Skip to main content
. 2023 Nov 28;10:58. doi: 10.1186/s40779-023-00490-8

Table 3.

List of studies on ML methods based on transcriptomics technology in the differential diagnosis of LTBI and ATB

Study Sample size Countries Methodsψ Biomarkers ML methods Sensitivity Specificity Accuracy AUC
Lee et al. [238] TB (n = 15), LTBI (n = 17), HCs (n = 15) Taiwan, China Microarray PTPRC + ASUN + DHX29 + NEMF Decision tree, random forest, support vector machine, Bayesian best 97.9% with PTPRC + ASUN + DHX29 under the Bayesian model Unknown 97.8% 0.979
Lu et al. [239]

Discovery cohort, TB (n = 4), LTBI (n = 4), HCs (n = 4);

qPCR validation cohort, TB (n = 25), LTBI (n = 36), HCs (n = 22); additional validation cohort, TB (n = 17), LTBI (n = 19)

China Microarray CXCL10, ATP10A, and TLR6 combination Decision trees and unsupervised cluster analysis 71% in the additional validation cohort 89% in additional validation cohort Unknown Unknown
Wang et al. [240] Identification cohort, ATB (n = 28), LTBI (n = 25), HCs (n = 31); validation cohort, ATB (n = 51), LTBI (n = 44), HCs (n = 35) China RNA-seq TNFRSF10C, IFNG, PGM5, EBF3, A2ML1 Decision trees and unsupervised cluster analysis 86.2% with a combination of TNFRSF10C, EBF3, and A2ML1 94.9% 87.8% Unknown
Maertzdorf et al. [241] ATB patients (n = 120), LTBI (n = 60), HCs (n = 20); external cohorts, from the Gambia (n = 75), from the Uganda (n = 62) Africa RT-PCR GBP1, IFITM3, P2RY14, and ID3 Random forest, decision tree Using a cutoff of 0.8, Uganda: 73%, Gambia: 85%; using a cutoff of 0.6, Uganda: 87%, Gambia: 88% Using a cutoff of 0.8, Uganda: 78%, Gambia: 76%; using a cutoff of 0.6, Uganda: 75%, Gambia: 68% 82% in Uganda and 89% in Gambia AUC = 0.89 in Gambia and AUC = 0.82 in Uganda
Bayaa et al. [242] ATB patients (n = 141), LTBI (n = 26), HCs (n = 71) Multiple countries qRT-PCR RISK6 No 90.9% 88.5% Unknown 0.930
Gong et al. [243] ATB patients (n = 51), lung cancer (n = 30), INFLA (n = 30), HCs (n = 15) China qRT-PCR SERPING1, BATF2, UBE2L6, and VAMP5 No 88% 78% Unknown 0.840

ψMethods used for screening and identification of biomarkers

A2ML1 alpha-2-macroglobulin like protein 1, ASUN asunder spermatogenesis regulator, ATB active tuberculosis, ATP10A ATPase phospholipid transporting 10A, AUC area under curve, BATF2 basic leucine zipper transcription factor, CXCL10 chemokine (C-X-C motif) ligand 10, DHX29 DEAH (Asp-Glu-Ala-His) box polypeptide 29, EBF3 early B cell factor 3, GBP1 guanylate binding protein 1, HCs health controls, ID3 inhibitor of DNA binding 3, IFITM3 interferon-induced transmembrane protein 3, IFNG interferon-γ gene, INFLA patients with pneumonia, LTBI latent tuberculosis infection, ML machine learning, NEMF nuclear export mediator factor, P2RY14 UDP-glucose-specific G(i) protein-coupled P2Y receptor, RT-PCR reverse transcription-polymerase chain reaction, PGM5 phosphoglucomutase 5, PTPRC protein tyrosine phosphatase receptor type C, qRT-PCR quantitative real-time PCR, RNA-seq RNA-sequencing, RISK6 six whole blood gene transcriptomic signature, SERPING1 serpin peptidase inhibitor C1 inhibitor member 1, TNFRSF10C TNF receptor superfamily member 10C, TLR Toll-like receptor, TB tuberculosis, UBE2L6 ubiquitin-conjugating enzyme E2L6, VAMP5 vesicle-associated membrane protein 5