Skip to main content
. 2023 Nov 28;10:58. doi: 10.1186/s40779-023-00490-8

Table 4.

List of studies on ML methods based on proteomics technology in the differential diagnosis of LTBI and ATB

Study Simple size Countries Biomarkers ML methods Sensitivity Specificity AUC
Li et al. [263] Discovery cohort: ATB (n = 52), LTBI (n = 37), HCs (n = 27); validation cohort: ATB (n = 205), LTBI (n = 123), HCs (n = 112); China Rv0934, Rv1827, Rv1860, and Rv3881c Cluster analysis 67.3% 91.2% Unknown
Li et al. [264] Discovery cohort: ATB (n = 60), LTBI (n = 60), HCs (n = 60); validation cohort: ATB (n = 100), LTBI (n = 100), HCs (n = 100) China Rv1860, RV3881c, Rv2031c, and Rv3803c Random forest 93.3% in training cohort and 95% in validation cohort 97.7% in training cohort and 80% in validation cohort 0.981 in training cohort and 0.949 in validation cohort
Cao et al. [265] Training cohort, ATB (n = 20), LTBI (n = 20); validation cohort, ATB (n = 92), LTBI (n = 93), HCs (n = 94) China Rv1408, R0248, Rv2026c, Rv2716, Rv2031c, Rv2928, and Rv2121c Logistic regression and hierarchical clustering 96.77% in training cohort and 93.33% in validation cohort 93.75% in training cohort and 93.1% in validation cohort 0.9844 in training cohort and 0.9810 in validation cohort
Peng et al. [266] TBI (n = 100), LTBI (n = 60), HCs (n = 44) China 15 MTB antigen-specific antibodies Logistic regression model and hierarchical clustering 85.4% 90.3% 0.944
Delemarre et al. [267] Discovery cohort: ATB (n = 20), LTBI (n = 40), HCs (n = 20); validation cohort: ATB (n = 12 + 31), LTBI (n = 20 + 20) USA CCL1, CXCL10, VEGF, and ADA2 Logistic regression 95% in discovery cohort, 75% and 100% in validation cohort 1 and 2 90% in discovery cohort, 100% and 30% in validation cohort 1 and 2 Unknown
Luo et al. [268] Training cohort: ATB (n = 468), LTBI (n = 424); Test set, ATB (n = 121), LTBI (n = 102); validation cohort: ATB (n = 125), LTBI (n = 138) China ESAT-6, CFP-10, IFN-γ, ESR, Hs-CRP Random forest and bagged ensemble algorithms 98.85% in Training cohort; 93.39% in Test set; 92.80% in validation cohort 95.65% in training cohort; 91.18% in Test set; 89.86% in validation cohort 0.995 in training cohort; 0.978 in Test set; 0.963 in validation cohort
Morris et al. [269] Discovery cohort: TB (n = 146), LTBI (n = 146) other diseases (OD) (n = 146); validation cohort: TB (n = 122), OD (n = 127) Sub-Saharan Africa Fibrinogen, alpha-2-macroglobulin, CRP, MMP-9, transthyretin, complement factor H, IFN-γ, IP-10, and TNF-α Random forest and logistic regression 92% in the test set 71% in the test set 0.84
Agranoff et al. [270] Training cohort: ATB (n = 102), HCs (n = 91); validation cohort: ATB (n = 77), HCs (n = 79) UK Transthyretin, C-reactive protein, Neopterin, and serum amyloid A Support vector machine and tree classification 93.5% 94.9% Unknown
Luo et al. [271] Discovery cohort: ATB (n = 50), LTBI (n = 49), HC (n = 50); validation cohort: ATB (n = 28), LTBI (n = 24), HCs (n = 26) China Eotaxin, MDC, and MCP-1 No 87.76% 91.84% 0.94

ATB active tuberculosis, LTBI latent tuberculosis TB infection, ML machine learning, AUC area under curve, HCs healthy controls, MTB Mycobacterium tuberculosis, CCL chemokine (C–C motif) ligand, CXCL10 chemokine (C-X-C motif) ligand 10, VEGF vascular endothelial growth factor, ADA2 adenosine deaminase 2, ESAF-6 early secretary antigenic target-6, CFP-10 culture filtrate protein-10, IFN-γ interferon-γ, ESR erythrocyte sedimentation rate, Hs-CRP high-sensitivity C-reactive protein, MMP-9 matrix metalloprotein-9, IP-10 interferon-γ inducible protein-10, TNF-α tumor necrosis factor-α, MDC myeloid dendritic cell, MCP-1 human macrophage chemoattractant protein-1