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Abstract

Cardiac cine magnetic resonance imaging (MRI) has been used to characterize cardiovascular 

diseases (CVD), often providing a noninvasive phenotyping tool. While recently flourished 

deep learning based approaches using cine MRI yield accurate characterization results, the 

performance is often degraded by small training samples. In addition, many deep learning models 

are deemed a “black box,” for which models remain largely elusive in how models yield a 

prediction and how reliable they are. To alleviate this, this work proposes a lightweight successive 

subspace learning (SSL) framework for CVD classification, based on an interpretable feedforward 

design, in conjunction with a cardiac atlas. Specifically, our hierarchical SSL model is based 

on (i) neighborhood voxel expansion, (ii) unsupervised subspace approximation, (iii) supervised 

regression, and (iv) multi-level feature integration. In addition, using two-phase 3D deformation 

fields, including end-diastolic and end-systolic phases, derived between the atlas and individual 

subjects as input offers objective means of assessing CVD, even with small training samples. 

We evaluate our framework on the ACDC2017 database, comprising one healthy group and four 

disease groups. Compared with 3D CNN-based approaches, our framework achieves superior 

classification performance with 140× fewer parameters, which supports its potential value in 

clinical use.

1. INTRODUCTION

Assessment of cardiovascular disease (CVD) using cine magnetic resonance imaging 

(MRI) (e.g., multi-slice 2D cine MRI) has been used to visualize and quantify structure 

and function of the beating heart [1]. While manual evaluation of CVD using these 

complex spatiotemporal data is time-consuming and often non-reproducible, automatic CVD 
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assessment can efficiently guide treatment, which is significant in reducing the risk of 

sudden death and the severity of symptoms.

Prior work on early diagnosis and prognosis of CVD using cardiac cine MRI [2, 1] depends 

on the accurate segmentation of the left ventricle in end-diastolic (ED) and end-systolic 

(ES) phases [3] to derive clinical parameters, such as ejection fraction (EF). However, EF 

or related volumetric measures often lack sensitivity and discrimination ability. For the past 

several years, deep learning (DL)-based approaches [4] have been actively developed in this 

area, demonstrating superior performance in phenotyping tasks. For example, convolutional 

neural networks (CNN)-based approaches have been the main workhorse behind this 

endeavor [5].

Although DL-based approaches have yielded outstanding performance for computer-aided 

diagnosis or prognosis, several difficulties arise, which hinders their wide adoption for 

clinical applications [5]. First, DL-based approaches usually rely on massive labeled 

training datasets [4]; collecting and accurately labeling a sufficiently large number of 

training datasets for clinical applications pose challenges due partly to costly labeling or 

privacy concerns over sensitive patient information [6]. Given a small number of training 

data, CNN-based models with a myriad of parameters are likely to overfit the training 

data, thus leading to performance degradation in deployment, when using datasets with a 

different distribution, compared with training data. More importantly, many DL models are 

considered a “black-box” [7, 8], for which DL models remain largely elusive in how the 

models yield a prediction and how reliable they are. The aforementioned issues motivate us 

to develop an interpretable framework that is compatible with a limited number of training 

datasets for clinical implementations.

In this work, we propose to develop a lightweight and interpretable model based on 

successive subspace learning (SSL) for accurate and efficient CVD classification [9]. We use 

two phases, including ED and ES, to represent the entire cardiac cycle. To encode objective 

and characteristic differences across individuals, we first construct a cardiac atlas from 

cine MRI using diffeomorphic groupwise registration. Second, we perform diffeomorphic 

registration between the atlas and individual subjects to yield 3D deformation fields in both 

phases. Since 3D deformation fields encode compression and expansion of each tissue point 

with respect to the mean representation, they can offer objective and detailed means of 

assessing CVD. Then, the interlaced concatenation of the deformation fields for both ED 

and ES phases is processed by our framework to explore the difference between the two 

phases. Our framework follows a multi-layer stacked design, in which each layer consists 

of the following modules: (i) direction-wise 3D neighborhood voxel construction for the 

sequential expansion of near-to-far neighborhood for local-to-global information extraction; 

(ii) unsupervised dimension reduction with direction-wise subspace approximation with 

adjusted bias (Saab) transform; (iii) supervised dimension reduction with novel class-wise 

entropy guided feature selection and label-assisted regression; and (iv) multi-layer feature 

concatenation for final classification with support vector machine (SVM). Notably, to 

address the sign confusion problem in DL, the Saab transform [10] has been proposed 

to replace nonlinear activation units [7]. More appallingly, its parameters are computed in 
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a feedforward manner, which does not depend on the backpropagation and is thereby more 

mathematically interpretable [10, 11].

The main contribution of this work is summarized as:

• To our knowledge, this is the first effort at exploring two-phase 3D deformation 

fields with an SSL framework for the CVD classification task.

• Novel direction-wise Saab transform alongside class-wise entropy-guided feature 

selection is performed for efficient unsupervised/supervised dimension reduction 

for 4D deformation fields (3D spatial deformation+direction).

• Thorough evaluations on the ACDC2017 database show superior CVD 

classification performance of our framework over 3D CNN-based approaches 

with 140× fewer parameters.

2. METHODOLOGY

2.1. Cardiac atlas and deformation field construction

Given ED and ES phases ℝ256 × 256 × 64  of cine MRI volumes from controls, we first 

construct a cardiac atlas for both ED and ES phases with group-wise diffeomorphic 

registration with cross-correlation as our similarity measure [12]. Second, using cine MRI 

volumes in both ED and ES phases, we compute multi-phase 3D deformation fields to 

encode relative deformations with respect to the mean ED and ES atlas volumes. This is 

achieved by diffeomorphic registration between the ED and ES volumes of each individual 

and the ED and ES atlas volumes, respectively. As a result, we have the deformation 

fields ℝ3 × 256 × 256 × 64  with three directions in each voxel. The region of interest (ROI) is 

cropped to ℝ3 × 100 × 100 × 64, and the interlaced concatenation ℝ3 × 100 × 100 × 128  is used as 

input to our framework.

2.2. SSL based on two-phase deformation fields

Our framework follows a stacked design in a feedforward manner, which consists of L
cascade layers for local-to-global information extraction as shown in Fig.1. Each layer has 

(i) direction-wise 3D neighborhood voxel construction, (ii) unsupervised Saab transform, 

(iii) supervised class-wise entropy-guided feature selection, and (iv) SVM with multi-layer 

features concatenation.

2.2.1. Unsupervised subspace approximation—First, the neighborhood voxel 

union is constructed to define the region to be explored neighboring spatial content. Instead 

of the conventional image-based SSL [13], we propose a direction-wise 3D neighborhood 

voxel construction for our two-phase deformation fields. Each union has the size of ℎ × w × z
and the step length of 1 in 3D space. Therefore, for an input sample with the size 

of H × W × Z, we have H − ℎ + 1 × W − w + 1 × Z − z + 1  neighborhood unions after 

incorporating a boundary effect. Of note, we have H, W = 100, Z = 128 in each direction of 

the first layer. Notably, the three directions are processed independently at the unsupervised 

feature extraction stage, which can be processed in parallel. Then, each union is flattened as 
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a vector x with the length of ℎ × w × z, which is to be compacted to a F l dimension vector in 

the l-th layer with the Saab transform.

The Saab transform can be seen as a variant of principal component analysis (PCA), and the 

transform resorts to the direct current (DC) and alternating current (AC) anchor vectors, by 

expressing x with a compacted approximation feature f. Specifically, for the Saab transform 

in our l-th layer, we configure 1DC vector and F l − 1AC vectors. Of note, all of them have 

the length of ℎ × w × z as x. Therefore, we can formulate the i-th dimension of f as an affine 

transform of x. Specifically, we have:

fi = ai
Tx + bi, i = 0,1, ⋯, F1 − 1, (1)

where the bias term bi is a scalar [10]. Similar to PixelHop [10], we simply define 

bi ≡ d F l, d ∈ ℝ, and split the anchor vectors into DC and AC vectors as:

• DC anchor vectora0 = 1
ℎ × w × z 1, ⋯, 1

T
,

• AC anchor vectorai, i = 1, ⋯, F l − 1 .
(2)

We would expect the subspace of AC to be the orthogonal complement to the subspace of 

DC. Therefore, the AC component of x can be formulated as xAC = x − xDC. Then, we apply 

PCA to xAC, and choose the top F1 − 1 principal components as our AC anchor vectors. An 

anchor vector operates on a region of the input data, and generates a scalar, which is similar 

to the convolution operation in CNNs. The anchor vector can be seen as a filter [10]. In 

addition, using several anchor vectors is similar to using numerous filters in contemporary 

DL. Instead of iteratively learned filters in DL with supervised backpropagation, the anchor 

vectors in our framework are unsupervised as those are defined using PCA.

After the Saab transform of each union, we half the spacial size with the max-pooling 

operation and send it to the next SSL layer. With the multi-channel input, the neighborhood 

construction involves F1 channels at each voxel position, which is processed in parallel 

simliar to PixelHop [10]. With the stacked SSL layers, the neighborhood unions are related 

to more original voxels to explore global features. Similarly, modern CNNs achieve a larger 

reception field, by using deeper layers. The detailed layer-wise unsupervised dimension 

reduction modules in our SSL model are provided in Table 1.

2.2.2. Supervised dimension reduction—The supervised dimension reduction 

module is used to (i) select the discriminative feature channels using the label supervision, 

and (ii) unify the shape of features in each layer for the subsequent concatenation.

The F l channels in each voxel can have different importance for the CVD classification. 

Therefore, it can be helpful to apply a supervised feature selection. Following the processing 

of 2D images in PixelHop++ [14], we propose to use direction-wise voxel cross-entropy 

guided feature selection (CE-FS). Specifically, we only keep the channels with small entropy 

of each class, which explicitly enforces the feature of a voxel in each channel to be similar 

Liu et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2023 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. We use pk
c to denote the feature of the k-th voxel of a class in the c-th channel. 

Following [14], we can formulate the entropy of a sample as:

ℋ =
n = 1

5
ℋn, ℋn = −

k
pk

clog pk
c, (3)

where we index the involved class category with n, e.g., n ∈ 1, ⋯, 5 . Then, the calculated 

entropy of all classes for each channel is descending ordered. Only the top 50% channels 

with small entropy are kept for efficient classification.

Then, the label-assisted regression (LAG) [13] is applied to each layer to extract the final 

layer-wise feature vl with a length of 25 dimensions consistently.

2.2.3. Multi-level feature integration—With the extracted features vl in each layer 

with both unsupervised and supervised dimension reductions, we sequentially concatenate 

them in all three directions as our final sample-wise CVD feature. We empirically choose 

SVM as our CVD classification model, which has been well established and has been widely 

used for classification purposes. Of note, as a supervised machine learning model, SVM is 

trained with the training datasets.

3. EXPERIMENTS

We evaluate our framework on the ACDC2017 database, which consists of a total of 99 

subjects, including 20 normal subjects (NOR), 20 myocardial infarction (MINF) subjects, 19 

dilated cardiomyopathy (DCM) subjects, 20 hypertrophic cardiomyopathy (HCM) subjects, 

and 20 abnormal right ventricle (RV) subjects. For each subject, cine MRI short-axis slices, 

including ED and ES phases, were acquired. Notably, we consistently resampled the training 

samples with the size of 256 × 256 × 64. We followed the 5-fold cross-validation to split the 

subjects with uniform categorical sampling.

We empirically used five SSL layers and configured F1 = 5, F2 = 5, F3 = 15, F4 = 20, and 

F5 = 25. Notably, the maintained energy ratio in the unsupervised dimension reduction 

module was controlled by the quantity of the Saab filters, i.e., F l. In addition, we 

implemented the compared DL models using the Pytorch toolkit.

As comparison methods, we used the ResNet-based 3D CNN [15] and 3D self-attention 

[16] based classification model for the 3D CVD classification task. Specifically, the ResNet 

[17] and self-attention network [16] have been widely used for 3D medical classification 

tasks [15, 18, 16]. To adapt these methods for our multi-direction 3D deformation fields, we 

configured independent convolutional layers for each direction as [19]. Then, the extracted 

direction-wise features in the first fully connected (FC) layer were concatenated. We used 

the threshold of 0.5 for the final prediction of the DL approaches. Notably, we fixed 3 

FC layers and validated the convolutional layers of 3D CNN and self-attention layers from 

three to ten layers. We chose the best-performed layer for ResNet-based 3D CNN and 3D 

self-attention, i.e., five or six layers, respectively.
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In Fig.2, we plot the receiver operating characteristic (ROC) curves of each CVD class. 

We can see that our framework outperformed the compared 3D CNN models. As well, 

the area under the ROC curves of each class are also reported in Fig. 2. To facilitate the 

following LAG modules, CE-SF is applied as a preliminary supervised dimension reduction 

method. We provided the ablation study of CE-SF (i.e., SSL w/o CE-FS) with doubled 

feature vectors for the subsequent LAG model, which yielded inferior performance with an 

increase of 18% overall processing time.

In Table 2, we show the accuracy of different methods. To further investigate the 

performance with a smaller number of datasets, we uniformly selected 75% and 50% of 

100 subjects for 5-fold validation. Our SSL outperformed the compared DL-based models 

consistently by a larger margin especially in the case of a smaller number of datasets. 

Furthermore, we provided the ROC curves using 50% of the ACDC2017 database. We can 

see that our SSL model can be robust even with very limited training data. Of note, the 

number of parameters of our SSL framework was about 140× fewer than the compared 3D 

CNN architectures. The much fewer parameters can alleviate the difficulty of using a limited 

number of training datasets. Experimental results from our ablation study of SSL w/o 

CE-FS also showed its efficacy. Moreover, we provided the ablation study of the interlaced 

concatenation, which is denoted as SSL w/o IC. The performance drop compared with the 

SSL demonstrates that exploring the difference between ED and ES phases in an early voxel 

union was necessary.

The number of SSL layers is important for our CVD classification task to balance 

performance and efficiency. In Table 3, we show the detailed sensitivity study using a 

different number of SSL layers. The performance was relatively stable after four layers. 

Notably, there was a performance drop for deeper DL methods with more to-be-trained 

parameters.

4. CONCLUSION

In this work, we proposed a novel lightweight and interpretable framework with two-phase 

deformation fields for the CVD classification task. In particular, the class-wise entropy-

guided feature selection was proposed to achieve accurate classification. We evaluated 

our framework on the ACDC2017 database using a different number of training datasets, 

demonstrating superior performance over 3D CNN and self-attention DL models, with about 

140× fewer parameters. It is important to note that our framwork is based on the feedforward 

Saab transform for which our framework is deemed more interpretable than CNNs, which 

rely on backpropagation. Taken together, our framework offers the potential to be used for 

clinical practice with a limited number of imaging data.
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Fig. 1. 
Illustration of our proposed SSL framework using L stacked layers.
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Fig. 2. 
Comparison of the ROC curves of (a) SSL, (b) SSL w/o CE-FS, (c) 3D CNN, and (d) SSL 

with half ACDC2017 data. Classes 0 to 4 represent the NOR, MINF, DCM, HCM, and RV, 

respectively.
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Table 1.

The details of unsupervised modules in our 5-layer model for two-phase deformation fields CVD diagnosis

Input Size Type Filter Shape

3 × [100 × 100 × 64 × 2] D-Saab 3 × F1 kernels of [3 × 3 × 6]

3 × [98 × 98 × 123 × F1] MaxPool (2×2×2)-(1×1×1)

3 × [49 × 49 × 62 × F1] D-Saab 3 × F2 kernels of [3 × 3 × 3]

3 × [47 × 47 × 60 × F2] MaxPool (2×2×2)-(1×1×1)

3 × [24 × 24 × 30 × F2] D-Saab 3 × F3 kernels of [3 × 3 × 3]

3 × [22 × 22 × 28 × F3] MaxPool (2×2×2)-(1×1×1)

3 × [11 × 11 × 14 × F3] D-Saab 3 × F4 kernels of [3 × 3 × 3]

3 × [9 × 9 × 12 × F4] MaxPool (2×2×2)-(1×1×1)

3 × [5 × 5 × 6 × F4] D-Saab 3 × F5 kernels of [3 × 3 × 3]

3 × [3 × 3 × 3 × F5] MaxPool (2×2×2)-(1×1×1)
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Table 2.

Comparison of the 5-fold cross-validation accuracy on different proportion of ACDC2017 database

Methods Parameters ACDC 75%ACDC 50%ACDC

ResNet 3D CNN ~5.6M 0.88 0.83 0.68

3D Self Attention ~8.5 M 0.85 0.78 0.72

SSL w/o CE-FS ~0.04 M 0.92 0.90 0.84

SSL w/o IC ~0.04 M 0.91 0.87 0.84

SSL ~0.04 M 0.95 0.91 0.86
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Table 3.

Sensitivity study of the stacked layers. The 5-fold cross-validation accuracy on full ACDC2017 is reported

Layers 3 4 5 6 7 8

ResNet 3D CNN 0.76 0.86 0.88 0.87 0.85 0.83

3D Self Attention 0.79 0.82 0.85 0.85 0.83 0.80

SSL 0.85 0.92 0.95 0.95 0.95 0.96
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