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Background and hypothesis:  Neuroimaging-based machine 
learning (ML) algorithms have the potential to aid the clin-
ical diagnosis of schizophrenia. However, literature on the 
effect of prevalent comorbidities such as substance use dis-
order (SUD) and antisocial personality (ASPD) on these 
models’ performance has remained unexplored. We inves-
tigated whether the presence of SUD or ASPD affects the 
performance of neuroimaging-based ML models trained to 
discern patients with schizophrenia (SCH) from controls. 
Study design:  We trained an ML model on structural MRI 
data from public datasets to distinguish between SCH and 
controls (SCH = 347, controls = 341). We then investi-
gated the model’s performance in two independent samples 
of individuals undergoing forensic psychiatric examination: 
sample 1 was used for sensitivity analysis to discern ASPD 
(N = 52) from SCH (N = 66), and sample 2 was used for 
specificity analysis to discern ASPD (N = 26) from con-
trols (N = 25). Both samples included individuals with 
SUD. Study results:  In sample 1, 94.4% of SCH with co-
morbid ASPD and SUD were classified as SCH, followed 
by patients with SCH + SUD (78.8% classified as SCH) 
and patients with SCH (60.0% classified as SCH). The 
model failed to discern SCH without comorbidities from 
ASPD + SUD (AUC = 0.562, 95%CI = 0.400–0.723). In 
sample 2, the model’s specificity to predict controls was 
84.0%. In both samples, about half of the ASPD + SUD 
were misclassified as SCH. Data-driven functional charac-
terization revealed associations between the classification 
as SCH and cognition-related brain regions. Conclusion:  
Altogether, ASPD and SUD appear to have effects on 
ML prediction performance, which potentially results from 
converging cognition-related brain abnormalities between 
SCH, ASPD, and SUD. 
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Introduction

Neuroimaging is often performed in patients with serious 
psychiatric symptoms to rule out somatic conditions that 
could cause psychiatric manifestations,1 but it is not cur-
rently clinically used for psychiatric differential diagnos-
tics. Previous work has shown that neuroimaging-based 
machine learning (ML) algorithms have the potential 
to distinguish controls from patients with schizophrenia 
(SCH) with up to 80% balanced accuracy (BAC).2 
However, the prediction performance of an ML model 
is affected by multiple factors, one being sample heter-
ogeneity, such as patient comorbidities.3 Previous ML 
studies were mainly conducted in patient samples without 
comorbidities and were compared to control groups 
without psychiatric disorders, thereby decreasing the gen-
eralizability of the findings to real-world clinical samples. 
A prior study reported varying ML model prediction 
results (BAC ranged from 63% to 73%) among patients 
with first-episode psychosis depending on comorbidities 
and disorder courses.4

Approximately 50% of patients with SCH have psychi-
atric comorbidities,5–7 and in forensic psychiatric popu-
lations, comorbidities such as antisocial personality 
disorder (ASPD) and substance use disorder (SUD) are 
even more prevalent. According to an Epidemiological 
Catchment study, 84% of ASPD patients suffer from an 
SUD.8 Also, in a nationally representative sample of psy-
chotic homicide offenders, 52% of patients with SCH had 
ASPD, 74% had SUD as a comorbidity, and all offenders 
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diagnosed with some form of personality disorder had 
SUD.9 In addition, approximately 50% of patients with 
SCH in general psychiatric populations have SUD, and 
20% have ASPD comorbidity.5,10 Thus, ASPD and SUD 
have a high prevalence in forensic psychiatric popula-
tions,9 which implies that “true” healthy controls in these 
populations are rare.

Addressing the issue of comorbidities in neuroimaging-
based ML studies is important since previous research has 
shown overlapping brain abnormalities in SCH, ASPD, 
and SUD.11–18 Specifically, MRI studies on SCH have 
shown volumetric reductions in total brain volume and 
cortical gray matter, as well as in frontal and temporal 
lobes and the thalamus. In addition, increased volumes 
in basal ganglia and cerebral ventricle were reported.11–13 
Similar brain abnormalities have been reported for 
ASPD, as previous studies have found reductions in 
total brain volume, thalamus, and frontal and temporal 
lobes.14 Also, for SUD patients, volumetric gray matter 
alterations in the thalamus, insula, putamen, and ante-
rior cingulate cortex, as well as white matter alterations 
in thalamic radiations and internal capsule, have been re-
ported.15,16 Moreover, individuals with ASPD and SUD 
have shown reduced volumes in the prefrontal cortex,18 
posterior cingulate cortex, and insula.17

Since SCH, ASPD, and SUD appear to share brain 
abnormalities, ML models trained to classify SCH from 
controls may fail to correctly classify nonpsychotic in-
dividuals with ASPD + SUD. However, no previous 
ML study has investigated this possibility. Also, to the 
best of our knowledge, it has remained elusive whether 
ASPD and SUD comorbidities affect the predictions of 
neuroimaging-based ML models in SCH. Here, using in-
dividuals undergoing forensic psychiatric evaluation, we 
investigated whether SUD or ASPD affects the perfor-
mance of neuroimaging-based ML models trained to dis-
cern SCH from controls.

Methods

Analytical Strategy and Samples

The workflow describing the analyses of  the present 
study is described in Figure 1. First, we utilized four 
publicly available data repositories (available at http://
schizconnect.org) for training our neuroimaging-based 
ML model to discern SCH from controls: Centre 
for Biomedical Research Excellence (COBRE), the 
Neuromorphometry by Computer Algorithm Chicago 
(NMorphCH), MIND Clinical Imaging Consortium 
(MCICShare) and Northwestern University 
Schizophrenia Data and Software Tool (NUSDAST). 
These samples have been widely used in previous 
schizophrenia-related neuroimaging studies.19–21 
The samples were imaged using four different MRI 
scanners with field strengths ranging from 1.5T to 3T 
with varying voxel size. The COBRE sample excluded 

individuals with comorbid SUD, but we had no in-
formation about the presence of  comorbid SUD in 
the other three samples. Also, we had no information 
about whether any sample included individuals with co-
morbid ASPD. More detailed information is described 
in the Supplement.

Next, we utilized two samples (Samples 1 and 2) of 
individuals undergoing a forensic psychiatric exam-
ination to evaluate the effect of  ASPD and SUD on 
the ML model’s prediction. Both samples were drawn 
from Niuvanniemi Forensic Psychiatric Hospital, which 
granted permission to conduct the present study with 
permission from the local ethical committee. In Finland, 
full forensic psychiatric examinations are ordered by 
the court of  law to evaluate the level of  criminal re-
sponsibility (a detailed description is provided in the 
Supplement).22 In the present study, we used two sam-
ples of  individuals. Due to very few females in forensic 
evaluations during the data gathering period, we focused 
on males.

Sample 1 (N = 118) comprised individuals who under-
went a forensic psychiatric evaluation at Niuvanniemi fo-
rensic hospital between 2014 and June 2021. The purpose 
of this sample was to evaluate the predictive performance 
of the two ML models on discerning SCH (ICD-10: any 

Fig. 1.  Flowchart describing the analyses of the study. Training 
the schizophrenia vs. controls machine learning model using 
discovery samples. The SCH vs. Controls ML model is visualized 
as an SVM weight map (thresholded at 0.0005 for visualization 
purposes). Warm colors indicate gray matter volume increases, 
and cold colors decrease in the VBM data. The trained ML model 
was then applied, without any in-between-retraining, to samples 
1 and 2.

http://schizconnect.org
http://schizconnect.org
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
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F20 and any F25) from ASPD (ICD-10: F60.2). The ef-
fect of comorbid substance use disorders (ICD-10: F10-
F19) was also examined. We also conducted data-driven 
functional characterization to investigate whether the 
ML model’s predictions were associated with known 
behavioral abnormalities in SCH and ASPD (details 
below). Data were obtained retrospectively from hospital 
files. The exclusion criteria for sample 1 were traumatic 
brain injury and neurological disorders. Imaging quality 
was visually inspected and assessed using the automatic 
quality control provided by the analysis software (de-
tails below). Since we utilized real-world clinical data, the 
whole brain MRI scans were obtained with different 1.5T 
scanners (Philips Achieva, Siemens Avanto, GE Signa 
HDxt, or GE Signa Voyager) and variable parameters. 
MRI slice thickness varied from 1 to 2 mm.

Sample 2 (n = 51) has been described in a previous 
study.17 This sample was used for specificity analyses to 
evaluate whether our ML model can discern ASPD with 
a comorbid substance use disorder (SUD, ICD-10: F10-
F19) from controls (N = 25). Data from ASPD + SUD 
were obtained retrospectively from hospital files, and 
controls gave informed consent. All participants were 
Finnish males. Inclusion criteria for controls (students, 
hospital staff, and skilled workers) were the absence of 
any current or past mental disorder or substance misuse 
based on unstructured interviews. The intelligence quo-
tient (IQ) of controls was not available. Inclusion cri-
teria for the offender group in sample 2 were the absence 
of current or past psychosis or schizotypal personality 
disorder.

Processing of the Structural MRI

We analyzed the structural MRI (sMRI) data using voxel-
based morphometry (VBM) provided by the CAT12 
toolbox version 1743 (Structural Brain Mapping Group, 
Jena University Hospital, Jena, Germany http://dbm.
neuro.uni-jena.de/cat12/) on SPM12 in MATLAB r2017b 
(mathworks.com). T1-weighted images were processed 
using the standard processing pipeline implemented in 
the toolbox, including denoising, skull stripping, and 
spatial normalization to the Montreal Neurological 
Institute (MNI-152) space using the DARTEL algo-
rithm. Preprocessed images were then segmented into 
gray matter (GM), white matter, and cerebrospinal fluid. 
We conducted quality control (QC) by utilizing the auto-
matic QC provided by the CAT12 toolbox and visually 
inspecting the processed images.

Machine Learning Pipeline

SCH and controls from the model discovery samples 
were matched for age, sex, and scanner field strength 
using nearest-neighbor matching before training our ML 
model (resulting in 347 SCH and 341 controls). The ML 

model, using VBM maps in 4mm MNI-space as features, 
was trained using R version 4.0.3 (https://cran.r-project.
org) accompanied by “e1071”23 and caret24 wrapped in 
the “mlr”25 package. We trained our ML model using 
repeated nested cross-validation (10 outer folds with 10 
repetitions, 5 inner folds with 5 repetitions) to prevent 
information leakage between training and testing and to 
provide unbiased predictive generalizability. In the inner 
cross-validation loop, we used the following preprocessing 
steps: correction for age, sex, and scanner field strength 
using linear regression; principal component analysis 
for dimensionality reduction (80% variance retained); 
and scaling and mean centering. The preprocessed fea-
tures were trained using a linear support vector machine 
(SVM), which was chosen over other ML algorithms due 
to its frequent usage in previous psychiatric ML studies.26 
We tuned a range of SVM hyperparameters (0.0039, 
0.0156, 0.0625, 0.25, 1, 4, 16, 64, and 256) using bal-
anced accuracy (BAC; i.e., an average of sensitivity and 
specificity) as the optimization criterion for the winning 
model. We then applied the winning models to the respec-
tive out-of-training test folds. Finally, without any in-be-
tween retraining, we applied the ML model to Samples 
1 and 2. Across the three samples, we plotted our results 
as schizophrenia classification probability provided by 
the “svm” function. Specifically, this function provides a 
probability estimation by fitting a logistic distribution to 
the SVM decision values using maximum likelihood es-
timation. The resulting probabilities can range from 0% 
(i.e., the model has 100%”certainty” that an individual is 
a control) to 100% (i.e., the model has 100%”certainty” 
that the individual is SCH). Individuals with classifica-
tion probability > 50% were classified as SCH.

Statistical Analyses

We used R accompanied by “ggplot2”27 package for statis-
tical analyses and visualizations of the present study. We 
compared the demographic characteristics using t-test, 
χ2-test, and Fisher’s exact test as specified in the Results 
section. To assess the association between the ML model’s 
prediction and clinical variables in the discovery sam-
ples, we conducted random-effect meta-analyses (using 
“metafor”28 package) on the four available variables: 
positive symptoms, negative symptoms, education, and 
time from diagnosis. In individuals with ASPD + SUD, 
we tested whether being classified as SCH was associated 
with poor functional outcome, which was defined as no 
further education or vocational training after compulsory 
nine-year education and never in full-time employment. 
In SCH, in addition to functional outcome, we tested the 
association between time since the first psychiatric hospi-
talization with ML model’s probability of being classified 
as schizophrenia. Finally, we tested the effect of scanner 
and image quality on the ML model’s predictions due to 
the usage of multiple scanners.

http://dbm.neuro.uni-jena.de/cat12/
http://dbm.neuro.uni-jena.de/cat12/
https://cran.r-project.org
https://cran.r-project.org
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Univariate Analyses to Characterize ML Model’s 
Relation to Behavioral Abnormalities

We also aimed to investigate whether the brain abnormal-
ities related to the ML model’s predictions were associated 
with known behavioral abnormalities. First, we identified 
the brain abnormality distinguishing those classified as 
SCH from those as controls. For this purpose, we con-
ducted univariate analyses using FSL version 6.0.1. The 
model used total intracranial volume (TIV), age, substance 
abuse, and image quality as covariates. We conducted a 
voxel-wise test to assess for statistical significance using 
the FSL’s29 randomize tool30 using 5000 repetitions, ap-
plying threshold-free cluster enhancement (TFCE),31 and 
a family-wise error (FWE) correction to account for mul-
tiple voxel-wise comparisons. Statistically significant clus-
ters were considered at P value < .05 (FWE-corrected).

Next, we binarized the statistically significant clusters 
that were transformed into Talairach space. We then im-
ported these clusters into Mango v4.1. with “Behavioral 
Analysis” plugin v3.1., which is based on BrainMap’s 
database (http://brainmap.org) of previously published 
neuroimaging studies with coordinate-based results 
(4.118 papers on 30th of October 2022).32 The plugin au-
tomatically compares the clusters with functional meta-
data of the BrainMap database’s 60 behavioral domains 
that are classified as “Action,” “Cognition,” “Emotion,” 

“Interoception,” and “Perception “. The analytical 
process is described in detail elsewhere.33 Briefly, for each 
of the 60 behavioral domains, the fraction of coordi-
nates falling within the clusters was computed and com-
pared with the fraction expected if  coordinates for the 
behavior were not clustered. We used the recommended 
thresholding of Z-score > 3.0 (corresponding Bonferroni 
corrected P-value < .05) to designate a statistically signif-
icant association with a given behavioral domain.

Results

Sociodemographic and Clinical Characteristics of 
Samples 1 and 2

In sample 1, there was no difference between SCH and 
ASPD patients in age, sex, IQ, duration of  SUD, number 
of  attempted homicides, and global anatomical volumes 
(Table 1). There were differences in comorbidities in 
sample 1: 27.3% of  SCH patients had ASPD, and there 
were more SUD in ASPD patients compared to SCH pa-
tients (X2 = 11.6 P < 0.001). There were more committed 
homicides in ASPD patients compared to SCH patients 
in sample 1 (Fisher, P = 0.002). In sample 2, there was 
no difference between age, sex, and mean global white 
matter volume. The mean global gray matter volume 
was larger in control men compared to ASPD patients 

Table 1.  Sociodemographic and Clinical Characteristics of Samples 1 and 2.

Sample 1 Sample 2

 SCZ (N = 66)
ASPD 

(N = 52)
Test Statistic/P 

value
ASPD 

(N = 26)
Controls 
(N = 25)

Test Statistic/P 
value

Age mean (SD) 32.0 (9.8) 32.8 (12.2) t = 0.36, 
P = .722

32.5 (8.4) 34.6 (10.7) t = 0.78, 
P = .442

Sex (male) 66 (100%) 52 (100%) FET, 
P = 1.000

26 (100%) 25 (100%) FET, 
P = 1.000

IQ, mean (SD) 87.8 (13.4)* 87.7 (16.0)* F = 0.006, 
P = .941

91.5 (9.0) NA

Time since first hospitaliza-
tion in years, mean (SD)

9.8 (8.1) NA NA NA

ASPD (%) 18 (27.3 %) 52 (100%) X2= 16.5, 
P < .001

26 (100%) 0 (0%) FET, P < .001

Substance use disorder, (%) 51 (77.3%) 52 (100%) Χ2 = 11.6, 
P < .001

26 (100%) 0 (0%) FET, P < .001

Duration of substance use 
disorder in years, mean (SD)

17.6 (10.4)* 19.9 (11.9)* t = 1.05, 
P = .300

19.0 (9.2) NA

Number of comitted homi-
cides, median (range)

0 (0–3) 1 (0–3)* FET, P = .002 0.5 (0–3) NA

Number of attempted homi-
cides, median (range)

0 (0–9)* 0 (0–2)* FET, P = .321 0 (0–1) NA

PCL-R, mean (SD) NA NA 29.9 (5.2) NA
Mean global grey matter 
volume, ml (SD)

673.71 (60.8) 687.44 (79.6) t = 1.030, 
P = .306

633.01 (51.9) 679.68 (65.0) t = 2.8, 
P = .007

Mean global white matter 
volume, ml (SD)

568.71 (52.5) 568.00 (67.7) t = −0.063, 
P = .950

610.18 (58.1) 630.68 (54.6) t = 1.3, 
P = .200

*Missing values.
FET, fisher exact test; NA, Not available.

http://brainmap.org
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in sample 2 (t(46) = 2.8, P = 0.007). Mean global cere-
brospinal fluid volume was larger in ASPD compared to 
control men in sample 2 (t(43) = −3.8, P < 0.001).

The Performance of the Model in the Discovery 
Samples

Out-of-training classification of SCH from controls 
in the model discovery samples resulted in a balanced 

accuracy (BAC) of 67.0% (sensitivity = 65.7%, speci-
ficity = 68.3%), and AUC = 0.727 (95%CI = 0.689–0.765, 
Figure 2b). Prediction performances across the individual 
discovery samples are described in the Supplement.

Across the four discovery samples (Supplementary 
Figures 1–3), we did not find associations between 
the probability of being classified as schizophrenia 
with positive symptoms (R = 0.045, 95%CI = −0.061–
0.152, P-value = .404), negative symptoms (R = 0.069, 

Fig. 2.  (A) Schizophrenia prediction probability with and without comorbidities in discovery sample, sample 1 and sample 2. Individuals 
with probability above 50% were labeled as schizophrenia. (B) ROC-curve for the classification of schizophrenia vs. controls in the 
discovery samples (out-of-training classification results). (C) ROC-curves for discerning between schizophrenia with and without 
comorbidity vs. ASPD + SUD in Sample 1. Abbreviations: SCH, schizophrenia; SUD, substance use disorder; ASPD, antisocial 
personality disorder.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
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95%CI = −0.038–0.176, P-value = .204), or time 
from diagnosis (R = −0.167, 95%CI = −0.613–0.280, 
P-value = .464). However, the probability of being pre-
dicted as schizophrenia was associated with low education 
(R = −0.198, 95%CI = −0.378–0.018, P-value = .031, 
Supplementary Figure 4).

The Performance of the ML Model in Samples 1 and 2

When the ML model was applied to sample 
1 (Figure 2, Table 2), we found that the SCH vs. controls 
ML model classified 51.9% of ASPD + SUD patients 
as SCH, 60.0% of SCH patients without comorbidities 
as SCH, 78.8% of SCH + SUD patients as SCH, fol-
lowed by 94.4% of SCH + SUD + ASPD as SCH. The 
individuals with SCH + ASPD + SUD were significantly 
more likely classified as SCH by the model compared to 
SCH without comorbidities (Fisher’s test, P-value = .03). 
When the ML model was applied to sample 2, we found 
that the model classified 16% of controls as SCH and 
46.2% of ASPD + SUD as SCH. Misclassification of 
ASPD + SUD as SCH was similar between Samples 1 
and 2 (X2= 0.23, P-value = .63).

We then investigated the model’s performance in dis-
cerning SCH from ASPD + SUD in sample 1 (Figure 2c). We 
found that AUC-values for discerning from ASPD + SUD 
in sample 1 were as follows: AUC = 0.562 (95%CI = 0.400–
0.723) for SCH, AUC = 0.704 (95%CI = 0.590–0.818) for 
SCH + SUD, and AUC = 0.770 (95%CI = 0.660–0.880) 
for SCH + SUD + ASPD.

In sample 1, misclassification of schizophrenia did not 
relate to functional outcome (Χ2=0.166, P-value = .68) 
or duration since the first psychiatric hospitalization 
(t(19.6) = −0.603, P-value = .554). We found that those 
ASPD + SUD classified as SCH had a lower functional 
outcome than those classified as controls (Χ2 = 6.522, 
P-value = .01).

The scanner effect was addressed during the training 
of the model in discovery samples, and we did not ob-
serve a statistically significant scanner (F(3,62) = 1.243, 

P-value = .302) or image quality effect (F(1,64) = 0.146, 
P-value = .704) for the ML model’s predictions in SCH. 
Likewise, in ASPD + SUD, there was no statistically 
significant scanner (F(2,49) = 1.961, P-value = .152) or 
image quality effect (F(1,50) = 1.036, P-value = .314) for 
ML model’s predictions.

ML Model’s Predictions’ Association with Behavioral 
Domains

Figure 3 shows the gray matter deficits associated with 
classification to SCH. As shown in Figure 3a, correct 
classification (vs. incorrect) in SCH was associated with 
decreased gray matter volume in the prefrontal cortex, 
thalamus, posterior cingulate cortex, and hippocampus. 
Similar findings (Figure 3b), albeit more nuanced, were 
observed in those ASPD misclassified as SCH (vs. clas-
sified as controls). A detailed description of these ab-
normalities is provided in Supplementary Tables 1-2. In 
SCH, volumetric abnormalities in those correctly (vs. in-
correctly) classified as schizophrenia related to 31 behav-
ioral domains that were mainly related to cognition (39%) 
and emotion processing (29%). Similarly, in ASPD, ab-
normalities associated with classification as SCH related 
to 19 behavioral domains mainly related to cognition 
(42%) and emotion processing (42%).

Discussion

To the best of  our knowledge, this is the first study to ex-
plore the effect of  SUD and ASPD on the neuroimaging-
based ML prediction of  SCH. Our findings indicate that 
ML models trained to predict SCH have different per-
formances depending on the test sample’s comorbidities. 
Consequently, comorbidities may hamper the clinical 
use of  neuroimaging-based ML classification in het-
erogenous samples if  the comorbidities’ effect remains 
uncontrolled.

Although many previous ML studies have shown high 
prediction performances in discerning SCH from con-
trols,2 these studies were largely conducted in samples 

Table 2.  Classification as Schizophrenia or Control Across the Study Populations using the Machine Learning Model Trained to Discern 
Schizophrenia from Controls Trained in the Discovery Sample (Out-Of-Training Predictions are Provided for the Discovery Sample).

Population Name Predicted as Schizophrenia % (N) Predicted as Controls % (N)

SCH (N = 347, Discovery sample) 65.7% (228) 34.3% (119)
Controls (N = 341, Discovery sample) 31.7% (108) 68.3% (233)
ASPD + SUD (N = 52, Sample 1) 51.9% (27) 48.1% (25)
SCH (N = 15, Sample 1) 60.0% (9) 40.0% (6)
SCH + SUD (N = 33, Sample 1) 78.8% (26) 21.2% (7)
SCH + SUD + ASPD (N = 18, Sample 1) 94.4% (17) 5.6% (1)
Controls (N = 25, Sample 2) 16.0% (4) 84.0% (21)
ASPD + SUD (N = 26, Sample 2) 46.2% (12) 53.8% (14)

Note: SCH, individuals with schizophrenia; ASPD + SUD, individuals with antisocial personality disorder with substance use disorder; 
SCH + SUD, individuals with schizophrenia and substance use disorder; SCH + SUD + ASPD, individuals with schizophrenia, sub-
stance use disorder and antisocial personality disorder.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad103#supplementary-data
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where the effect of potential comorbidities was not 
addressed. In our study, the prediction of SCH with 
comorbidities was substantially better compared to solely 
SCH implicating that our model trained to discern SCH 
from controls is using a neurobiological signature that 
overlaps with abnormalities observed in SUD and ASPD. 
Specifically, the accumulation of both ASPD and SUD 
comorbidities in SCH (SCH + SUD + ASPD) resulted 

in 94.4% being classified as SCH, while patients without 
such comorbidities (SCH only) were classified 60.0% as 
SCH. Furthermore, the model failed to discern SCH 
without comorbidities from ASPD + SUD. Altogether, 
these results suggest that SUD and ASPD comorbidities 
affect the model performance, thereby potentially con-
tributing to variance in prediction performance estimates 
among previous ML studies.3

Fig. 3.  (A) Gray matter deficits (TFCE-corrected P value < .05) in patients correctly classified as schizophrenia (N = 52) compared to 
patients incorrectly classified as controls (N = 14). Correct classification was mostly related to behavioral domains related to cognition 
(39%) and emotion processing (29%). The dashed line presents Z > 3, Bonferroni-Corrected P-value < .05. (B) Gray matter deficits 
(TFCE-corrected P value < .05)) in ASPD classified as schizophrenia (N = 27) vs. classified as controls (N = 25). Misclassification of 
ASPD as SCH was primarily related to behavioral domains related to cognition (42%) and emotion processing (42%).
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Previous longitudinal studies examining individuals 
at risk for psychosis have also found the varying perfor-
mance of ML models. For example, a recent longitudinal 
study with a nine-year follow-up showed that the SCH vs. 
controls model’s performance increased in SCH but not 
in controls.34 A study investigating at-risk patients found 
that the performance of the SCH vs. controls ML model 
improved as the clinical stages of psychosis went fur-
ther from ultra-high risk for psychosis to chronic schizo-
phrenia.35 While these findings might partially stem from 
progressive brain alterations related to SCH, our findings 
suggest that some of these variations may also be due to 
the accumulation of comorbidities with converging brain 
abnormalities. For example, a large prospective longitu-
dinal study found that schizophrenia was significantly 
associated with the risk of subsequent substance abuse, 
and the risk was highest one year after the diagnosis of 
schizophrenia.36

To the best of our knowledge, neuroimaging-based ML 
studies utilizing a transdiagnostic approach are scarce. 
One previous ML study on separate patient groups 
with SCH, Alzheimer’s disease, and behavioral-variant 
frontotemporal dementia (bvFTD) found neuroanatom-
ical overlaps between the multivariate patterns discerning 
these disorders from controls. Specifically, the ML model 
trained to discern SCH from controls classified 85.5% 
of bvFTD and 70.5% of Alzheimer’s disease patients as 
SCH.37 Also, a multivariate pattern that was trained to 
distinguish bvFTD from controls labeled 41% of SCH 
as bvFTD.37 Thus, bvFTD appears to share a common 
frontal degeneration type with SCH. Intriguingly, how-
ever, recent research mainly agrees that patients with de-
pression are rarely labeled as SCH by ML models trained 
to predict SCH from controls.34,37

In our study, the ML model’s classification as SCH re-
lated to volumetric reductions in the prefrontal cortex, 
thalamus, posterior cingulate cortex, and hippocampus 
in ASPD and SCH. These volumetric abnormalities were 
primarily associated with cognition, which aligns with 
the previous epidemiological research demonstrating 
such deficiencies in SCH.38,39 Interestingly, a previous 
neuroimaging-based ML study found that the most con-
sistent predictor of being classified as SCH was poor 
verbal cognition.34 Furthermore, the association between 
poor cognition and predictive performance in ML clas-
sification has been reported in other previous studies.40,41 
In the present study, poor education was the only signifi-
cant predictor of being labeled as SCH by the ML model. 
Furthermore, the misclassification of ASPD as SCH was 
associated with low functional outcome (meaning no ed-
ucation after compulsory nine-year education and never 
adhered to working life), which potentially results from 
the above-mentioned deficits in brain regions central to 
cognitive processing. Specifically, deficits in cognitive 
processing can hamper adhering to working life or ed-
ucation.42,43 Note, however, that in addition to cognitive 

impairments, low functional outcome could also result 
from factors such as medication43 and substance abuse.44 
Overall, our findings imply that neuroimaging-based ML 
models trained to distinguish SCH from controls adopt a 
pattern that weights cognitive abnormalities, potentially 
leading to false positives in other diagnostic groups with 
cognitive impairments.

Further research is required to determine whether it is 
possible to build a diagnostic ML model to distinguish 
only between SCH and controls without producing false 
positives for other disorders. Previous meta-analysis has 
shown that the ML model can reach high sensitivity and 
specificity, but the prediction performance varies be-
tween studies.2,3 Based on our results, ML models trained 
in samples without comorbidities can learn a general 
mental disorder pattern rather than a disorder-specific 
neuroanatomical signature. It is also remarkable that the 
ML model’s predictions did not associate with positive or 
negative symptoms of schizophrenia. Therefore, the po-
tential transdiagnostic nature of these models should be 
considered when conducting large studies to assess ML 
models’ generalizability since sample heterogeneity in-
creases as the sample size increases.3 Also, future studies 
should investigate whether disorder-specificity could be 
reached by utilizing multimodal data (e.g., by combining 
sMRI with fMRI, psychological tests, and blood tests). 
In developing more specific predictive ML models, one 
should consider other possible sources of heterogeneity 
in addition to comorbidities such as illness severity, illness 
course, medications, and genetic factors.3 In summary, 
our study suggests that future research should pivot from 
the traditional SCH vs. healthy controls approach when 
developing neuroimaging-based ML classifiers. A more 
comprehensive approach considering a range of psychi-
atric disorders and their comorbidities vs. SCH with and 
without comorbidities might better discern shared and 
disorder-specific neurobiological signatures, potentially 
offering enhanced specificity in ML-based schizophrenia 
diagnosis.

Our study has limitations. First, while our discovery 
samples were large and from multiple sites, our testing 
samples were small and from one site. Thus, future studies 
from other forensic psychiatric samples are needed to 
replicate our results. Second, clinical populations with 
other comorbidities, such as ADHD or affective dis-
orders, were lacking in our samples. Third, our sample 
contains forensic patients with violent criminal behavior 
who may differ from nonviolent patients with the same 
disease burden (e.g., a tendency for violence, impulsive-
ness, and nonadherence). Fourth, the effects of medica-
tion on the low functional outcome could not be assessed 
due to the lack of data on medication history. Finally, we 
used real-world data with multiple scanners, potentially 
affecting our model’s performance by inducing substan-
tial scanner-related heterogeneity. However, the scanner 
effect was taken into account during the model’s training, 
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and we found no effect of a scanner or image quality on 
the ML model performance in our testing samples.

In conclusion, ASPD and SUD appear to affect ML 
prediction performance, which potentially results from 
converging cognition-related brain abnormalities be-
tween SCH, ASPD, and SUD. Consequently, more ef-
forts to characterize and control the contributions of 
comorbidities on neuroimaging-based ML predictions 
are needed in future studies. This is particularly impor-
tant in forensic contexts where precise diagnosis and pre-
diction are also crucial for society.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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