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Abstract

The risk of Alzheimer disease (AD) increases with age, family history and informative genetic 

variants. Sadly, there is still no cure or means of prevention. As in other complex diseases, 

uncovering genetic causes of AD could identify underlying pathological mechanisms and lead 

to potential treatments. Rare, autosomal dominant forms of AD occur in middle age as a result 

of highly penetrant genetic mutations, but the most common form of AD occurs later in life. 

Large-scale, genome-wide analyses indicate that 70 or more genes or loci contribute to AD. 

One of the major factors limiting progress is that most genetic data have been obtained from 

non-Hispanic white individuals in Europe and North America, preventing the development of 

personalized approaches to AD in individuals of other ethnicities. Fortunately, emerging genetic 

data from other regions – including Africa, Asia, India and South America – are now providing 

information on the disease from a broader range of ethnicities. Here, we summarize the current 

knowledge on AD genetics in populations across the world. We predominantly focus on replicated 

genetic discoveries but also include studies in ethnic groups where replication might not be 
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feasible. We attempt to identify gaps that need to be addressed to achieve a complete picture of the 

genetic and molecular factors that drive AD in individuals across the globe.

Introduction

The rapid increase in the prevalence of dementia worldwide is considered by many to be 

a global emergency1. As we enjoy the benefits of longer lives, we face the blunt reality 

that dementia affects over 30% of those aged 80 years or older1. Estimations from the 

WHO suggest that around 55 million people globally have dementia, of whom 40 million 

are thought to have Alzheimer disease (AD) and over 60% live in low-income and middle-

income countries. As the proportion of older people in the population increases in nearly 

every country, the total number of individuals with AD is projected to rise to approximately 

78 million by 2030 and possibly 139 million by 2050. Currently, 6.5 million American 

individuals are living with AD, which equates to nearly 11% of the population of the USA. 

By 2050, this number is expected to have doubled to 13.8 million. The risk of late-onset AD 

increases with age, a family history of the disease and the presence of genes associated with 

the disease1. With no cure or prevention strategy on the horizon, countries worldwide seek 

ways to provide humane care for those affected at a cost that is sustainable.

The genetics of Alzheimer disease

Complex genetic disorders, such as AD, are likely to be solved by identifying variants 

predisposing to disease. These variants and the genes in which they lie can be investigated 

to determine the mechanisms by which they cause disease. Functional studies can then be 

performed to yield targets for therapeutic strategies. Over the past four decades, the genetics 

of AD has been an area of intense interest. According to estimates, 60–80% of the risk 

of AD is attributable to heritable (genetic) factors2. Despite this relatively high heritability, 

identifying genes that cause AD has proven to be complex, with both rare and common 

genetic variants contributing to the disease. The accuracy of identifying a specific genetic 

cause of dementia in an individual depends on the disease phenotype, age at onset and 

family history.

Prior to the sequencing of the human genome in 2003, the main research strategy was to 

focus on the rare, autosomal dominant forms of AD that begin in middle age. Family-based 

analysis methods (Box 1) were amenable to genetic approaches available at that time and 

mutations in three genes – APP, PSEN1 and PSEN2 – were discovered between 1985 and 

1995 (refs. 3–6). Since then over 300 pathogenic variants have been identified in these 

three genes, yet at least 25% of the Mendelian forms of AD remain to be defined7–9. 

Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are now being used 

to identify additional genes that contribute to these typically highly penetrant forms of the 

disease. Rare coding variants in PSEN1 and PSEN2 have also been found in multiplex 

families with late-onset disease10, indicating a genetic continuum between early-onset and 

late-onset forms. These results suggest that factors other than these variants can affect the 

age at onset and penetrance of AD11.
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In 1991, Pericak-Vance and colleagues12 found an association on chromosome 19q that led 

to discovery of variants in the apolipoprotein E (APOE) gene that increase or decrease the 

risk of the more typical late-onset form of AD. The APOE gene has three common allelic 

forms: ε2, ε3 and ε4. The ε4 allele was found to increase the risk of AD, whereas the 

presence of the ε2 allele was considered to be protective. This study also demonstrated the 

power of an association study that compares allele and genotype frequencies in two groups: 

individuals with AD and individuals without disease (case–control design; Box 1).

Over the three decades since the discovery of the association with APOE variants, research 

has proven that AD is highly heterogeneous with many variants conferring small effects 

on risk (polygenic)13. The success of the APOE case–control association design and the 

relative ease of recruiting individuals with and without AD has led to a multitude of studies 

that use this approach to identify additional genetic risk factors in populations throughout 

North America, Europe and Asia. Advances in genomic technology have promoted the 

case–control approach, which now includes genome-wide genotyping of single nucleotide 

polymorphism (SNPs) as well as WES and WGS. Analyses can focus on association 

with SNPs or variants or can evaluate the overall evidence of association with a gene, 

by aggregating the effect of multiple variants within the gene into one test. With the 

rapid decline in the cost of WGS and the advent of large national and international 

collaborations, genetic studies now include samples from hundreds of thousands or even 

a million participants. Over the past 3 years, studies14–17 have identified over 70 different 

genetic variants associated with AD using this approach (Fig. 1). The majority of these 

variants were identified in non-Hispanic white individuals mostly from Europe and the USA, 

and might not generalize to non-white and/or Hispanic individuals. Thus, the existing data 

are unlikely to fully explain the genetic risks among individuals from Africa, Asia, the 

Middle East, and Middle and South America. In addition, many of the studies in non-white 

individuals were small and the findings still need replication to be confirmed.

Polygenic risk scores provide a quantitative approach to combine the effect of multiple 

variants and have proven to be an important tool for defining genetic risk in the presence 

of many different variants with small individual effects. Polygenic risk scores have been 

evaluated in epidemiological cohorts to estimate the effect of risk factors in a population-

based setting in which the number of cases reflects the population incidence rate (Box 1). A 

polygenic risk score of the AD-associated genetic variants identified in non-Hispanic white 

individuals is associated with a faster rate of tau-PET accumulation18.

Migration, diversity and ancestry

Human migration and geodemographic events have taken place over thousands of years 

of human evolutionary history, and have shaped the genetic diversity among current 

populations. Substantial differences in allele frequencies and the extent to which common 

alleles are inherited together (linkage disequilibrium) can have profound effects on the 

associations of genetic variants with traits and disease in different populations. The 

phylogenetic analyses inferred from global human mtDNA sequences19 almost four decades 

ago demonstrated that anatomically modern humans originated in Africa and that the 

population subsequently expanded outwards. The largest split between human populations 
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occurred around 160,000–110,000 years ago in sub-Saharan Africa20,21 (Fig. 2). Over 

the past 10 years, sequencing of genomes of ancient humans22 and other hominins23 

demonstrated that individuals with a greater degree of African ancestry have less linkage 

disequilibrium than individuals with a smaller degree of African ancestry24,25. This is 

because, throughout human evolutionary history, the population living in Africa maintained 

a larger effective size and also had more time for recombination than other populations. 

By contrast, migration out of Africa within the past 50,000–100,000 years resulted in a 

distinct genetic pattern of populations living outside Africa showing less genetic diversity 

with a linear decline of heterozygosity and flattening of the ancestral allele frequency 

spectrum as a function of geographic distance from Africa and founder event bottlenecks26. 

These events have resulted in individuals with a higher degree of African ancestry having 

higher levels of genetic diversity than individuals with a lower degree of African ancestry27. 

In most genomic studies, individuals are assigned to genetic ancestry categories through 

principal component analysis, a multivariate approach intended to characterize individuals 

and populations by ethnobiological origins and relatedness.

These ancestral differences have implications for the assessment of genotypic risk28–30. 

Although some associations between genetic markers and disease are present across 

populations – providing important evidence for a shared genetic basis of disease risk – 

genetic risk prediction models developed from one ancestral group do not perform as well 

when applied to other ancestral groups31. Common variants can be shared globally but rare 

variants are usually shared by closely related populations and might be restricted to a single 

continental group32. The small group of humans that left Africa about 100,000 years ago 

and populated the rest of the world carried only a subset of the African variations. Thus, 

populations throughout the world may have genomes that include variants emerging as part 

of the African migration worldwide. The period in time and the number of individuals 

migrating would then determine the degree of African ancestry in a given population. 

However, the subset of human genetic variation left behind in Africa can be studied only in 

individuals with a high degree of African ancestry33.

African American and Hispanic groups, the largest admixed non-European groups in the 

USA, account for 12.6% and 16.3%, respectively, of the population34. The first Africans 

were brought to North America as slaves in the early 17th century and this continued until 

slavery was abolished in 1865 by the US Congress. The degree of variability in the number 

of variants is roughly proportional to the degree of recent African ancestry an individual 

has in their genome35. Thus, for admixed populations, overall genetic disease risk might be 

determined by multiple genetic variants from a combination of ancestral backgrounds. For 

admixed groups with African ancestry, it is essential to understand AD risk in indigenous 

African individuals.

Impact on APOE and other genetic associations with AD.—In most genetic 

studies conducted in individuals of non-European ancestry, participants self-reported their 

ancestry, and the researchers performed statistical corrections for ancestral heterogeneity 

(that is, population substratification owing to genetic ancestral background) or adjustments 

such as principal components. From studies in individuals of African36–39 and Hispanic 

ancestry40–44, notable ancestry-related differences have been identified in the genetic 
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architecture of AD. Compared with non-Hispanic white individuals, APOE ε4-associated 

AD risk is weaker in individuals with African ancestry but stronger in individuals of 

Japanese ancestry45–47. Preliminary evidence indicates that this variability in risk is driven 

by the ancestral origin of the DNA at the APOE ε4 locus (for example, local genetic 

ancestry)48,49. The APOE ε4 amino acid coding sequence does not differ consistently 

between populations of different ancestry; thus, the source of the variability in genotypic 

risk associated with APOE ε4 could lie in regulatory regions that affect gene expression. 

Indeed, in a post-mortem study of individuals with AD, higher levels of APOE expression 

were observed in the brains of individuals of European ancestry than in those of individuals 

of African ancestry50.

Genome-wide studies of individuals of African ancestry that used population 

substratification by principal components have identified many genes, including ABCA7 
and ACE, that contain ancestrally specific risk variants36,38,51 (Table 1). In ABCA7, a 

44 bp deletion was strongly associated with AD in African Americans52 and also present 

in Caribbean Hispanic individuals, who are known to have a high proportion of African 

ancestry (41.8%)53. Functional studies suggest that this ancestry-specific deletion might 

result in increased production of toxic amyloid-β (Aβ) in neurons and a reduced ability to 

clear Aβ in microglia52, making it a candidate of interest for development as a therapeutic 

target. Other rare truncating and splice-altering variants in ABCA7 confer risk in non-

Hispanic white individuals54–56.

Mutations in APP, PSEN1 and PSEN2 have been reported in individuals with early-

onset AD from many regions and ancestries, including northern and southern European 

populations57,58, various Middle Eastern and Arab populations59,60, Caribbean Hispanic 

populations61–64, Latin American populations65–67, populations from northern and southern 

Africa68–71, populations from Australia and New Zealand72,73, and a range of Asian 

populations including those from China, Korea, Taiwan, Japan, India and Malaysia71,74–80. 

Although some variants are shared across populations, most variants are unique to ancestral 

groups.

Africa

The Alzheimer’s Disease International report on dementia in sub-Saharan Africa describes 

the state of dementia in this region and summarizes several trends with respect to the ageing 

population81. It is noteworthy that of the 46 countries in sub-Saharan Africa, only a small 

fraction have existing capacity for dementia research and clinical care. Africa comprises 

mostly low-income to middle-income countries, and the prevalence of AD in the continent 

is expected to reach approximately 3.5 million by 2030 and 7.6 million by 2050 (ref. 81). 

Although there are several studies that focus on the epidemiological aspects of AD in Africa, 

research into the genomics of AD in Africa is in its infancy.

Several candidate gene studies of early-onset AD in Africa identified variants in AD-

associated genes previously identified in non-Hispanic white individuals: APP, PSEN1, 
PSEN2 (refs. 68–70) and TREM2 (ref. 82). The effect of the APOE ε4 allele on AD risk 

has also been investigated in various groups of individuals with African ancestry83–87. A 

Moroccan study sequenced exons 16 and 17 of APP in 17 individuals with sporadic AD 
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and eight individuals with familial early-onset AD. This included seven novel frameshift 

mutations and one novel splice mutation identified in exon 17. A similar targeted study of 

PSEN1 and PSEN2 in Moroccan individuals with familial and sporadic AD also identified 

one novel frameshift mutation in PSEN1 and two in PSEN2 (ref. 68). In an investigation 

of vascular disease-associated polymorphisms in 200 Tunisian individuals with dementia 

and 300 cognitively healthy Tunisian individuals, polymorphisms in APOE, angiotensin-

converting enzyme (ACE) and paraoxonase 1 (PON1) genes were found to be associated 

with dementia; the association of these variants with AD was not investigated87.

APOE remains the most studied AD gene in individuals of African ancestry. Its known 

association and substantial contribution to risk in non-Hispanic white individuals88 make it 

the obvious candidate for global investigation. One of the earliest studies of APOE among 

African American individuals living in New York City found no association with AD89, 

but subsequent studies of African American individuals from Indianapolis and Yoruban 

individuals from Ibadan, Nigeria, found an association between the APOE ε4 allele and 

incident AD83. However, among the Yoruban individuals, APOE ε4 homozygosity, but 

not heterozygosity, was a significant risk factor for AD, which indicates a weaker effect 

of the variant in individuals of African ancestry than in non-Hispanic white individuals. 

A second study of APOE in Yoruban individuals surmised that a combination of genetic 

effects (lack of association with APOE) and environmental effects (low cholesterol and lipid 

levels, and less vascular disease and hypertension, owing to a low-fat diet) might explain the 

difference84. A similar study in a Nigerian community84 examined the relationship between 

APOE genotype, cholesterol and AD. Individuals met NINCDS–ADRDA90 criteria for AD, 

and ICD-10 criteria91 for vascular dementia and other secondary dementias. However, the 

study lacked autopsy or biomarker information, leaving the possibility of misdiagnosis. 

Increased levels of cholesterol and LDL were associated with a higher risk of AD, but only 

in individuals without an APOE ε4 allele. The effect of APOE genotype on AD risk has 

also been investigated in Kenya but no association between APOE ε4 and AD risk was 

observed85.

The reports of lower APOE ε4-associated risk of AD in individuals of African ancestry than 

in non-Hispanic white individuals have triggered additional ancestry-specific studies92,93 

and studies to identify genetic variants that might lower APOE ε4 risk on an African 

ancestry haplotype. A statistically significant interaction between the APOE ε4 allele and 

the SNP rs10423769 was identified in a discovery dataset from African Americans36,94, 

and the finding was subsequently replicated by the same investigators in a large Puerto 

Rican cohort42 and the Yoruban cohort mentioned above95. The rs1042369_A allele was 

associated with an estimated 70% reduction in the risk of AD for APOE ε4 homozygotes. 

This African ancestry-specific locus is 2 Mb from the APOE locus and is located in a cluster 

of pregnancy-specific β1-glycoproteins; it might represent a potential therapeutic target for 

further investigation.

Latin America

The origin of people currently living in Latin America can be traced to extensive admixture 

between Native American, European and African populations, and the proportions of 
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different ancestries can vary according to region96–98. This historical population structure 

in Latin America makes genetic association studies challenging because of the ancestral 

differences that exist among countries and even regions within Latin America. An estimated 

8.5% of adults in Latin America aged 60 years and over have dementia99. The prevalence 

of dementia in the region is expected to increase by up to 400% by 2040, greater than the 

increase predicted in Western Europe or North America100.

Mutations in APP, PSEN1 and PSEN2 that cause early-onset AD have been identified 

in Caribbean Hispanic individuals10,61. In addition, a missense variant in PSEN1 
(NM_000021.3: c.1247T>C p.Ile416Thr), originating on an African haplotype, was 

identified in individuals from a Colombian admixed population101 and a variant at codon 

280 in PSEN1 (PSEN1 E280A) was identified in a large Colombian kindred102. A phase II 

clinical trial (NCT01998841) was then performed in individuals with the latter variant to test 

the efficacy of a monoclonal antibody (crenezumab) against monomeric and aggregated 

Aβ1–40 and Aβ1–42 (ref. 103). Although the study did not identify any statistically 

significant effects of treatment, cognitive, brain imaging and biomarker outcomes showed 

trends towards favourable outcomes. Compared with non-Hispanic white individuals, among 

Caribbean Hispanic individuals the effects of APOE ε4 homozygosity on AD risk are 

blunted and there is no increased risk among heterozygotes43,46.

Genome-wide association studies (GWAS) in Caribbean Hispanic individuals have identified 

several risk loci near genes known to be associated with AD in non-Hispanic white 

individuals: PICALM, CLU, BIN1, MS4A gene cluster, CD33, CD2AP, ABCA7 and 

EPHA1 (refs. 104–106). Subsequent WES or WGS studies in these individuals have also 

identified rare AD-associated variants in many other genes such as TREM2, SORL1, 
PINX1, PGL2, ABI3, PTK2B and AKAP9 (refs. 40,44,48,49,107,108). A study using 

admixture mapping in a large number of Caribbean Hispanic participants to identify 

AD-associated ancestral blocks for European, African and Native American ancestral 

components found four such ancestral blocks located on chromosomes 1, 6, 21 and 22. 

Fine mapping using these ancestral blocks prioritized the GCAT gene on chromosome 22, 

which was replicated in an independent dataset109 (Fig. 3). Functional studies in human 

post-mortem tissue and two model systems (Drosophila and zebrafish) suggested that the 

inflammation-related activity of GCAT is a response to amyloid toxicity, and that reduced 

GCAT expression exacerbates AD pathology.

Evidence of genetic interaction effects has also been observed. Among individuals from 

Mexico, the presence of the APOE ε4 allele and variants in SORL1 implicated a possible 

genetic interaction effect that increases AD risk110. A single mutation in the PSEN1 gene 

(E280A) is the cause of the world’s largest autosomal dominant AD kindred, located in 

Antioquia, Colombia. The mutation is virtually 100% penetrant for AD. It is noteworthy that 

a member of this Colombian family escaped cognitive impairment until her seventies. She 

also carried two copies of the APOE ε3 Christchurch (R136S) mutation11, suggesting that 

homozygosity for the APOE ε3 allele might be protective.
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East Asia

China is likely to have the largest number of individuals with AD in the world. According 

to a recent meta-analysis, the prevalence of dementia varies from 4.8% in southern China, 

to 5.2% in central China, 5.5% in northern China and 7.2% in western China; however, not 

all parts of the country have been surveyed111. East Asia has three major ethnic groups: Han 

Chinese, Japanese and Korean. As in many other populations, mutations in APP, PSEN1 
and PSEN2 have been identified among individuals with familial early-onset AD across all 

three groups77,112. In addition, candidate gene studies and GWAS have identified AD risk 

variants in or near several genes that also contain AD risk variants in other ethnic groups113. 

These genes include APOE, SORL1, SORCS1, TREM2, BIN1, CLU, MS4A4E/MS4A6A, 
CD33, PICALM, DAPK1, UNC5C, CNTNAP2, SHARPIN and KCNJ15. In Han Chinese 

individuals, the TREM2 p.H157Y variant reached an odds ratio of 11.01 in a targeted 

sequencing study114 and an odds ratio of ~3.6 in a meta-analysis of over 7,000 individuals 

with AD and 7,400 healthy control participants115, indicating the importance of this locus 

in this population. Additional loci suggested by GWAS or WGS included intergenic regions 

at SUDS3–SRRM4 and FAM47E–SCARB2 in Japanese cohorts; GCH1, RHOBTB3–GLRX 
and CHODL in Han Chinese cohorts; and CHD2, CACNA1A and LRIG1 in South Korean 

cohorts113,116–121 (Table 2).

Disease-associated loci differ notably among the three ancestral East Asian subgroups 

(Table 2). Although some of these differences might be explained by limited sample 

sizes and statistical power, Han Chinese, Japanese and Korean populations have distinct 

genetic makeups and substantial differences in allele frequencies and linkage disequilibrium 

patterns, which make the presence of ancestry-specific disease-associated variation likely122. 

We expect that additional variants and loci will be identified in East Asian populations as 

the results of additional, larger genetic studies begin to be published. Together, these data 

further highlight the importance of performing genetic studies in non-European populations 

to identify more effective, ancestry-informed druggable targets120.

West Asia and the Middle East

Throughout the West Asian and Middle East region, numerous families with early-onset AD 

and PSEN1 and PSEN2 mutations have been identified123–127. Mendelian forms of AD with 

novel phenotypes have also been observed. For example, in two individuals from the same 

family in Turkey, early-onset AD and spastic paraparesis was found to be associated with a 

heterozygous splicing variant (c.869-1G>A) in PSEN1 (ref. 123). In a family in Israel with a 

history of cognitive decline or intracerebral haemorrhage across seven generations, affected 

individuals were found to carry a copy number variant (chr21:27,224,097-27,871,284) that 

included the APP locus126. A second copy number variant on chromosome 5 co-segregated 

with the APP duplication in some family members. In this large family, asymptomatic 

carriers showed cognitive decline in their mid-thirties.

The association between APOE ε4 and AD in West Asian and Middle East populations is 

robust, although there are regional differences in APOE allele frequencies, specifically a 

low prevalence of the ε4 allele in some regions128. APOE ε4 has been strongly associated 

with AD in cohort and clinical studies from Egypt, Iran, Israel, Lebanon, Saudi Arabia and 
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Turkey129–134. In studies of familial and sporadic AD across the West Asian and Middle 

East region, associations with AD were confirmed for several established candidate genes: 

TREM2, SORL1, ABCA7, ACE, CD2AP, CLU and EPHA1 (refs. 124,129,134–141). A 

protective allelic association in PICALM was also reported142. Although there have been 

few large genome-wide investigations of AD in this region, the identification of common 

variants in known AD genes confirms the global nature of this disease.

Challenges and future directions

Many of the earlier studies discussed above were limited in size and statistical power 

to detect more than a few genetic associations. Some smaller studies lacked adjustment 

for population substratification, which might have affected the findings. Environmental 

factors such as socioeconomic status or access to health care are also likely to have 

influenced associations between genetic variants and AD. The ascertainment of larger 

cohorts consisting of individuals with a range of different ancestries, and the investigation of 

these cohorts with genome-wide arrays and WGS coupled with adjustment for ancestral 

background and important environmental factors, will be crucial if we are to fully 

disentangle the genetic and molecular underpinnings of AD.

New collaborative efforts such as the African Dementia Consortium (AfDC)143 are 

important milestones towards these goals. The AfDC is a coalition of African dementia 

researchers that aims to generate a variety of data including clinical, cognitive, 

epidemiological, socioeconomic, neuroimaging, genomic and biomarker data to characterize 

and understand AD and related dementias across Africa. The AfDC will work together 

to define interventions and treatments for dementia across Africa that could also have a 

worldwide impact. For example, currently only a few African countries have data available 

on AD prevalence and incidence (Fig. 4). The AfDC will promote research efforts in this 

area to better characterize the disease across the continent. Genetic studies will also have 

a key role, with the AfDC collaborating globally to identify new variants for AD, many 

of which will be unique to African populations. Currently the AfDC includes researchers 

from nine African countries: Nigeria, Ghana, Benin, Cameroon, Kenya, Uganda, Tanzania, 

Mozambique and Ethiopia. The AfDC is coordinated from the College of Medicine, 

University of Ibadan143, and we consider it to be crucial for future success in both research 

and clinical care in Africa.

Several new efforts aim to include participants with a range of different ancestries in studies 

based in the USA. The largest AD DNA sequencing study in the USA is the Alzheimer’s 

Disease Sequencing Project, which conducts both WES and WGS studies, and was designed 

to identify new risk and protective variants that could help to identify putative therapeutic 

targets. However, like previous genome-wide array studies, the initial large-scale sequencing 

studies focused primarily on non-Hispanic white individuals, and included a limited number 

of Hispanic and African American individuals144. The Alzheimer’s Disease Sequencing 

Project–Follow-Up Study aims to increase the diversity of AD datasets through a specific 

focus on inclusion of individuals from a range of different ancestral populations145. By the 

end of 2023, approximately 40,000 whole genomes are expected to have been assembled and 

released for analysis.
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Other efforts to improve the diversity of study populations in AD genetics research include 

the Research in African-American Alzheimer’s Disease Initiative, which collates whole 

genomes from multiplex African American families, and the Recruitment and Retention for 

Alzheimer’s Disease Diversity Genetic Cohorts146, which will collect data from another 

4,000 African American individuals and 4,000 Hispanic individuals as well as 5,000 

individuals recruited from various sub-Saharan African countries. In addition, Estudio 

Familiar de Influencia Genetica en Alzheimer is conducting family-based AD genomic 

studies in Caribbean Hispanic populations, and a WGS study of Korean participants is being 

performed as part of the Gwangju Alzheimer’s and Related Dementias (GARD) Study. 

Furthermore, studies are being performed in individuals of native Amerindian ancestry 

from the southern Peruvian Andes mountains, in Mexican individuals (Mexican Health 

and Aging Study), and in 2,000 Indian individuals from all parts of India (Longitudinal 

Aging Study in India). Finally, the Asian Cohort for Alzheimer’s Disease is evaluating 

approximately 6,000 individuals of Chinese, Korean and Vietnamese ancestry with late-

onset AD for genomic analyses. Several of these efforts also involve the acquisition of 

data on plasma or cerebrospinal fluid (CSF) biomarkers and multiomics. In addition, the 

ADNI4 study of the Alzheimer’s Disease Neuroimaging Initiative147 aims to enrol 50–60% 

of its new participants from populations previously under-represented in AD research studies 

in the USA by implementing improved culturally engaged approaches for recruitment 

and retention. We expect that these complementary efforts across populations of different 

ancestries will allow us to further disentangle the genetic contributions of individual 

ancestries to AD, identify genomic loci that are shared across ethnic groups, and pinpoint 

loci that are specific to a particular population. This would provide critical information 

on population-specific AD pathways, potential biomarkers, potential therapeutic targets for 

drug discovery, and observed health disparities.

Understanding phenotypic heterogeneity

Genetic studies require careful and thorough phenotyping. However, the criteria for the 

diagnosis of AD have evolved over the past few decades, resulting in somewhat of a moving 

target. The original diagnostic criteria for AD were created by a panel of experts from 

the National Institute of Neurological Disorders and Stroke and the Alzheimer’s Disease 

and Related Disorders Association (NINDS-ADRDA) in 1984 (ref. 90). This committee 

categorized three diagnostic levels: definite AD (neuropathological diagnosis), probable AD 

(diagnosis without confounding factors), and possible AD (diagnosis with comorbidities). 

The sensitivity and specificity of the clinical criteria for probable AD compared with 

post-mortem diagnosis were 81% and 70%, respectively148. These criteria were revised in 

2011 (ref. 148) to include pathophysiological changes. At this time, MRI, PET imaging and 

CSF analyte assays were just starting to be implemented in clinical and research settings, 

recognizing and reinforcing the observation that the underlying pathological changes related 

to AD can begin decades prior to the onset of clinical symptoms.

AD can be categorized into early-onset and late-onset forms on the basis of the age at which 

the first symptoms appeared. However, this classification can be arbitrary149: although 

the majority of genetic studies use a cut-off age of 65 years, some studies use 60 years 

of age13,150. Onset before age 65 years accounts for approximately 5–10% of AD13,149, 
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corresponding to ~300,000–700,000 individuals in the USA. Both early-onset and late-onset 

groups present primarily with memory-predominant phenotypes; however, individuals with 

early-onset AD can have a more aggressive course of disease with a reduced survival 

time151. Approximately 25% of individuals with early-onset AD have an atypical clinical 

presentation characterized by language, visuospatial or executive dysfunction and preserved 

episodic memory152. Some have considered early-onset AD to represent the purest form 

of the disease, but this might not be the case. Individuals with the fully penetrant 

autosomal dominant early-onset form of AD can have an increased burden of white matter 

hyperintensities, which reflect microvascular pathology, compared with cognitively healthy 

non-carriers several decades older153. Regardless of the age at onset, extracellular Aβ 
plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau 

protein are consistent at autopsy, and can be accompanied by cerebrovascular disease, 

Lewy bodies or other aggregated proteins1. TDP43 pathology, hippocampal sclerosis, 

vascular injury, pronounced brain atrophy154, higher tau burden155 and more widespread 

tau neuropathology have been associated with early-onset disease156,157. TDP43 deposition 

might even determine when hippocampal atrophy begins and the rate of neurofibrillary 

tangle accumulation158.

At brain autopsy, 20% to 30% of individuals with clinically diagnosed AD had 

cerebrovascular disease or Lewy body pathology, and sometimes both, in addition to plaques 

and tangles16,159–162 (Fig. 5). The results of neuroimaging and neuropathological studies 

indicate that cerebrovascular disease co-occurs with primary AD pathology and adds to 

disease manifestation160,163. Furthermore, a large body of epidemiological cohort studies 

has implicated a range of highly prevalent vascular risk factors including diabetes, insulin 

resistance, mid-life obesity and hypertension in dementia risk164. Whether cerebrovascular 

disease directly causes AD pathology or is a frequent comorbidity that contributes to the 

clinical phenotype remains an open question. Among individuals with AD, approximately 

20% also have α-synuclein pathology, intraneuronal Lewy bodies and Lewy neurites165–167. 

The presence of Lewy body pathology in AD is associated with earlier symptom onset168, 

worse cognition169, faster progression170 and parkinsonism171. Individuals with a high 

tangle load in the limbic system and cerebral neocortex are less likely to express the 

clinical features typical of dementia with Lewy bodies and tend to be diagnosed as having 

AD172. MRI studies further suggest that there are four atrophy pattern subtypes in AD: 

typical, limbic-predominant, hippocampal-sparing, and no atrophy173. The degree of clinical 

and neuropathological heterogeneity in AD can confound the functional understanding of 

genetics, making incorporation of additional information to improve diagnosis, such as 

blood-based biomarkers, critical. For example genetic influences in AD with associated 

cerebrovascular pathology, Lewy body accumulation or even TDP43 deposits have not been 

fully explored. Also, incorporating cerebrovascular disease and related risk factors in genetic 

studies of AD might provide novel information174,175.

Improving diagnostic accuracy

The era of precision medicine has encouraged the development of refinements in the 

clinical diagnosis of AD, thereby improving phenotype–genotype analyses. The inclusion 

of MRI, PET and CSF assays in the 2011 research criteria for the diagnosis of AD20 led 
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to a proposed research framework176 that used biomarkers to create classifications that 

reflect the deposition of Aβ and tau proteins and neurodegeneration – the so-called A/T/N 

classification177. ‘A’ refers to evidence of Aβ accumulation in the brain provided by PET or 

low CSF Aβ1–42 concentration. ‘T’ refers to tau pathology indexed with PET or increased 

tau concentration in CSF. ‘N’ refers to neurodegeneration and would be reflected by regional 

atrophy on MRI. As discussed in the preceding section, individuals with a clinical diagnosis 

of AD can have a range of underlying pathological changes, which can begin decades before 

diagnosis. Therefore, incorporating biomarker assessment into genetic studies might enable 

more accurate diagnoses and the identification of asymptomatic individuals with causal 

variants.

PET and CSF biomarkers have excellent sensitivity and specificity for AD and have been 

compared across countries, which identified variation across laboratories and led to efforts to 

standardize and harmonize these assays178. These biomarkers have also been used in genetic 

studies in several highly resourced countries in North America, Europe and Asia (Box 2). 

Interestingly, APOE ε4 was associated with increased brain Aβ deposition as measured 

using 11C-labelled Pittsburgh compound B and 18F-florbetapir PET in two relatively small 

studies in the USA and China179,180. In the study in the USA, SNPs from 20 genes 

previously associated with AD were analysed and Aβ deposition was found to be associated 

with variants in ABCA7 and FERMT2. In the largest of these studies to date, RBFOX1, 

a neuronal RNA binding protein, was found to be associated with brain amyloidosis in a 

cohort of >4,000 individuals in the USA181.

Several groups have investigated genetic associations with CSF biomarker levels in 

individuals with AD. CSF concentrations of Aβ1–42, t-tau, and p-tau181 were associated 

with four variants in the APOE region182, and CSF p-tau concentrations were higher 

in participants carrying APOE ε4 than in those with other APOE alleles182. In studies 

with larger sample sizes, additional loci associated with the same CSF biomarkers were 

uncovered on 3q28 and 6p21.1, near the TREM2 gene cluster183 and 1p32.2 and 6p25 

were found to be associated with AD risk, progression and age at onset184. In another 

study, variants in the MS4A4A gene were associated with increased CSF concentrations of 

TREM2 and reduced AD risk, indicating that the MS4A gene cluster is a key modulator of 

soluble TREM2 and AD risk185. Variants in AMTS1, TMEM106B and CPOX have been 

associated with CSF levels of neurofilament light chain (NfL) in individuals with AD34,186. 

In a small Chinese cohort, variants in several genes known to be associated with AD were 

found to also be associated with CSF levels of Aβ1–42, Aβ1–42 to Aβ1–40 ratio, t-tau and 

p-tau181 (ref. 187).

In addition to the detection of neurodegeneration as part of the A/T/N framework, 

structural imaging using MRI and diffusion tensor imaging can detect other changes 

in the brain (such as white matter hyperintensities) that are associated with AD and 

cognitive dysfunction, but lack sufficient sensitivity or specificity to be considered as 

biomarkers. There are several studies indicating that these findings can be genetically 

determined188,189. APOE ε4 and several single nucleotide variants in additional genes 

previously associated with AD in large genome-wide array studies have been found to be 

associated with structural changes on MRI190–192. In a Korean cohort, a missense variant 
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in SHARPIN was found to be associated with measures of atrophy as manifested by loss 

of hippocampal volume and entorhinal cortical thickness, especially among individuals with 

AD193. Another investigation combined genome-wide array data, information on structural 

changes from MRI and cognitive measures in individuals with AD, and identified novel loci 

in or near EHBP1, CEP112, SMOC2 and IL1RAPL1 that were associated with cognitive 

phenotypes190.

Blood-based biomarkers.—Evidence indicates that recently developed blood-based 

biomarkers194,195 can strengthen the diagnoses of AD, mild cognitive impairment and 

cognitive decline, and allow prediction of incident disease. Blood-based biomarkers provide 

an unparalleled opportunity to incorporate biomarker information in practice worldwide 

including low-resourced countries where brain imaging and CSF analysis might not be 

possible. In a genetic association study performed in the UK that included individuals with 

AD and cognitively healthy controls and was adjusted for age, sex, population stratification 

and case–control status, the presence of an APOE ε4 allele was associated with levels of 

all blood-based biomarkers, including Aβ1–40, Aβ1–42, glial fibrillary protein and NfL196 A 

GWAS from the Alzheimer’s Disease Neuroimaging Initiative found three variants in CD1A 
that were associated with blood NfL levels in individuals without dementia (mean age 72.9 

years)197. In individuals with AD and healthy controls from China, total AD polygenic risk 

score was associated with plasma concentrations of Aβ1–42, t-tau and NfL, and Aβ1–42 to 

Aβ1–40 ratio198. Gene-based analyses of the data in this study indicated that ABCA7 and 

UNC5C, as well as APOE ε4, were the main contributors to the association.

A worldwide approach by the Alzheimer’s Disease Neuroimaging Initiative is a 

collaborative effort to investigate imaging and biofluid markers for AD across North 

America, Europe, Argentina, Australia, China,Japan, Korea, Mexico and Taiwan. 

Collaboration among these developed countries will improve precision in the diagnosis 

of AD and related disorders. However, biomarker-based studies of populations in low-

income countries, which, according to the WHO, includes 58% of people in the world 

with dementia, remain scarce. Therefore, the inclusion of readily available, blood-based 

biomarkers in genetic studies would greatly augment phenotype characterization worldwide.

Functional genomics

Investigators have initiated functional studies that use approaches such as epigenomics, 

transcriptomics, proteomics and metabolomics to better understand the genetic bases of 

familial and sporadic AD and related disorders (Box 3). Integrated multiomics approaches 

can be driven by the phenotype, the environment or the genome. The phenotype approach 

uses multiomics layers to compare individuals with a disease with healthy controls and 

can define more homogeneous subgroups than clinical diagnosis alone. These subgroups 

can have unique genetic profiles. The environmental approach uses multiomics analyses 

to investigate mechanistic links to environmental or medical risk factors such as vascular 

disease, physical activity, smoking and sleep. The genome approach is a variant-centred 

or gene-centred integration of harmonized multiomics to determine causality and identify 

underlying mechanisms.
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Investigating AD-associated genetic variants as quantitative trait loci (QTL) for epigenomic, 

transcriptomic, proteomic and metabolomic variables can be used to explore how variants in 

genes perturb pathways leading to AD. Multiomics approaches can also be used to validate 

variants of uncertain significance. Additionally, associations between genetic variants and 

exogenous metabolites allow assessment of gene–environment interactions in AD. Non-

coding RNAs (ncRNAs) – including long ncRNAs, circular RNAs, small non-coding 

microRNAs and natural antisense transcripts – have been shown to regulate signalling 

pathways involved in AD (such as apoptosis, mitochondrial dysfunction and neurotrophic 

factor depletion in neurons and microglia)199. The role of ncRNAs can be investigated with 

transcriptomic and epigenetic approaches but to date the specific set of ncRNAs involved in 

AD has yet to be identified.

The genes that have been consistently associated with AD have shaped approaches to 

elucidating the causes of AD, and might yet reveal potential targets for therapeutic 

development; however, the existing multiomics data have some limitations. First, despite 

the identification of many AD-associated loci, the downstream effects of only a fraction 

have been studied. Second, the possibility that AD might result from changes in the 

regulation of gene expression by ncRNAs has not been fully explored200,201. Third, many 

previous multiomics studies have focused on post-mortem tissues, which generally represent 

the end stage of AD, so the identified associations could reflect disease progression and 

not disease risk. Fourth, large multiomics datasets have been collected from non-Hispanic 

white individuals but few such datasets exist for other ethnic and racial groups, hindering 

comparisons.

Multiomics approaches offer an opportunity to understand the ‘flow of information’ that 

underlies disease (Fig. 6). AD is by its very nature a non-linear, genetically driven, 

pathophysiological disease with high heterogeneity in biological alterations202. Failure 

of multilevel biological systems underlying AD includes proteostasis (Aβ and tau), 

synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, 

and oxidative stress. The various ‘omics’ do not exist in isolation, but are part of a 

poorly understood and highly complex and interdependent system203,204. Therefore, a 

systems-level understanding of AD, with generation of robust multiomics datasets across 

diverse ancestries and harmonization of the results to include associated genes, is needed 

to understand underlying disease mechanisms and to inform our understanding of the 

biological continuum of this disease.

Conclusions

If we are to fully understand the genetic influences on the common biology of AD, it 

is crucial that we identify the broadest range of genetic variations that influence AD. 

Expansion of ongoing efforts to sequence and analyse the genomes in under-sampled 

areas of the world, ideally combined with acquisition of additional multiomics data and 

appropriate development of infrastructure, resources, training and ethical guidelines to 

support this research, will be essential to improve our understanding of global genetic 

variation profiles and disease. To achieve this aim, a wide range of barriers to research 

participation will need to be addressed to improve inclusion of under-represented population 
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groups. It will also be essential to address the shortage of biomedical research infrastructure 

and expertise, expand support for the integration of international collaborative efforts and 

increase community engagement to broaden the cultural acceptability of biobanking and 

genomic research. A WGS study of individuals from over 50 ethnolinguistic groups by 

the Human Health and Heredity in Africa (H3Africa) consortium that was published in 

2020 aimed to further characterize African genomic diversity (that is, the region with 

the greatest level of human genetic variation)205. This effort identified more than three 

million previously undescribed genetic variants, and refined our understanding of patterns of 

ancestral admixture, continental migration, gene flow and the response to human disease205, 

underscoring the scientific imperative for a broader characterization of the global genomic 

diversity to develop treatments that will be effective for everyone.

To improve precision in genetic studies and the diagnosis of AD in clinical and 

research settings, it will be crucial to obtain and validate biomarker information in low-

income countries across the world. Standardizing and harmonizing a range of phenotypes 

using imaging and fluid biomarkers would improve the phenotype–genotype analyses of 

populations across the world. Ultimately, such an endeavour would allow investigators 

to develop a precision medicine approach, which might differ across ancestral groups. 

The limited availability of PET facilities and laboratories equipped to analyse biomarkers 

in some countries underscores the urgent need to develop improved biomarkers that are 

inexpensive and readily available to all.
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Related links

Alzheimer’s Disease Neuroimaging Initiative: https://adni.loni.usc.edu/

Alzheimer’s Disease Sequencing Project-Follow-Up Study (ADSP-FUS): https://

adsp.niagads.org/

Alzheimer’s Disease Sequencing Project-Follow-Up Study: https://www.nia.nih.gov/

research/ad-genetics

Asian Cohort for Alzheimer’s Disease: https://acadstudy.org/

Estudio Familiar de Influencia Genetica en Alzheimer (Puerto Rican Alzheimer 
Disease Initiative; EFIGA): https://dss.niagads.org/cohorts/estudio-familiar-de-influencia-

genetica-en-alzheimer-efiga/

Gwangju Alzheimer’s and Related Dementias (GARD) Study: https://dss.niagads.org/

cohorts/gwangju-alzheimers-and-related-dementia-gard/
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Longitudinal Aging Study in India: https://lasi-india.org/

Mexican Health and Aging Study: https://www.mhasweb.org/Home/index.aspx

Research in African American Alzheimer’s Disease 
Initiative (REAAADI): https://med.miami.edu/centers-and-institutes/hihg/

research-programs/alzheimers-disease-and-related-dementias/research-in-african-american-

alzheimer-disease-initiative

WHO dementia fact sheet: https://www.who.int/news-room/fact-sheets/detail/dementia

Glossary

Kindred
An aggregate of genetically related individuals.

Principal components
Principal components analysis is a statistical method commonly used in population genetics 

to identify substructure in the distribution of genetic variation within populations.

Quantitative trait loci
Regions of DNA each associated with a particular quantitative phenotypic trait.

Recombination
Genetic recombination is the exchange of genetic material between different individuals 

which leads to offspring with combinations of traits that differ from those in either parent.

Variants of uncertain significance
Genetic variants for which association with a specific trait is unclear.
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Key points

• The genetic variation underlying Alzheimer disease (AD) differs across ethnic 

groups.

• Large-scale genomic studies have identified over 70 genes or genetic loci 

associated with AD risk, but these data have largely been obtained from 

populations in Europe and North America, which hinders our understanding 

of the molecular mechanism(s) underlying the disease in under-represented 

populations and the development of a personalized therapeutic approach.

• Expansion of efforts to sequence and analyse the genomes of people from 

under-studied areas of the world, combined with acquisition of additional 

multiomics data and appropriate development of infrastructure, resources, 

training and ethical guidelines, will be essential to improve our understanding 

of global genetic variation profiles underlying dementia.

• Pathological heterogeneity is the norm in AD and efforts to incorporate this 

information into genetic studies is underway.

• Incorporation of improved biomarkers that can be obtained in low-resource 

countries will be critical to increase diagnostic accuracy in these efforts.
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Box 1

Types of genetic study

Family-based studies

Family-based studies have been used for decades to investigate many monogenic 

disorders. Investigation of multigenerational families facilitated the discovery of 

presenilin 1 (PSEN1), presenilin 2 (PSEN2) and amyloid precursor protein (APP) 

in early-onset, autosomal dominant Alzheimer disease (AD). However, families with 

late-onset AD have also been widely recruited and used in linkage and family-based 

association studies 209–212. Family-based studies are most feasible when onset of the 

disorder is at a young age, so that the proband’s parents are still alive213,214. Challenges 

to this type of analysis include the variable age at onset and penetrance of disease as well 

as the clinical and genetic heterogeneity of AD, even within a family.

Case–control studies

The case–control design is the most frequent approach used now to identify genetic 

variants contributing to disease owing to the relative ease in recruiting individuals. This 

design seeks to identify differences in allele or genotype frequencies between a group of 

participants with AD and a group of healthy controls. This approach was used to identify 

the apolipoprotein E association with AD. However, participants in the two groups must 

be rigorously defined and matched for key factors such as ancestry. Observational studies 

with a mix of individuals with AD and healthy individuals can also estimate the effect 

of a variety of genetic and other risk factors on outcomes and can also contribute to our 

understanding of novel genetic risk factors. Thus, longitudinal, observational studies such 

as the Alzheimer’s Disease Neuroimaging Initiative can provide a broad assessment to 

evaluate a wide range of biomarkers and outcomes.

Observational cohort studies

Observational cohort design can also be used to examine the effect of risk factors 

in a population-based setting in which the number of cases reflects the population 

incidence rate. The Washington Heights–Inwood Columbia Aging Project is a multi-

ethnic cohort consisting of African Americans, non-Hispanic white individuals, and 

Caribbean Hispanic individuals all recruited from northern Manhattan47. Another well-

known longitudinal prospective cohort is the Adult Changes in Thought study that 

randomly recruited individuals 65 years of age or older, living in Seattle, who were 

members of Group Health and were cognitively intact at the time of enrolment in Adult 

Changes in Thought215. A limitation of this approach can be the clinical and genetic 

heterogeneity within the cohort, which can confound the results.
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Box 2

Biomarkers for Alzheimer disease

Brain MRI

Alzheimer disease (AD) is accompanied by neurodegenerative changes that are 

detectable with structural MRI years before the clinical diagnosis216. Neurodegeneration 

presents as patterns of cortical thinning217 and focal atrophy in the medial temporal 

lobe218. Structural MRI captures cerebral comorbidities in AD, including ischaemic 

lesions and haemorrhagic lesions.

Amyloid and tau PET imaging

PET is another neuroimaging tool, and the development of molecularly based amyloid 

and tau tracers has greatly changed the ability of PET imaging to enhance the diagnosis 

of AD. The need for obtaining and storing radioactive biomarkers, the expense of 

acquiring the images and the feasibility of imaging large numbers of individuals have 

prevented the use of PET in individuals with AD in routine clinical settings.

Cerebrospinal fluid biomarkers

Biomarkers in the cerebrospinal fluid (CSF) including amyloid-β (Aβ1–42), total tau 

(t-tau), and tau phosphorylated at threonine 181 or 217 (p-tau) reflect the underlying 

pathophysiology of AD and can aid in the differential diagnosis. A recent worldwide 

multicentre harmonization project generated consensus interpretations of CSF biomarkers 

in AD219. Some evidence suggests that CSF biomarkers, particularly measures of t-tau 

and p-tau, can differ between individuals of African ancestry and non-Hispanic white 

individuals220,221.

Blood-based biomarkers

Technological advances have now made it possible to measure AD biomarkers in 

plasma222 (see the figure) — single-molecule array-based assays are now available for 

Aβ1–42, p-tau181 and p-tau217 (ref. 223). Plasma concentrations of neurofilament light 

chain (NfL), a marker of neuronal injury, are increased in AD and provide a sensitive 

biomarker for neurodegeneration224,225. Plasma NfL concentrations are associated with 

neurofibrillary tangle pathology and neurodegeneration measured at autopsy226.

Research into AD biomarkers across racial and ethnic groups has been challenged by 

small sample sizes, difficulty recruiting participants and selection biases. More work and 

greater collaboration are required on a global scale.
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Most promising blood-based biomarkers for AD by disease stage.
Adapted from ref. 222, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Reitz et al. Page 31

Nat Rev Neurol. Author manuscript; available in PMC 2023 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


Box 3

Functional genomics

Epigenetics

Epigenetics represents a dynamic molecular modification that influences gene expression 

and can be sensitive to genetic variation, environmental factors and disease state227. 

Altered DNA methylation is involved in Alzheimer disease (AD) and affects gene 

expression228. CpG-related single-nucleotide polymorphisms (CGS) alter the sequence 

of the primary target sites for DNA methylation229 and account for a substantial fraction 

of allele-specific methylation in the human genome 230,231. More than 80% of CGS 

have a regulatory role in DNA methylation 232. Epigenome-wide association studies can 

identify disease-associated methylomic variation.

Transcriptomics

Transcriptomics measures the amounts of transcripts (both mRNA and non-coding 

RNA (microRNAs, long non-coding RNAs and circular RNAs)) being made, can be 

used to identify novel genetic associations, and can explain associations between gene 

expression, disease and genetic variants. Transcriptome sequencing has been used in 

conjunction with whole-exome and whole-genome sequencing, and multiple types of 

RNA transcripts have been associated with AD in post-mortem brain 107,233.

Proteomics

Proteomics analyses involve the identification and quantification of proteins present in 

tissues and biological fluids. Proteins are effectors of biological function, and their 

levels are not only dependent on corresponding messenger RNA levels but also on host 

translational control and regulation. Second to genetic mapping, proteomic investigations 

can validate disease pathways and uncover novel protein networks and mechanisms, 

such as RNA splicing, development, immunity, membrane transport, lipid metabolism, 

synaptic function and mitochondrial activity.

Metabolomics

Metabolite levels can be associated with disease or with related underlying biological 

mechanisms 234, and are influenced by the environment, medications, diet, alcohol and 

tobacco use, sex235, ethnic group 236–239 and genetic variation 238,240. A comprehensive 

assessment of exogenous, endogenous and microorganism-derived metabolites can reflect 

both the environmental exposures and the biological response241. Plasma is a readily 

available source for metabolomics analysis, and studies using this approach can augment 

the functional assessment of genetic variants in AD.
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Fig. 1 |. Genetic loci associated with Alzheimer disease in genome-wide association studies of 
non-Hispanic white individuals.
Manhattan plot from a study by Bellenguez and colleagues16 showing the identified genetic 

loci associated with Alzheimer disease in non-Hispanic white individuals. P values are two-

sided raw P values derived from fixed-effect meta-analysis. The threshold for genome-wide 

significance (P = 5 × 10−8) is indicated by the red dashed line, and the suggestive threshold 

for genome-wide significance (P = 1 < 10−5) is indicated by the black dashed line. Loci are 

named for the closest gene to the sentinel variant for each locus. Loci newly identified by 

Bellenguez et al. are shown in red, whereas loci previously reported are shown in light and 

dark blue. Adapted from ref. 16, Springer Nature Limited.
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Fig. 2 |. Timeline and routes of human migration inferred from genomic data.
Dashed lines represent routes of migration that remain controversial. CA, Central Anatolia; 

FC, Fertile Crescent; IP, Iberian Peninsula; kyr, thousand years; PCS, Pontic-Caspian steppe. 

Adapted from ref. 208, Springer Nature Limited.
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Fig. 3 |. Admixture mapping of Alzheimer disease in Caribbean Hispanic individuals.
Manhattan plots of analyses conducted in admixMap. Model 1 (upper panel) is adjusted for 

age, sex, genotype batch, principal components for population stratification, and kinship. 

Model 2 (lower panel) is in addition adjusted for APOE genotype. The red highlighted parts 

represent the identified ancestral blocks significant after multiple testing correction. Adapted 

from ref. 109, Springer Nature Limited.
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Fig. 4 |. Prevalence of dementia in Africa.
Heat map showing the wide range of dementia prevalence in African countries determined 

over the past 25 years. Dementia prevalence studies have also been conducted in Senegal 

and Kenya, but the data are not yet published. Adapted with permission from ref. 143, Wiley.
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Fig. 5 |. Pathology in clinically diagnosed Alzheimer disease.
The proportions of other types of pathological changes in individuals with clinically 

diagnosed Alzheimer disease (AD). The data are from a publication by DeTure and 

Dickson162, in which they describe the pathological evaluation of 626 individuals from 

the Mayo Clinic Brain Bank. ‘Not AD’ indicates a completely distinct form of dementia.
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Fig. 6 |. An integrated multiomics approach.
Integrated multiomics approaches can be used to understand how genetic variation leads 

to disease, to establish which molecular pathways are altered, and to identify new 

therapeutic targets and diagnostic approaches. Expression quantitative trait loci (eQTLs) 

would be generated from each omics layer (gene expression from the transcriptome, protein 

quantitative traits from the proteome, methylation quantitative traits from the metabolome). 

These multiomics layers would then be integrated into a systems analysis that includes 

information on the genome and epigenome, with the goal of furthering understanding of 

disease mechanisms and developing novel treatments and diagnostics.
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Table 1 |

Genetic loci with a P value of ≤10−7 identified in GWAS of AD in African Americans

SNP Position (hg38) Closest gene Minor allele MAF Ref.

rs115684722 1:23,224,0417 SIPA1L2 T 0.003 36

rs2633682 3:104,690,364 ALCAM A 0.338 36

rs168193 3:5,260,392 EDEM1 G 0.267 36

rs145848414 5:174,587,111 NSG2/MSX2 A 0.0416 38

rs184179037 5:37,483,838 WDR70 T 0.0008 36

rs7748513 6:41,160,234 TREM2 a A 0.459 36

rs112404845 7:51,510,325 COBL T 0.01 206

rs569584007 11:43,145,292 API5 b G 0.0023 36

rs115816806 11:76,830,796 ACER3 G 0.0083 36

rs75739461 12:18,318,612 PIK3C2G A 0.0151 36

rs9516245 13:93,507,547 GPC6 C 0.0189 36

rs570487962 15:97,449,455 ARRDC4/IGF1R C 0.0008 36

rs79537509 16:8,238,399 RBFOX1 a A 0.007 36

rs115550680 19:1,050,421 ABCA7 a G 0.0681 38

rs157591 19:44,920,677 APOE a A 0.1422 38

rs3745495 19:50,021,075 VRK3 c G 0.0877 36

A P value cut-off of ≤10−7 indicates loci suggestive of genome-wide significance. GWAS, genome-wide association study; hg38, Genome 
Reference Consortium Human Build 38; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.

a
Locus is also observed in non-Hispanic white individuals.

b
5 Mb apart from but not in linkage disequilibrium with CELF1/SPI1 locus observed in non-Hispanic white individuals16.

c
1.7 Mb apart from but not in linkage disequilibrium with CD33 observed in non-Hispanic white individuals17.
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Table 2 |

Genetic loci reported with a P value of ≤10−5 by GWAS or WGS studies in East Asian populations

SNP Position (hg38) Closest gene Minor allele MAF Ref.

Japan

rs4598682 11:121505242 SORL1 a G 0.192 207

rs1992269 18:1872316 ENSG00000266602 T 0.018 116

rs802571 7:146265094 CNTNAP2a,b G 0.029

rs11613092 12:118455443 SUDS3 T 0.1367

rs920608 4:76217307 FAM47E/SCARB2 C 0.044 120

China

rs72713460 14:54830325 GCH1 T 0.134 121

rs2591054 15:57320212 LINC01413 T 0.246

rs73052335 19:44916825 APOC1/APOE C 0.092

rs928771 21:38291838 KCNJ15 G 0.154 117

rs3777215 5:95786296 RHOBTB3/GLRX A 0.168

rs6859823 5:106218683 ENSG00000252337 T 0.369

rs234434 14:97354683 LINC02325 G 0.237

rs2255835 21:18119346 CHODL C 0.321

South Korea

rs1890078 10:107218478 SORCS1 C 0.064 119

rs12594991 15:92973197 CHD2 A 0.141

rs189753894 19:13513675 CACNA1A A 0.359

rs2280575 3:66492439 LRIG1 G 0.059

A P value cut-off of ≤10−5 indicates loci suggestive of genome-wide significance. GWAS, genome-wide association study; hg38, Genome 

Reference Consortium Human Reference37; MAF, minor allele frequency; SNP, single nucleotide polymorphism; WGS, whole-genome 
sequencing.

a
Locus is also observed in non-Hispanic white individuals.

b
Variants in CNTNAP2 have also been reported to be associated with vascular dementia in individuals from Spain174.
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