Skip to main content
. 2023 Nov 29;23:391. doi: 10.1186/s12871-023-02354-z

Table 2.

Performance of the models with a predefined positive prediction fraction of 20% for primary outcome

Positive prediction fraction 20% TP/FP FN/TN Sensitivity/Precision % MCC % AUROC % AUPRC % Brier % P (sensitivity) %
Full machine-learning model 106 / 676 76 / 3055 58.2 / 13.6 21.1 76.3 15.5 4.19 -
Full logistic regression model 97 / 685 85 / 3046 53.3 / 12.4 18.4 74.7 15.6 4.32 17.2
Parsimonious machine-learning model 100 / 682 82 / 3049 54.9 / 12.8 19.3 75.9 17.3 4.34 26.4
Parsimonious logistic regression model 90 / 692 92 / 3039 49.5 / 11.5 16.3 73.8 15.8 4.33 4.86
Age-only model 87 / 676 95 / 3055 47.8 / 11.4 15.8 69.7 12.1 38.8 3.55

TP true positives, FP false positives, FN false negatives, TN true negatives, MCC Matthews correlation coefficient, AUROC area under the operating receiver curve, AUPRC area under the precision recall curve P(sensitivity): probability that a model performs better than the full machine-learning model relative to sensitivity