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Abstract
Background  Numerous factors influence the growth and development of cashmere. Existing research on cashmere 
has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive 
understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the 
key factors influencing cashmere fineness using multi-omics analysis.

Methods  This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere 
goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, 
proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated 
using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques.

Results  The GO functional enrichment analysis identified three common terms: multicellular organismal process, 
immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the 
involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM 
technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT 
proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were 
confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with 
those identified in the non-targeted metabolomics analysis.

Conclusions  This study employed multi-omics analysis to identify key regulators of cashmere fineness, including 
PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical 
foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional 
aspects of cashmere fineness.
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Background
The cashmere goat, renowned for its significant eco-
nomic value, has become increasingly popular daily. With 
the growing demand for cashmere, expectations regard-
ing its quality have also increased. Cashmere fineness is 
a pivotal economic indicator and a cornerstone for selec-
tion and breeding endeavors [1]. It is widely recognized 
that finer cashmere possesses greater economic value 
and results in superior textile products. Nonetheless, the 
prioritization of high cashmere yield has sometimes led 
to the neglect of fineness and quality control, resulting in 
a gradual increase in cashmere fineness over time. This 
concern has prompted researchers to direct their efforts 
toward decreasing cashmere fineness in the Liaoning 
cashmere goat (LCG), a vital genetic resource in China 
celebrated for its abundant cashmere yield [2]. However, 
its cashmere fineness remains relatively coarse.

Cashmere fiber growth is a complex physiological pro-
cess influenced by many factors, with genetic factors 
playing a particularly significant role. Several studies 
have implicated genes like CES4A, COCH, ADIG, CCL24, 
PDE8B, PLIN2, HSPB7, K38C3, CASP1, and PRLR in the 
regulation of cashmere growth and fiber characteristics, 
including fineness [3]. Association analysis of blood DNA 
and cashmere production performance in LCG indicated 
potential associations between genes such as KRT26, 
TCHH, COL1A1, PRL, MSTN, IGFBP-3, INHA, PGR, and 
RARG, and cashmere fineness, suggesting their utility as 
molecular markers for LCG breeding [4–8]. Keratin, a 
multifunctional protein involved in various cellular pro-
cesses, plays a direct role in hair follicle development and 
functionality [9]. Studies have shown that genes such as 
KAP6.1, KAP7.1, KAP8.1, KAP8.2, and KAP11.1 exhibit 
lower expression levels in primary hair follicles than 
secondary hair follicles, demonstrating a significant cor-
relation with cashmere fineness and their potential piv-
otal role in regulating cashmere fiber diameter [10–12]. 
Furthermore, minor alterations in gene function ulti-
mately manifest at the metabolic level during the cell’s life 
activities. Research has demonstrated that metabolites 
such as Gly-Phe and taurine deoxycholate can influence 
cashmere growth, development, and fineness [13]. Nev-
ertheless, most studies have concentrated on individual 
omics analyses, neglecting the combined interplay of 
genes, proteins, and metabolites in cellular processes. 
The essential factors governing cashmere fineness war-
rant further comprehensive investigation.

Advancements in high-throughput sequencing tech-
nology have led to an increased application of omics 
techniques in studying cashmere-related traits. Guo et 
al. demonstrated the feasibility of multi-omics analysis by 
examining metabolite and protein expression profiles in 
the rumen tissue of goats subjected to varying diets. Their 
findings shed light on the adaptability of rumen epithelial 

cells to high-grain feeding [14]. Multi-omics studies, 
encompassing genomics, transcriptomics, proteomics, 
and metabolomics, have substantially contributed to 
our understanding of dairy cattle lactation. Significantly, 
multi-omics approaches have demonstrated their value in 
enhancing lactation performance in cows [15]. Integrat-
ing multi-omics data spanning various cellular functional 
levels provides insights into the underlying mechanisms 
of complex diseases, such as cancer. Multi-omics analysis 
offers distinct advantages in cancer research, as it allows 
for the utilization of multiple sets of biomarkers, offering 
greater specificity compared to single gene markers [16]. 
While there is currently no literature on using multi-
omics analysis for studying cashmere fineness, the con-
cept is feasible.

Following the experimental approach in published 
articles, a multi-omics analysis was employed to identify 
molecular markers linked to cashmere fineness [14–16]. 
Within cellular activities, minor alterations in macromo-
lecular functions ultimately manifest at the metabolic 
level and become amplified in metabolites. Multi-omics 
analysis enables a more comprehensive comprehension 
of these processes. This study aimed to identify essential 
factors impacting cashmere fineness through integrating 
transcriptomics, translatomics, proteomics, and metabo-
lomics. Analyzing key differential substances between 
coarse and fine cashmere skin tissues of LCG provides a 
more comprehensive understanding of the factors influ-
encing cashmere fineness. Moreover, validating these 
factors through techniques like MRM and PRM will 
establish a scientific basis and introduce novel perspec-
tives for future in-depth investigations into cashmere 
trait-related studies.

Materials and methods
Sample collection
Twelve Liaoning cashmere goats were utilized for the 
experiment, comprising six coarse cashmere type and 
six fine cashmere type goats selected from the Liaoning 
Province Modern Agricultural Production Base Con-
struction Engineering Center in China. The mean cash-
mere diameter for the six coarse cashmere type Liaoning 
cashmere goats was 17.59 ± 0.31 μm (mean ± SD), with a 
range from 17.23 to 17.91 μm. The mean cashmere diam-
eter for the six fine cashmere type Liaoning cashmere 
goats was 14.59 ± 0.21 μm (mean ± SD), with a range from 
14.32 to 14.77 μm. The difference in cashmere diameters 
between the coarse and fine cashmere types was statis-
tically significant (P < 0.01). The selected goats were not 
from the same group, had no familial relationship, and 
the sire and dam were unrelated for more than six gen-
erations, ensuring they were not inbred. These goats were 
2-year-old ewes that received identical feeding manage-
ment and were raised in the same growth environment. 
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Skin samples were collected in May during the anagen 
phase of secondary hair follicles. First, the cashmere was 
removed, and then skin tissue of approximately 1  cm² 
was excised from the upper third of the right scapula of 
the Liaoning cashmere goats using surgical scissors and 
forceps. The tissue was promptly stored in liquid nitro-
gen. Local anesthesia (procaine) was administered to 
minimize animal discomfort during the skin tissue col-
lection. The collected skin samples were utilized for four 
omics analyses.

Methods of transcriptomics
Transcriptomics is sequenced using Short Read RNA-
seq, a second-generation sequencing technology. The 
technical process primarily comprises RNA extraction 
and detection, library construction with quality control, 
sequencing, and bioinformatic analysis. The experimen-
tal procedure is the same as the “Transcriptomics analy-
sis of cashmere fineness functional genes” [17].

Methods of translatomics
Translatomics employs Ribo-seq sequencing technol-
ogy. The specific method is to treat the ribosome-nascent 
peptide chain complex with a low concentration of 
RNase, degrade the RNA fragments without ribosome 
coverage, then remove the ribosomes, and finally use 
second-generation sequencing technology to detect the 
small fragments of RNA being translated that were pro-
tected by ribosomes. The experimental procedure is the 
same as the “Selection of Cashmere Fineness Functional 
Genes by Translatomics” [18].

Methods of proteomics and PRM
Proteomics uses TMT technology. T The workflow, from 
tissue samples to the final data acquisition, encompasses 
essential stages, including protein extraction, quantifica-
tion, detection, enzymatic cleavage, desalting, labeling, 
fraction separation, and mass spectrometry analysis. The 
experimental procedure is the same as the “Proteomic 
analysis of coarse and fine skin tissues of Liaoning cash-
mere goat” [19].

Methods of metabolomics and MRM
Metabolomics relies on LC-MS technology, and the 
experimental procedure primarily encompasses metabo-
lite extraction from samples, LC-MS/MS detection, and 
subsequent data analysis. The experimental procedure is 
the same as the “Metabolomic Analysis and MRM Verifi-
cation of Coarse and Fine Skin Tissues of Liaoning Cash-
mere Goat” [13].

Methods of association analysis
Correlation analyses between the omics data were con-
ducted using Pearson statistics. Functional enrichment 
analyses were conducted based on pathways and terms 
shared across multiple omics datasets. A Padj value 
below 0.05 served as the threshold for determining sig-
nificant enrichment. The software employed in the study 
is listed in Table 1.

Results
Identification information of transcriptomics, 
translatomics, proteomics, and metabolomics
In transcriptomics and translatomics, the sequenc-
ing error rate for individual base positions was under 
1%, and the GC content ranged from 42 to 56% (Table 
S1, S2). The data from both omics datasets were suf-
ficiently accurate for subsequent analysis. In pro-
teomics, 3,999 proteins were quantified across all 
samples (Table S3). The PCA analysis reveals a notable 
distinction between the FT_LCG and CT_LCG groups 
(Fig. S1A). In metabolomics, a total of 625 metabo-
lites were identified. In the PCA analysis, the quality 
control (QC) samples formed tight clusters, demon-
strating excellent data reproducibility and affirming 
high data quality (Fig. S1B). All subsequent associa-
tion analyses were conducted using these four omics 
datasets.

Association analysis of transcriptomics and translatomics
Differential TE (translation efficiency) gene statistics
Modulation of translation efficiency is the primary 
mechanism governing gene translation levels, directly 
influencing protein production. 550 differentially reg-
ulated TE genes were identified, with 342 showing sig-
nificant up-regulation and 208 exhibiting significant 

Table 1  Software used for the analysis
Analytical 
projects

Omics Software

Comparison 
analysis

Transcriptomics Hisat2 (2.0.5)
Translatomics Tophat2 (2.0.12)

Bowtie (1.0.1)
Quantitative 
analysis

Transcriptomics FeatureCounts (1.5.0-p3)
Stringtie (1.3.3b)

Translatomics FeatureCounts (1.5.0-p3)
HTseq (v0.6.1)

Proteomics Proteome Discoverer (2.2)
Metabolomics Compound Discoverer (2.2)

Difference 
analysis

Transcriptomics DESeq2 (1.16.1)
EdgeR (3.18.1)

Translatomics DESeq2 (1.14.1)
EdgeR (3.16.4)

Proteomics R (3.4.3)
Metabolomics R (3.4.3)

Differential TE 
gene analysis

Multi-omics RiboDiff (V.0.2.1)
Xtail (1.1.5)

Enrichment 
analysis

Multi-omics ClusterProfiler (3.4.4)
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down-regulation. Details of the top 20 TE genes dis-
playing significant differences are provided in Table 
S4. Furthermore, a volcano plot was employed to 
depict the differential gene expression between the 
FT_LCG and CT_LCG, as illustrated in Fig. 1A.

GO enrichment analysis
Through an analysis of the enrichment of differen-
tial TE genes, we could determine which biologi-
cal functions of these genes were significantly linked 
to variations in cashmere fineness. The 30 GO terms 
displaying the most pronounced differences were visu-
alized in a bubble chart within the GO enrichment 
analysis results (Fig.  1B). The findings revealed that 
the differential TE genes were significantly enriched 
in the transferase complex, the transferase complex, 
transferring phosphorus-containing groups, and the 
catalytic complex.

KEGG pathway enrichment analysis
The KEGG database is a comprehensive resource 
encompassing information related to genomic, chemi-
cal, and phylogenetic functions [20]. In the outcomes 
of the KEGG enrichment analysis, a bubble chart illus-
trating the 20 pathways exhibiting the most substan-
tial differences was presented (Fig.  1C). The findings 
demonstrated that differential TE genes were signifi-
cantly enriched in metabolic pathways such as Antigen 
processing and presentation, Antigen processing and 
presentation, and Legionellosis.

Association analysis of transcriptomics and proteomics
Analysis of expression regulation
The mRNA data derived from transcriptomics was 
integrated with the protein data from proteomics. This 
analysis revealed an overlap in the genes (proteins) 
identified between the proteomics and transcriptomics 
datasets. The two omics datasets were jointly analyzed 
to determine correspondence. The outcomes were 
visually represented using a Venn diagram (Fig.  2A), 
which allowed for identifying common and unique 
genes (proteins) in different regions. The Venn dia-
gram illustrates that were 3,559 genes identified in 
both transcriptomics and proteomics, with only one 
gene being commonly differential.

Expression association analysis
Genes identified in the transcriptomics and proteins 
identified in the proteomics were compared regarding 
their fold differences between the two omics datasets. 
A single co-expressed gene, ASAH1, exhibited signifi-
cant differences and was identified (Fig.  2B). Plotting 
the above results as a heat map shows that the ASAH1 

gene is down-regulated in proteomics but up-regu-
lated in transcriptomics (Fig. 2C).

GO enrichment analysis
The GO enrichment results for proteins and genes 
from proteomics and transcriptomics were visualized 
as a heat map displaying the functional enrichment 
clusters. Enriched GO entries were grouped based on 
differential proteins. Among the GO functions, only 
catalytic activity was identified as up-regulated in both 
proteomics and transcriptomics. Four genes (PON1, 
MATN2, TPPP3, and CD44) exhibited up-regulation in 
both transcriptomics and proteomics (Fig.  2D), indi-
cating a potential positive role in regulating cashmere 
fineness.

KEGG pathway enrichment analysis
KEGG pathway enrichment results for proteins and 
genes from both proteomics and transcriptomics were 
presented as a heat map displaying the clustering of 
enriched KEGG pathways. Enriched KEGG pathways 
were grouped based on differential proteins, and the 
outcomes are depicted in Fig. 2E. There were 12 KEGG 
pathways down-regulated in both the two omics and 
no KEGG pathways up-regulated in the two omics. 
Nevertheless, the CD44 gene within the ECM receptor 
interaction pathway exhibited up-regulation in both 
omics, indicating a potential positive role in regulating 
cashmere fineness.

Association analysis of transcriptomics and metabolomics
Association analysis of differential genes and differential 
metabolites expression
The correlation between genes and metabolites was 
assessed using Pearson correlation coefficients, con-
sidering the differential genes identified through tran-
scriptomics and the differential metabolites filtered 
by metabolomics. A negative association is observed 
between a gene and a metabolite when the Pearson 
coefficient is below 0, while a positive association is 
indicated when the Pearson coefficient surpasses 0. 
The differential metabolites and genes were presented 
in ascending order of P values. The results showed 
that neodiosmin had the strongest positive correlation 
with the MRPL17 gene, and N-Acetylsphingosine had 
the strongest negative correlation with the ASS1 gene 
(Fig.  3A). Additionally, a strong negative correlation 
was observed between prostaglandin B2 and ASS1.

KEGG pathway enrichment analysis
Retrieve information on differential genes and metab-
olites from the KEGG Pathway Database and iden-
tify the metabolic pathways in which they are jointly 
involved [21]. To elucidate the critical biochemical and 
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signal transduction pathways involved in differential 
metabolites and genes. Four KEGG pathways exhibited 
joint enrichment for differential genes and metabo-
lites: arachidonic acid metabolism, bile secretion, pri-
mary bile acid biosynthesis, and serotonergic synapse 
(Fig.  3B). The arachidonic acid metabolic pathway 
showed the highest enrichment of differential genes. 
The majority of differential metabolites were enriched 

in two pathways: bile secretion and primary bile acid 
biosynthesis.

Association analysis of proteomics and metabolomics
Association analysis of differential proteins and differential 
metabolites expression
Pearson correlation coefficients were employed to 
assess the extent of correlation between the dif-
ferential proteins identified in proteomics and the 

Fig. 1  Transcriptomics and translatomics expression regulation diagrams. (A) Volcano Plot. Red indicates up-regulation, and green indicates down-
regulation. (B) Bubble chart of GO enrichment analysis. The dot size reflects the number of genes annotated to the GO term, while the color gradient 
from red to purple indicates the degree of enrichment significance. (C) Bubble chart of KEGG enrichment analysis. Dot size corresponds to the number of 
genes annotated to the KEGG pathway, and the color gradient from red to purple signifies the level of enrichment significance
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differential metabolites identified through metabolo-
mics. The correlation coefficient ranges from − 0.99 to 
+ 0.99. A negative correlation exists between the pro-
tein and metabolite when the correlation coefficient 
is below 0, while a positive correlation is observed 
when the correlation coefficient surpasses 0. A corre-
lation coefficient equal to 0 indicates no correlation. 
The expression trend was shown in Fig.  4A. The PE 
(18:1e/18:1) had the strongest positive correlation with 

LOC102179881. Prostaglandin B2 had the strongest 
negative correlation with TFAP2A.

KEGG pathway enrichment analysis
All differentially screened proteins and metabolites 
were collectively mapped in the KEGG pathway data-
base to investigate their enrichment. The primary 
metabolic and signal transduction pathways were 
determined through which different proteins and 

Fig. 2  Transcriptomics and proteomics expression regulation diagrams. (A) Venn diagram of transcriptomic and proteomic expression regulation. In the 
figure, “all_tran” represents all genes obtained from the transcriptome, “diff_tran” represents differentially expressed genes identified by the transcriptome, 
“all_prot” represents all proteins identified by the proteome and “diff_prot” represents differential proteins identified by the proteome. (B) Scatter plot 
of expression correlation analysis. The green points represent proteins with a significantly different expression, and the blue points represent proteins 
with no significant difference in expression. (C) Clustering heat map of expression correlation analysis. (D) Clustering heat map of GO functional en-
richment correlation analysis. (E) Clustering heat map of KEGG enrichment analysis. In (C), (D), and (E), red indicates up-regulation, and blue indicates 
down-regulation
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metabolites interact. Three KEGG pathways, namely 
arachidonic acid metabolism, serotonergic synapse, 
and alpha-linolenic acid metabolism (Fig.  4B), exhib-
ited enrichment of differential proteins and differen-
tial metabolites. The alpha-linolenic acid metabolism 
pathway showed the least significant enrichment, with 
the lowest number of enriched proteins and metabo-
lites. In contrast, the serotonergic synapse pathway 
exhibited the highest significance.

Association analysis of transcriptomics, translatomics, 
proteomics, and metabolomics
KEGG pathway enrichment analysis
Arachidonic acid metabolism was the sole KEGG path-
way that exhibited common enrichment across transcrip-
tomics, translatomics, proteomics, and metabolomics. 
The Venn diagram (Fig.  5A) illustrates the quantitative 
relationships among the four omics. Detailed information 
regarding the genes, proteins, and metabolites enriched 
in each omics can be found in Table S5.

Fig. 4  Proteomics and metabolomics expression regulation diagrams. (A) Heat map for association analysis of expression of differential proteins with 
differential metabolites. A redder color indicates a stronger positive correlation, while a stronger negative correlation is shown in bluer shades. (B) Associa-
tion analysis of KEGG pathways for differential proteins with differential metabolites

 

Fig. 3  Transcriptomics and metabolomics expression regulation diagrams. (A) Heat map for association analysis of differential metabolites and genes 
expression. A redder color indicates a stronger positive correlation, while a stronger negative correlation is shown in bluer shades. (B) KEGG pathway as-
sociation analysis of differential genes and differential metabolites
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GO enrichment analysis
Enriched GO terms in transcriptomics, proteomics, and 
translatomics were collectively analyzed, with level 2 GO 
terms as a reference. Multicellular organismal process, 
immune system process, and extracellular region were 
the three GO terms enriched across all three omics. The 
Venn diagram (Fig.  5B) illustrates the quantitative rela-
tionships among the four omics. Detailed information 
about the specific genes and proteins can be found in 
Table S6. The results revealed that the gene PLA2G12A 
was co-enriched in both KEGG enrichment and GO 
enrichment analyses (Table S5, S6).

PRM validation
We screened six candidate proteins in TMT proteomics. 
These six target proteins underwent analysis using PRM 
technology, and the relative expression differences of 
these target proteins between the two groups, FT_LCG 

and CT_LCG, were calculated. We compared the expres-
sion patterns of these six proteins in both PRM and 
TMT analyses (Fig. 6). The results demonstrated that the 
expression trends of KRT79 in PRM validation were in 
alignment with those observed in TMT proteomics and 
exhibited a positive influence on cashmere fineness.

MRM validation
Screening of amino acids and their derivatives
In the KEGG enrichment analysis [22], we observed 
that tryptophan, prostaglandin B2, and PLA2G4 were 
enriched in the serotonergic synapse pathway (www.
kegg.jp/kegg/kegg1.html), implying a coordinated bio-
logical role for these three substances. Furthermore, 
it appears that tryptophan may regulate prostaglandin 
B2 and PLA2G4. Additionally, the serotonergic syn-
apse pathway exhibits interactions with the tryptophan 
metabolic pathway and the arachidonic acid metabolic 

Fig. 6  Trend plot of protein expression. (A) Target Protein PRM validation bar chart. (B) Bar chart of relative quantification of target proteins in TMT 
proteomics

 

Fig. 5  Transcriptomics, translatomics, proteomics, and metabolomics enrichment analysis. (A) Venn diagram of KEGG enrichment analysis. (B) Venn 
diagram of GO enrichment analysis

 

http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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pathway (Fig. 7). As a result, we conducted a quantitative 
analysis on 15 standard amino acids and their derivatives.

Trends in target metabolite expression
We validated 15 amino acids and their derivatives using 
MRM techniques. The results indicated that 9 amino 
acids and their derivatives exhibited trends consistent 
with those observed in untargeted metabolomics. (Fig. 8). 
Additionally, we observed that hydroxyproline was unde-
tected in non-targeted metabolomics but exhibited a 
significant difference in MRM (P < 0.05) and positively 
impacted cashmere fineness.

Discussion
Multi-omics analysis has become a powerful tool with 
the widespread adoption of high-throughput technolo-
gies. These multi-omics approaches allow for integrating 
information from various omics levels, providing more 
robust evidence for biological mechanisms and facili-
tating the identification of key factors at a deeper level. 
In this study, we employed a combination of transcrip-
tomics, translatomics, proteomics, and metabolomics 
to comprehensively analyze crucial substances within 
coarse and fine cashmere skin tissues, thereby enhanc-
ing our understanding of the regulators of cashmere 
fineness across multiple omics levels. Our integrated 
transcriptomic and translatomic analyses pinpointed 
LOC102190399 (PODNL1) as the most significantly 
differentially expressed gene. While current research 
primarily focuses on PODNL1’s role in cancer develop-
ment and progression, its potential influence on cell 

proliferation and differentiation is evident [23]. Stud-
ies have shown that knockdown and overexpression of 
PODNL1 impact cell growth and migration [24]. Given 
that cashmere growth involves various processes of cell 
proliferation and differentiation within the skin, it is pre-
dicted that PODNL1 may affect the cashmere growth 
process by influencing these cellular mechanisms. 
Furthermore, PODNL1 is associated with fibroblast-
mediated wound healing and may regulate excessive 
extracellular matrix (ECM) deposition during the fibrotic 
response phase [25]. In our combined transcriptomic 
and proteomic analyses, we observed up-regulation of 
the CD44 gene in both GO and KEGG clusters. CD44 is 
involved in ECM receptor interactions, further support-
ing the potential involvement of PODNL1 in regulating 
cashmere growth by influencing the extracellular matrix. 
Another common differential gene identified through the 
combined analysis of transcriptomics and proteomics 
was ASAH1. ASAH1 encodes acidic ceramidase, a cru-
cial player in maintaining the structure and function 
of the epidermis and a significant lipid in hair, affect-
ing its physicochemical properties. Precise regulation of 
ceramide and free sphingosine base metabolism is vital 
for the homeostasis of hair follicle stem cells, the epider-
mis, and its appendages [26]. Additionally, unsaturated 
fatty acids can promote hair follicle regeneration and hair 
growth. This approach offers the advantages of minimal 
side effects, easy availability, and cost-effectiveness in 
treating hair loss, thus presenting promising prospects 
for development.

Fig. 7  Serotonergic synapse pathway. Red circles indicate metabolites, green squares indicate genes, and blue squares indicate pathways
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Fig. 8  Trend plot of metabolite expression. (A) Box graph of amino acid expression trends in non-targeted metabolomics. Blue indicates FT_LCG, and 
red indicates CT_LCG. (B) Box graph of amino acid expression trends in MRM validation. Blue indicates FT_LCG, and yellow indicates CT_LCG. The * in the 
figure indicates 0.01 < P < 0.05, and those not labeled * indicate P > 0.05
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Following the integration of the four omics datasets, 
our analysis revealed that PLA2G12A and KRT79 play 
crucial roles in regulating cashmere fineness. PLA2G12A 
is particularly significant in phospholipid metabolism 
[27]. Phospholipase A2 (PLA2) is a vital metabolic and 
regulatory enzyme that catalyzes the hydrolysis of lipo-
proteins and glycerophospholipid molecules in cell mem-
branes, resulting in the production of free fatty acids 
and lysolecithin [28]. Phospholipids play a crucial role 
in strengthening the epidermis and act as bioactive lipid 
mediators essential for maintaining homeostasis in the 
body. They serve as multifunctional phospholipid mes-
sengers through different signaling pathways within the 
skin. Additionally, lysophosphatidic acid is pivotal in 
various skin processes, including wound healing, skin 
barrier maintenance, skin hair growth, and hair fol-
licle development [29]. KRT79, a member of the keratin 
family, assumes an essential role in shaping the hair fol-
licle cavity [30]. In PRM validation, we observed higher 
expression of KRT79 in FT_LCG, consistent with the 
expression trend in TMT proteomics. These findings 
suggest that KRT79 may positively regulate the diameter 
of cashmere fibers while indicating that keratin’s expres-
sion is more stable. KRT79, classified as a type II keratin 
protein, influences capillary morphogenesis and regen-
eration in a newly migrating epithelial cell population. Its 
presence is critical for maintaining sebaceous stem cells 
in the skin, and its absence leads to abnormalities in the 
sebaceous glands and eyelid-lid glands [31]. Studies have 
shown that KRT79 expression may be a regulator of cell 
differentiation and cell motility. In the liver, KRT79 is 
controlled by PPARA and is highly correlated with liver 
injury, making it a potential diagnostic marker for human 
liver disease [32]. Keratin is an essential component of 
wool fibers, determining the structural characteristics of 
wool and cashmere. Genes encoding keratin are signifi-
cant candidates in the hair follicle and hair studies [33]. 
Keratin can be divided into two main categories: keratin 
intermediate filament (KIF) and keratin-associated pro-
tein (KAP). KIF forms the essential structural backbone 
of hair, contributing to its stability. On the other hand, 
the content and structure of KAP can vary significantly 
among different species, suggesting its crucial role in 
regulating hair growth [10]. Although many studies 
have demonstrated the critical part of the keratin fam-
ily in hair growth, the regulation of cashmere fineness by 
KRT79 needs further in-depth exploration.

The integration of the four omics datasets unveiled the 
consistent enrichment of the arachidonic acid metabo-
lism pathway in all four of them. Arachidonic acid is cru-
cial for overall metabolism, particularly in the skin, and 
when it is supplied adequately, it contributes to shiny 
and well-hydrated hair. When arachidonic acid is acted 
upon by cyclooxygenase, it converts into prostaglandin 

intermediate metabolites, which are further synthesized 
into various prostaglandins with diverse biological activi-
ties by different prostaglandin synthetases. In this study, 
we focused on enriching the arachidonic acid meta-
bolic pathway with a specific metabolite, prostaglandin 
B2, which appears to be a pivotal metabolite in regulat-
ing cashmere fineness. Prostaglandins are unsaturated 
fatty acids distributed in various body tissues, playing 
essential roles in cell proliferation, differentiation, and 
apoptosis. The complex mechanism of prostaglandin 
metabolism in hair cells centers primarily around the 
hair papilla epithelium, where prostaglandin E2 (PGE2) 
and prostaglandin F2α (PGF2α) occur. This suggests that 
prostaglandins are likely involved in hair growth and 
hair follicle differentiation [34]. While PGE2 and PGF2α 
promote hair growth within the follicle, prostaglandin 
D2 (PGD2) restricts hair growth. Prostaglandin deriva-
tives have been found to enhance the transition of hair 
follicles from telogen to anagen, leading to increased hair 
count, density, and length [35]. Additionally, prostaglan-
dins may play a role in the development of androgenetic 
alopecia. Clinical trials have demonstrated that topical 
application of 0.1% latanoprost effectively improves hair 
density in patients with androgenetic alopecia [36]. The 
antagonism between Latanoprost and PGF2α receptors 
has been shown to influence the follicle growth cycle 
and hair growth [37]. Latanoprost has been approved to 
enhance local circulation to promote eyebrow and eye-
lash growth. These findings suggest that prostaglandins 
and their receptors could potentially serve as targets for 
treating androgenetic alopecia and may also be related to 
the growth and development of cashmere in LCG.

Conclusion
In this study, we discovered that the substances influenc-
ing cashmere fineness were primarily enriched in multi-
cellular organismal process, immune system process, and 
extracellular region. These substances were also associ-
ated with arachidonic acid metabolism. Additionally, the 
study identified PLA2G12A, KRT79, and prostaglandin 
B2 as pivotal factors that regulate cashmere fineness.
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