma chemical conversion.38 Energy from
electron impact may also be deposited into vibrational modes
that are orthogonal to the relevant reaction coordinate.
Therefore, the activation of anisole could contribute to an
increased initial energy and the capability to traverse an
otherwise inaccessible pathway. This enhancement to the
reaction can be orders of magnitude higher than thermal
reactions under mild conditions.39 Figure 3 illustrates the
reaction coordinates for a typical anisole dissociation
incorporating this effect. The initial energy of a ground state
anisole (gray curve) can be effectively enhanced via vibrational
excitation (green dashed curve) and therefore lowers the
energy barrier of anisole dissociation. This reduction of
activation energy may contribute significantly to the reaction
rate of anisole conversion.

To further explore this concept, we developed a numerical
method to incorporate plasma-induced vibrational excitations
of anisole. The enhancement factor F was introduced to
investigate the effect of molecular vibrations on the rate
constants (detailed calculation shown in Supporting Informa-
tion Section 6). Table 1 demonstrates a set of enhancement
factors, F of anisole dissociation reactions calculated from
different vibrational modes. By incorporating this effect, the
initial energies of anisole up to 37.1 kJ/mol can be achieved

from the ground state to the first vibrationally excited state
(vibrational quantum number v = 0 to v = 1), indicating the
rates of anisole dissociation would be considerably elevated in
conjunction with vibrational excitation. In this respect, the rate
constants of C−H bond dissociation at the methyl group and
the benzene ring can be magnified by up to 4 orders of
magnitude. At other positions of anisole, the probabilities of
dissociation are also multiplied to some degree. Note that the
molecular vibration is of minimal significance to the C-OCH3
bond, revealing the weak impact of the plasma-generated
reactive species on the cleavage of this bond. In the context of
its intrinsic property (high BDE shown in Table 2), the
combined effect of bond strength and weak vibration
contributes to the low selectivity to arenes and considerable
production of phenolics in this plasma process.

2.3. Reaction Pathways of Plasma-Enhanced Anisole
Conversion
2.3.1. Bond Dissociation Energies. It is worth noting

that phenolics are the dominant products in the plasma
process. Understanding the inherent properties of anisole can
extend fundamental insights into this phenomenon. From the
thermal pyrolysis standpoint, the chemical bond dissociations
are typically endothermic, where the energy barriers are closely
related to the thermal stabilities of reactant molecules. The
thermal stabilities of bonds in an anisole molecule can be
identified by their bond dissociation energies (BDEs) which

Figure 3. Schematic reaction coordinate for the dissociation of anisole
from ground state (gray line) and vibrationally excited state (green
dashed line).

Table 1. Enhancement Factor F for Different Vibrational
Modes of Anisole at a Gas Temperature of 423 K

Vibrational mode F

CH3 stretch 2.7 × 104

O−CH3 stretch 3.4 × 101

C-OCH3 torsion 1.3 × 100

aromatic CH stretch 3.8 × 104

aromatic CC stretch 2.2 × 102

Table 2. Comparison of Homolytic BDEs in Anisole
Molecules

Group BDE (kJ/mol)

PhO−Me 290.2
Ph−OMe 426.9
PhOCH2−H 404.0
H−PhOMe 473.6, 464.0, 469.0
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are useful probes to indicate the strength of a chemical bond.
The distinction of BDEs determines the probabilities of single
bond fissions, leading to different reaction rates at each
location of the reactant molecules.

The investigation of BDEs in the reactant molecule can help
reveal the reaction mechanism from the energetics of different
types of chemical bonds. As the inherent aromatic properties of
molecules are preserved in this work, we mainly concentrate on
the BDEs of the C−O and C−H bonds in anisole. Table 2
shows a comparison of the homolytic BDEs in anisole
computed at 298.15 K using the M06-2X functional with the
Def2-TZVP basis set. The low BDE of the PhO−Me bond
(290.2 kJ/mol), i.e., high reactivity of the etheric C−O bond in
anisole, validates the high selectivity of phenolics in this work
(Ph: phenyl group). In comparison with the methyl group
(404.0 kJ/mol), the hydrogen abstraction from the benzene
ring (464.0−473.6 kJ/mol) is found more strenuous,
indicating H radicals in the system are more likely sourced
from the methyl group. To summarize, the order of BDEs (H−
PhOMe > Ph−OMe > PhOCH2−H > PhO−Me) in anisole
reveals that the cleavage of the methyl group is prone to occur,
which corresponds well with the distribution of liquid
products. It is noteworthy that the above-mentioned findings
that aryl C−O bonds (e.g., Ph−OH and Ph−OMe) are
stronger than etheric C−O bonds (e.g., PhO−Me) were
proved true regardless of the number or type of additional
substituent groups.40,41

2.3.2. Proposed Reaction Pathways. To gain insights
into the reaction mechanism of this plasma transformation
process, DFT calculations were performed. The Gibbs free
energies of activation and reaction rate constants were
calculated for possible pathways of the anisole conversion in
terms of anisole dissociation, direct transalkylation (DT),
radical transalkylation (RT), radical substitution (RS), and
hydrogen atom transfer (HT) (see Supporting Information
Sections 7−10). In general, the conversion of anisole originates
from anisole dissociation reactions facilitated by plasma-
induced vibrational excitations. Given the abundant aromatic
products in this study, the rupture of the benzene ring is
considered less probable. Instead, unimolecular decomposi-
tions of anisole (R2−R7) that preserve the inherent aromatic
properties are proposed as the initial reactions in the plasma.
These reactions are likely to be the major source of CH3/H
radicals participating in the subsequent radical-induced
reactions (Table S3).

C H OCH C H O CH6 5 3 6 5 3+ (R2)

C H OCH C H OCH6 5 3 6 5 3+ (R3)

C H OCH C H OCH H6 5 3 6 5 2 + (R4)

oC H OCH C H OCH H6 5 3 6 4 3 + (R5)

mC H OCH C H OCH H6 5 3 6 4 3 + (R6)

pC H OCH C H OCH H6 5 3 6 4 3 + (R7)

In addition, the importance of bimolecular transalkylation
reactions have also been frequently emphasized in the anisole
conversion.42−45 To gain better insights into the underlying
mechanisms, we investigated four possible direct trans-
alkylation pathways, DT1-DT4, as shown in R8−R11,
respectively. Each pathway involves two elementary reactions,
both proceeding through a 4-centered transition state (see
Supporting Information Section 8). However, the rate
coefficients of these reactions were found to be insignificant
at a low temperature of 423 K (Table S4), further emphasizing
the unimolecular decomposition reactions (R2−R7) dominate
the initial anisole conversion in this plasma process (An:
anisole, Ben: benzene, Tol: toluene, Ph: phenol, Cr: cresols,
MA: methylanisoles),

An Ben Ph Tol+ + (R8)

An An Ph MA+ + (R9)

Ph MA Cr Cr+ + (R10)

Ph An Cr Ph+ + (R11)

Compared with the traditional thermal or catalytic process, the
presence of abundant highly reactive species in NTP could not
only increase the initial energy of the reactant but also create
new reaction routes. More specifically, in the presence of
plasma-induced hydrogen or methyl radicals, the DT reactions
can be considerably facilitated by being transferred into the RT
pathways. A comparison of energy profiles for DT1 pathway
and RT1 pathway is given to elaborate on this mechanism, as
shown in Figure 4a. The DT1 route is initiated by the cleavage
of methoxy O−CH3 bond in anisole, forming a transition state
bonding with benzene at methyl and oxygen-bearing fragments
(Figure S5). The second step involves the rupture of the newly
formed C−O bond to generate phenol and toluene. The whole
pathway of DT1 has an activation energy of 4.19 eV. In the
RT1 pathway, the first elementary reaction involves the

Figure 4. (a) Energy profiles for the direct transalkylation reaction DT1 and radical transalkylation reaction RT1. (b) Proposed reaction pathways
of the plasma-enhanced anisole conversion in Ar plasma (solid lines denote probable pathways, while dashed line means less probable route; the
thickness of lines is given based on reaction rates).
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hydrogen radical attack on the methoxy oxygen to form phenol
and a methyl radical, followed by a two-step radical
substitution to yield toluene and a hydrogen radical. Notably,
the corresponding activation barrier of RT1 is substantially
lower (1.41 eV), indicating a more kinetically favorable
reaction pathway. To further confirm this concept, the general
mechanism of other possible DT and RT reactions are
illustrated in Figures S6−S8.

Interestingly, a “catalytic effect” of the plasma-generated
radicals can be clearly identified from the radical trans-
alkylation reactions. For instance, in pathway RT1 the
hydrogen radical undergoes initial sequestration and subse-
quent regeneration. Reordering of the pathway such that the
toluene formation precedes the anisole conversion leads to an
equally valid reaction mechanism, and in that instance, the
methyl radicals would act as a “catalyst”. This “catalytic effect”
can also be observed in RT2-RT4 where each pathway is
catalyzed by either a hydrogen atom or a methyl radical. It is
considered as the decisive factor for considerably enhanced
rate coefficients of the radical-induced transalkylation reactions
compared with direct transalkylation. Furthermore, this effect
relating to the plasma-induced radicals marks an exceptional
property of this plasma process that enables the low-
temperature transformation of anisole that would not be
possible otherwise.

In addition to transalkylation reactions, a broad involvement
of the radicals can be observed throughout the entire process.
Originally, the radicals are mainly generated in the anisole
dissociation reactions before participating in radical substitu-
tion, hydrogen transfer, and other general reactions. The
detailed description of these reactions in terms of the general
schemes for pathways, free energies of activation, and rate
constants are elaborated in the Supporting Information
Sections 9 and 10 (Tables S5 and S6; Figures S9−S13). In
our model, the radical transalkylation can be regarded as the
integration of several elementary reactions. To simplify the
calculation in the chemical kinetic modeling, the rate constants
of radical transalkylation were summarized from radical
substitution reactions using steady-state approximations and
equilibrium state approximations.
2.3.3. Chemical Kinetics. To further explore the under-

lying mechanisms of the entire reaction network, a kinetic
analysis was performed using the 0D ZDPlasKin model
incorporating the above-mentioned possible pathways and
vibrational excitations of anisole. Embedding the enhancement
factors of plasma-induced vibrational excitations of anisole
(Table 1) into the rate constants of anisole conversion
reactions, the conversion of anisole could be significantly
enhanced. Figure S14a shows the number density of major
species derived from the plasma chemical kinetic modeling.
The increasing number density signifies that the whole system
is far from equilibrium after 100 ms. This time slot was then
chosen to qualitatively investigate the mechanisms prior to
equilibrium. The calculated anisole conversion and product
selectivity are plotted in Figure S14b where the phenolics
remain the main product, corresponding with the experimental
data.

In Figure S14c, the major processes of anisole loss are
evaluated by integrating the amount of converted anisole
molecules through different reactions to elucidate the role of
major pathways, especially of the transalkylation pathways. It
can be easily observed that the radical transalkylation reactions
are magnitudes faster than the anisole dissociation and the

direct transalkylation. Although significant in the traditional
anisole transformation, the direct transalkylation reactions
almost stagnate at a low bulk temperature. Meanwhile, the
plasma-induced radicals can effectively accelerate the con-
version of anisole with their unique “catalytic effect” in radical
transalkylation reactions. The reactions also account for a large
proportion of phenolic synthesis routes in this work. Some
other reactions, hydrogen transfer, for instance, may reach a
considerable forward reaction rate but with very limited
contribution to the anisole conversion due to its rapid reverse
reaction. The incorporation of plasma kinetics with the DFT
results leads us to conclude that the radical transalkylation is
the dominant pathway involved in this plasma-enhanced
anisole conversion process.

Based on these discussions, plausible reaction pathways of
plasma-enhanced anisole conversion are proposed in Figure
4b. Through drastic collision with plasma-induced highly
energetic electrons, ground-state Ar species are activated to the
metastable states. The anisole molecules can be vibrationally
excited by the electrons and metastable argon. This vibrational
excitation weakens the energy barrier of anisole dissociation
reactions where the hydrogen and methyl radicals are mainly
generated. These small radicals exhibit favorable “catalytic
effects” that significantly facilitate the transalkylation reactions.
The radical transalkylation reactions are therefore found as the
dominant pathway in the plasma anisole conversion. In
addition, broad involvement of the plasma-generated radicals
can be observed in the radical-induced reactions, while the
nonradical reactions also take place. The product distribution
can be tuned by varying the specific energy input. High SEI
could promote the electron temperature and the abundance Ar
metastable states, which facilitate the dissociation of PhO-Me
bonds in anisole and therefore improve the phenol formation.
At a low SEI, the majority of the methyl groups are retained,
and the conversion of anisole to cresols can be achieved with
100% atom economy.

3. CONCLUSION
In summary, we have demonstrated a noncatalytic and
hydrogen-free plasma process that enables the selective
conversion of biomass-derived anisole into value-added
phenolics bioproducts at low temperature (∼150 °C) and
ambient pressure. The highest phenolic selectivity of 86.9%
and the energy efficiency of 136.1 g/kWh were achieved at an
anisole conversion of 45.6%. More interestingly, the alkylation
ratio was found independent of anisole conversion or product
selectivity but negatively correlated with SEI, which enables
the tuning of selectivity of the alkylated compounds by SEI.
The electrical and in situ emission spectroscopic diagnostics
reveal that increasing SEI produces more highly energetic
electrons that enhances the formation of Ar metastable species,
both of which contribute to the enhanced activation of anisole,
especially the vibrational excitations. Small reactive species
such as hydrogen and methyl radicals exhibit a favorable
“catalytic effect” to facilitate the transalkylation reactions. The
plasma kinetic modeling shows the radical-induced reactions
are the dominant pathway in the anisole conversion. Lignin
transformation involves a diverse array of compounds, and our
findings provide valuable insights into the plasma-assisted
conversion of lignin derivatives and open a new route for the
sustainable and selective synthesis of higher value platform
chemicals from biomass-derived anisole. This study can serve
as a foundation for further research to explore a broader range

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.3c00468
JACS Au 2023, 3, 3101−3110

3106

https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00468/suppl_file/au3c00468_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.3c00468?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of more complex lignin-derived compounds to investigate the
selective breaking of C−C and C−O.

4. METHODS

4.1. Experimental Setup
Figure 5 shows a schematic diagram of the experimental setup. A
typical coaxial DBD reactor was developed for the conversion of

biomass-derived anisole. A quartz tube with an inner diameter of 10
mm and a wall thickness of 2 mm was used as the dielectric layer. A
stainless-steel mesh (outer electrode) of 50 mm length was wrapped
around the quartz tube, while a stainless-steel rod with an outer
diameter of 4 mm served as a concentric inner high voltage electrode.
The DBD reactor was connected to a high voltage AC power supply
with a frequency of 9.2 kHz and a maximum peak voltage of 30 kV.
The applied voltage was measured by a high voltage probe (Testec,
TT-HVP 15 HF), while the current was recorded with a current
monitor (Magnelab CT-E0.5). Both signals were sampled by a four-
channel digital oscilloscope (Tektronix, DPO2024B). The discharge
power was calculated by using the Lissajous figure obtained from the
oscilloscope. Pure argon (99.999%, BOC) was used as the carrier gas
and controlled with a mass flow controller (Omega, FMA-2404).
Anisole (99%, ACROS Organics) was injected into a tube furnace
using a high-precision syringe pump (KDS Legato, 100) (Carbolite,
MTF 12/38/250 1200 °C), and was preheated to 373 K and mixed
with argon before passing into the reactor. The temperature of the
typical working condition (∼150 °C) was measured by a fiber optical
thermometer (Omega, FOB102) placed into the discharge area.

4.2. Product Analysis and Data Evaluation
The effluent lines of reactor were terminated with a liquid trap
containing 10 mL of acetone (99.8%, Fisher Chemical) to dissolve the
liquid products. After each experiment, the reactor was rinsed with
another 5 mL of acetone. The collected samples were quantified by
gas chromatography−mass spectrometry (Agilent 7820A MSD
5975C) and identified by using a mass spectral library from the
National Institutes for Standards and Technology (NIST). Gas
products were measured by gas chromatography (Shimadzu GC-
2014) equipped with dual detectors. The emission spectra in the
range 200−900 nm were recorded by using a spectrometer with an
intensified CCD (ICCD) camera (Princeton Instruments, 320 PI).
Each experiment was repeated 3 times. Generally, the margin of error
in this work was within 3%.

The conversion of anisole (X) was defined as

X (%)
moles of anisole converted

moles of anisole fed
100= ×

(1)

As all the quantified liquid products in this work are aromatic
compounds, the selectivity of product i can be calculated as

Si
i

(%)
moles of product

moles of anisole converted
100= ×

(2)

To evaluate the reactions toward alkylated aromatics, the alkylation
ratio was defined in eq 3.

Alkylation ratio
moles of (toluene cresols methylanisoles)

moles of (benzene phenol)
= + +

+
(3)

The specific energy input (SEI) was determined in eq 4.

SEI (kJ/L)
discharge power

total flow rate
=

(4)

The energy efficiency (ηe) of the anisole conversion can be calculated
as

(g/kWh)
converted anisole total flow rate

discharge powere = ×
(5)

4.3. Computational Methods
To gain insight into the reaction mechanism, we performed density
functional theory (DFT) calculations of the primary reaction
pathways and the bond-dissociation energies (BDEs) at different
positions of the lignin-derived model compound. All calculations were
performed using Gaussian 16 (Rev A.03),46 employing the M062X
functional47 with the Def2-TZVP basis set.48 The unrestricted
formalism was used for the calculation of all open-shell species. The
dispersion was included in the form of Grimme’s D3 empirical
dispersion correction49 without any damping scheme. Frequencies
calculations were performed at a temperature of 298.15 K for BDE
calculations and 423.15 K for rate constant calculations. Standard
pressure was used throughout. Transition state structures were
verified through observation of a single negative frequency mode and,
where necessary for clarification, intrinsic reaction coordinate
calculations.

Bond dissociation enthalpies were calculated using the following
equation:

H H HBDE (A) (B) (AB)f f f298.15 298.15 298.15= + (6)

where A and B represent the radicals formed from the homolytic
dissociation of the molecule AB. ΔfH298.15 is the enthalpy of formation
of the species under standard conditions.

The rate constants (k) were calculated using the Eyring equation in
the form:

k
k
h

e G RTB /=
‡

(7)

where kB is Boltzmann’s constant, h is Planck’s constant, Δ‡G is the
Gibbs free energy of activation, R is the gas constant, and T is the
temperature. The value of Δ‡G is determined as the difference in free
energies between the transition state and ground-state.

Based on the DFT under transition state theory, a 0D plasma
kinetic model was developed to elucidate the underlying mechanisms.
The ZDPlasKin Fortran module with an integrated BOLSIG+ solver
was employed to calculate the rate constants of the plasma
reactions.50 This chemical kinetic model involves 264 reactions and
70 species. The reaction rate coefficients of the primary reactions were
determined by DFT calculations. In addition to these reactions, we
compiled a few reactions from conventional chemical kinetic
models51,52 to perform a convincing simulation for the entire reaction
network. A coaxial DBD zero-dimensional model32 was employed in
conformity with the experimental conditions in this study.

Figure 5. Schematic diagram of the experimental setup.
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