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Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disease having complex patho-

genesis, approved drugs can only alleviate symptoms of AD for a period of time. Traditional

Chinese medicine (TCM) contains multiple active ingredients that can act on multiple targets

simultaneously. In this paper, a novel algorithm based on entropy and random walk with the

restart of heterogeneous network (RWRHE) is proposed for predicting active ingredients for

AD and screening out the effective TCMs for AD. First, Six TCM compounds containing 20

herbs from the AD drug reviews in the CNKI (China National Knowledge Internet) are col-

lected, their active ingredients and targets are retrieved from different databases. Then,

comprehensive similarity networks of active ingredients and targets are constructed based

on different aspects and entropy weight, respectively. A comprehensive heterogeneous net-

work is constructed by integrating the known active ingredient-target association information

and two comprehensive similarity networks. Subsequently, bi-random walks are applied on

the heterogeneous network to predict active ingredient-target associations. AD related tar-

gets are selected as the seed nodes, a random walk is carried out on the target similarity

network to predict the AD-target associations, and the associations of AD-active ingredients

are inferred and scored. The effective herbs and compounds for AD are screened out based

on their active ingredients’ scores. The results measured by machine learning and bioinfor-

matics show that the RWRHE algorithm achieves better prediction accuracy, the top 15

active ingredients may act as multi-target agents in the prevention and treatment of AD,

Danshen, Gouteng and Chaihu are recommended as effective TCMs for AD, Yiqitongyu-

tang is recommended as effective compound for AD.

1. Introduction

Alzheimer’s disease (AD) is a persistent and irreversible neurodegenerative disease, whose

main clinical features are progressive memory loss, cognitive declination, functional
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independence loss and so on [1]. The pathogenesis of AD is complex, and not fully understood

yet. The incidence of AD has been increasing in recent years, which brings a heavy economic

burden to the healthcare system around the world. However, current clinical AD drugs

approved by the U.S. Food and Drug Administration (FDA) only relieve related symptoms

within a certain period, but none of these therapies can effectively halt the development of the

disease. Other single-target AD drugs have failed in clinical trials. Therefore, it is essential to

identify efficient and low-toxicity AD drugs with multi-targets [2].

Traditional Chinese medicine (TCM) contains multiple active ingredients that can act on

multi-targets simultaneously, some active pharmacological compounds of herbs have been

proven to be applied to the treatment of many diseases [3]. TCM has a long history of AD,

many active ingredients extracted from herbs have fewer side effects and are regarded as

potential anti-AD drugs [4]. However, the potential molecular mechanism of TCM for AD is

still unclear, which limits further clinical applications. Network pharmacology is integral and

systematic by integrating the ideas of pharmacology with network science, systems biology,

and bioinformatics, which can be used to screen active ingredients and understand the mecha-

nism of multi-ingredient, multi-target, and multi-pathway of TCM [5]. Therefore, network

pharmacology can be used to reveal the associations between AD, active ingredients and tar-

gets, which open up a new way to study the mechanism between TCMs and AD.

With the development of high-throughput biomedical data, network-based propagation

methods are often used to predict associations among biological components. Random Walk

is one of the typical methods based on network propagation. The traditional restart random

walk (RWR) algorithm only carries out random walks in a single network [6], many scholars

have proposed improved algorithms for RWR on heterogeneous networks. Luo et al. proposed

a random walk-based algorithm on the Reliable Heterogeneous Network (RWRHN) to priori-

tize potential candidate genes for inherited diseases [7]. Li et al. presented a superimposed

local random walk algorithm called LRWHLDA to predict the associations between LncRNAs

and diseases. Their algorithm overcomes the limitation of lack of known association between

nodes [8]. The topological and structural properties of different networks are different. Wang

et al. quantified the individual walk length of nodes by using the improved Jaccard index, and

proposed an individual bi-random walk algorithm called DR-IBRW for drug repositioning

[9]. Luo et al. put forward a bi-random walk algorithm (MBIRW) for drug repositioning, ran-

dom walks are conducted to predict potential drug-disease associations in the drug similarity

network and disease similarity network respectively [10]. The algorithm based on network

inference is also applied to the prediction of biological information association. Cheng et al.

proposed an algorithm based on network-based inference (NBI), known drug-target associa-

tion information was used as the initial resource allocation, the final resource allocation infor-

mation was obtained through two-step propagation to predict drug-target associations [11].

Wang et al. proposed a method based on the guilt-by-association principle, called HGBI for

prediction of novel drug-target associations [12]. In addition, KATZ is also a network-based

algorithm. Zhu et al. considered the contribution of different walk lengths to the similarity net-

work, and proposed the HMDAKATZ algorithm to predict bacteria-drugs associations [13].

In this paper, we develop a novel algorithm based on entropy and random walk with the

restart of heterogeneous network (RWRHE) for predicting active ingredients associated with

AD and screening out the effective TCMs for AD. Firstly, the similarity measures of active

ingredients are calculated from two aspects, including the chemical structure and the Gaussian

interaction profile kernel (GIP kernel) similarity [14]. The similarity measures of targets are

calculated from four aspects, including protein sequence, interaction score in String database

(release 2021–08) [15], common neighbor, and GIP kernel similarity. Secondly, based on the

weight of each similarity measure assigned by information entropy, similarity measures of
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active ingredients and targets are integrated into comprehensive similarity measures, respec-

tively. Therefore, a heterogeneous network can be constructed by connecting the comprehen-

sive active ingredient network and target network via known active ingredient-target

associations. Next, the active ingredients-target association score matrix is calculated by bi-

random walk on heterogeneous networks. Then, AD related targets are selected as the seed

nodes, and the random walk is performed on the target similarity network to calculate the AD-

target association score vector. Finally, the relationships between AD and active ingredients

are predicted and scored, the effects of TCMs for AD are scored and ranked. Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis [16] are

performed on the top 100 targets by different methods to illustrate the relationship between

topological properties and relevant biological functions. Molecular docking is used to assess

the ability of top 15 the active ingredients to enter the active pocket of the key enzymes or pro-

teins of AD, the results show that the active ingredients may act as multi-target agents in the

prevention and treatment of AD.

2. Materials and methods

2.1. Datasets

Six TCM compounds from the AD drug reviews in the CNKI (China National Knowledge

Internet) are selected, including Dangguishaoyaosan, Yigansan, Yiqitongyutang, Gubenjian-

naoye, BKHJ TCM and Yizhi [17–20]. A total of 20 herbs are involved. The active ingredients

of these herbs are retrieved from Traditional Chinese Medicine System Pharmacology

(TCMSP) database (release 2014–05) [21]. Based on the condition that oral bioavailability

(OB) is more than 20% and drug-likeness (DL) is more than 0.1, 583 active ingredients are

screened out. The herbs contained in TCM compounds and the active ingredients contained

in the herbs are shown in S1 Table.

The datasets used in this study include active ingredients, targets and known active ingredi-

ent-target associations, which are collected from two databases: TCMSP and HERB (release

2021–01) [22]. Targets associated with active ingredients are mapped into genes through Uni-

Prot database (release 2022–05) [23] for “Homo sapiens” organism. 4313 active ingredient-tar-

get associations involving 387 active ingredients and 374 targets are retrieved from TCMSP

database. Simultaneously, 5823 active ingredient-target associations involving 453 active ingre-

dients and 642 targets are obtained from HERB database. We take the union of these two data-

sets as the total dataset, which has 6973 active ingredient-target associations involving 457

active ingredients and 731 targets, as shown in S2 Table.

2.2 Similarity measures

2.2.1 Active ingredient similarity measures. Let R ¼ r1; r2; � � � ; rnr
n o

be the set of nr

active ingredients and T ¼ t1; t2; � � � ; tnt
n o

be the set of nt targets. The matrix Art represents

known active ingredient-target associations, and its dimension is nr � nt. The value of Art(i, j)
is 1 if active ingredient i and target j have a known association, otherwise is 0.

The first similarity measure is calculated based on the chemical structure. The SMILES

(Simplified Molecular Input Line Entry Specification) describes the chemical structure of

active ingredients [24], which could be retrieved from PubChem database (release 2022–06)

[25]. For the active ingredients that cannot be retrieved, the SMILES can be obtained from

their 2D structure through the Swiss Target Prediction database (release 2019–05) [26]. The

Chemical Development Kit is used to compute chemical fingerprints of active ingredients
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[27]. The similarity between active ingredients ri and rj is calculated by the Tanimoto score of

the binary fingerprint vector [28], the formula as follows:

S f
rðri; rjÞ ¼

fri ∗ frj
f 2
ri
þ f 2

ri
� fri ∗ frj

ð1Þ

where fri represents the chemical fingerprint vector of the active ingredient ri.
Based on the finding that weak similarity between active ingredient pairs provides less

information for prediction, the logistic function is used to convert those small similarity values

into values close to zero and expand those large similarity values simultaneously [10]. The

improved similarity value by the logistic function is redefined as follows:

LðS f
rðri; rjÞÞ ¼

1

1þ expðc � S f
rðri; rjÞ þ dÞ

ð2Þ

where c and d are the parameters. According to the previous research [29, 30], we set d as log

(9999), which represents L(0) = 0.0001. We set L(0.3)< 0.01, which determines c as -15. The

improved similarity value L Sf
r ri; rj
� �� �

is denoted as S1
r ri; rj
� �

.

Based on the assumption that similar active ingredients tend to associate with similar tar-

gets, GIP kernel similarity is used to calculate the similarity between active ingredients. The

interaction profile IP(ri) of active ingredient ri is a binary vector representing the known asso-

ciations between the active ingredient ri and targets. The GIP kernel similarity between active

ingredient ri and active ingredient rj is computed as follows:

S2
r ðri; rjÞ ¼ expð� Ur

�
�
�IPðriÞ � IPðrjÞ

�
�
�

2

Þ

Ur ¼ Ur
0=

1

nr

Xnr

i¼1

�
�IPðriÞ

�
�2

 ! ð3Þ

where IP(ri) denotes the i-th row of the matrix Art. Υ0r is set to be 1 according to previous

research [14]. The similarity values of active ingredients based on the above two similarity

measures are shown in S3 Table.

2.2.2 Target similarity measures. The first target similarity measure is calculated based

on the protein sequences, which can be retrieved from UniProt database. The Smith-Water-

man local alignment algorithm [31] is used to calculate the sequence similarity of targets, and

the similarity matrix is denoted as S1
t .

The second target similarity measure is based on the interaction confidence scores of the

String database. The gene symbols of targets are entered into the String database, and the

organisms are selected as "Homo sapiens". Then the interaction scores of target pairs are as ele-

ments of the second similarity matrix S2
t .

The third target similarity measure is calculated based on the common neighbors of targets.

To filter out the target interaction relationships with low confidence, target pairs with interac-

tion scores greater than 0.4 in the String database are regarded as neighbors. The contribution

of the common neighbor targets with small degree is greater than that of the common neigh-

bor targets with large degree, each common neighbor target is assigned a weight based on its

degree value. The target similarity measure based on the common neighbors is defined as:

S3

t ðti; tjÞ ¼
X

z2GðtiÞ\GðtjÞ

1

kðzÞ
ð4Þ
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where Γ(ti) is the set of neighbors of target ti, z are the common neighbors of targets ti and tj, k
(z) is the degree of z. If two targets have more common neighbors and the degree of common

neighbors is small, the similarity between them will be greater than 1, it will be replaced by

0.99.

Based on the assumption that similar targets tend to associate with similar active ingredi-

ents, the fourth target similarity measure based on GIP kernel is defined. The interaction pro-

file IP(ti) of target ti is a binary vector representing the known associations between target ti
and active ingredients. The GIP kernel similarity between targets ti and tj is computed as fol-

lows:

S4
t ðti; tjÞ ¼ expð� Ut

�
�
�IPðtiÞ � IPðtjÞ

�
�
�

2

Þ

Ut ¼ Ut
0=

1

nt

Xnt

i¼1

�
�IPðtiÞ

�
�

2
 ! ð5Þ

where IP(ti) denotes the i-th column of the matrix Art. Υ0t is set to be 1 according to previous

research [14]. The similarity values of targets based on the above four similarity measures are

shown in S4 Table.

2.2.3 Integrating similarity measures based on entropy. Different similarity measures

contain different similarity information and play different roles in measuring the similarity of

node pairs. The information entropy is used to select similarity measures in the previous

research [32]. In this study, the weights of different similarity measures are further calculated

based on entropy.

For the m-th similarity matrix for active ingredients, the entropy Em
i of the i-th row is calcu-

lated as follows:

Em
i ¼ �

Xk

j¼1

sij
Xk

j¼1

sij

log
sij

Xk

j¼1

sij

0

B
B
B
B
@

1

C
C
C
C
A

ð6Þ

where sij represents the similarity value between active ingredients i and j. k indicates the num-

ber of active ingredients. We average the entropy of all rows as the final average entropy value.

The average entropy of the m-th similarity matrix is calculated as follows:

Em
mean ¼

Pk

i¼1

Ei

k
ð7Þ

The smaller the average entropy of the similarity matrix is, the less random information is

delivered by the similarity measure. The similarity measure with small average entropy occu-

pies a significant proportion of the comprehensive similarity measure. The average entropy of

each similarity matrix is normalized after taking the reciprocal, then the weight of the m-th

similarity measure is defined as follows:

orm ¼
1=Em

meanX

n

1=En
mean

ð8Þ

where ωrm represents the weight of the m-th similarity measure of active ingredients. In the

same way, the average entropy and weight of each target similarity measure can be obtained.
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The average entropy and corresponding weights of the similarity matrix of two active ingredi-

ents and four targets are shown in Table 1.

Finally, the two similarity measures of active ingredients are integrated into a comprehen-

sive active ingredient similarity measure Sr, and the four similarity measures of targets are inte-

grated into a comprehensive target similarity measure St, which are calculated as follows:

Sr ¼ or1S1
r þ or2S2

r

St ¼ ot1S1
t þ ot2S2

t þ ot3S3
t þ ot4S4

t

ð9Þ

where ωr1 and ωr2 are the weights of active ingredient similarity matrix S1
r and S2

r , respectively.

ωt1, ωt2, ωt3, ωt4 are the weights of target similarity matrix S1
t ; S

2
t ; S

3
t ; S

4
t , respectively. The com-

prehensive similarity values of active ingredients and targets are shown in S5 Table.

2.3 Construction of the heterogeneous network

The similarity networks of active ingredients and targets are constructed based on the compre-

hensive similarity measures of active ingredients and targets. R ¼ r1; r2; � � � ; rnr
n o

is the node

set of nr active ingredients. The comprehensive similarity Sr(ri, rj) is the weight between active

ingredients ri and rj. T ¼ t1; t2; � � � ; tnt
n o

is the node set of nt targets. The comprehensive simi-

larity St(ti, tj) is the weight between targets ti and tj.
In addition, the active ingredient-target bipartite graph G(V, E) is constructed based on the

known active ingredient-target associations. V = {R, T} is the node set containing active ingre-

dient nodes and target nodes. E = {Art(i,j)} is the edge set. If active ingredient i and target j
have a known association, the weight of edge between them is 1, otherwise is 0.

The active ingredient-target heterogeneous network can be constructed by integrating the

active ingredient similarity network, target similarity network, and the known active ingredi-

ent-target association network. The heterogeneous network is illustrated in Fig 1. The yellow

circles and green rectangles represent active ingredients and targets, respectively. Solid lines

represent known active ingredient-target associations, dashed lines indicate the predicted

active ingredient-target associations.

2.4 Bi-random walk on the heterogeneous network

On the heterogeneous network, a bi-random walk algorithm is used to predict the active ingre-

dient-target associations score matrix. As the previous research [33], the Laplacian normaliza-

tion is used to normalize the weight matrix of a network. For the active ingredient similarity

Table 1. Entropy and weight of similarity measure.

Emean ω
Active ingredient S1

r 3.9734 0.5986

S2
r 5.9265 0.4014

Target S1
t 6.5938 0.2071

S2
t 4.5929 0.2974

S3
t 4.9661 0.2750

S4
t 6.1959 0.2204

https://doi.org/10.1371/journal.pone.0294772.t001
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matrix Sr, the Laplacian normalization is divided into two steps:

S 0rðri; rjÞ ¼
Srðri; rjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðri; riÞ∗Dðrj; rjÞ

q ð10Þ

S 00r ðri; rjÞ ¼
S 0rðri; rjÞX

j

S0rðri; rjÞ
ð11Þ

where D is a diagonal matrix, and the elements of the main diagonal are the sum of corre-

sponding rows of the matrix Sr, i.e Dðri; riÞ ¼
Xnr

k¼1
Srðri; rkÞ. The matrix Sr after Laplacian

normalization is denoted as S00r . Likewise, the target similarity matrix St after Laplacian normal-

ization is denoted as S00t . In addition, the adjacency matrix Art of the active ingredient-target

associations is normalized as follows:

A0rt ¼
Art

sumðArtÞ
ð12Þ

A random walk begins from an active ingredient, then traverses to other target nodes based

on its associated targets. The probabilistic associations between the active ingredient and all

targets are obtained. The left random walk is performed on the target similarity network to

simulate this process:

leftRTt ¼ a� RTt� 1∗S00t þ ð1 � aÞ � A0rt ð13Þ

where α = 0.3 is the restart probability, which controls the probability for the walker staying at

the starting node. leftRTt is the predicted association matrix between active ingredients and

targets in the t-step iteration, RT0 ¼ A0rt. The left random walk stops until |leftRTt+1 − leftRTt|
< 10−6, the resulted matrix is denoted leftRT.

Likewise, a random walk starts from a target node, then traverses other active ingredient

nodes based on its known associated active ingredients. Then another active ingredient-target

Fig 1. The active ingredient-target heterogeneous network. Yellow circles and green rectangles represent active

ingredients and targets respectively.

https://doi.org/10.1371/journal.pone.0294772.g001
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association matrix is obtained. The right random walk is conducted on the active ingredient

similarity network to mimic this process:

rightRTt ¼ a� S00r � RTt� 1 þ ð1 � aÞ � A0rt ð14Þ

where α = 0.3 is the restart probability, the right random walk stops until |rightRTt+1 −
rightRTt|< 10−6, the resulted matrix is denoted rightRT. The final result is the average of the

left and right random walk results, and the final predicted active ingredient-target association

matrix is denoted as RT as follows:

RT ¼
leftRT þ rightRT

2
ð15Þ

The final matrix RT is shown in S6 Table.

2.5 Prediction of AD-target association

In this study, the targets from the Alzheimer’s disease pathway (hsa05010) in the KEGG and

the targets contained in the AD mini metabolic network [34] are selected. The intersection of

these targets and aforementioned 731 targets contains 72 targets, which form the seed node

set. The initial probability vector p0 of targets is constructed such that equal probability is

assigned to each target seed, and probability 0 is assigned to other targets, with the sum of the

probabilities equal to 1. Starting from the target seed node, according to the topological prop-

erty of the target similarity network, random walks are carried out to traverse other targets.

Then, the AD-targets association probabilities vector could be predicted as follows:

Pt ¼ a ∗ S00t ∗Pt� 1 þ ð1 � aÞP0 ð16Þ

where α = 0.3 is the restart probability. Pt is the probability vector of the t-step iteration, and

its value represents the association probabilities between targets and AD. The iteration stops

until |Pt+1 − Pt|< 10−6, the resulted probability vector is denoted as P, and its values are as

shown in S7 Table.

2.6 Prediction of AD-active ingredient association

Combined with the final predicted active ingredient-target association matrix RT and the AD-

targets association vector P, the association scores of active ingredients and AD are predicted

as follows:

PrðriÞ ¼
X

j

RTðri; tjÞ ∗ PðtjÞ ð17Þ

where RT(ri, tj) represents the final predicted association score of active ingredient ri and target

tj, P(tj) represents the score of the target tj associated with AD. Pr(ri) represents the score of the

active ingredient ri associated with AD, as shown in S8 Table.

3. Results and discussion

3.1 Measuring the effect of similarity by ablation analysis

Different similarity measures in a network can lead to differences in the topology and structure

characteristics of the network. Therefore, the iterative process of random walk and the accu-

racy of prediction results are affected by different measures. Ablation analysis is performed on

the comprehensive similarity measure to study the influence of different similarity measures
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on the performance of the RWRHE algorithm. We implement two simplified variants of

RWRHE.

1. RWRHE_GIP: By removing GIP kernel similarity, the active ingredient similarity S2
r and

target similarity S4
t based on GIP kernel similarity are removed.

2. RWRHE_E: By removing entropy, each similarity measure is weighted equally.

The Receiver Operating Characteristic Curve (ROC) reflects the relationship between True

Positive Rate (TPR) and False Positive Rate (FPR) at different thresholds. The area under the

ROC curve (AUC) is used as an evaluation metric to measure the accuracy of prediction

results. “Alzheimer’s Disease” is used as the keyword, 63 active ingredients associated with AD

are retrieved from the HERB database as the positive control group. At the same time, the

active ingredients related to leukemia, mammary carcinoma, fever, and acute pharyngitis are

retrieved, and the active ingredients related to AD are excluded, 66 active ingredients are

obtained as the negative control group. The positive and negative control groups are shown in

S9 Table. TPR, also known as sensitivity, represents the ratio of active ingredients in positive

controls that rank for association with AD above the specified threshold. FPR, also known as

1-specificity, denotes the percentage of active ingredients in negative control group that rank

for association with AD above the specified threshold. ROC curves of RWRHE, RWRHE_GIP,

and RWRHE_E algorithms are shown in Fig 2. The results show that the RWRHE algorithm

achieves higher prediction accuracy, and its AUC value is 0.914. The AUC values of RWRHE_-

GIP and RWRHE_E algorithms are 0.910 and 0.905, respectively. The number of nodes and

edges in the network corresponding to the RWRHE_GIP and the RWRHE_E is the same as

that of the RWRHE, but each edge has different weight. The GIP kernel similarity integrates

the known active ingredient-target associations information, which makes the prediction

results more reliable. The importance of each similarity measure is quantitatively weighted

based on entropy, which makes the similarity network more complete. Therefore, integrating

GIP kernel similarity and information entropy can improve the performance of prediction

results to a certain extent.

Fig 2. The ROC curves of RWRHE, RWRHE_GIP and RWRHE_E.

https://doi.org/10.1371/journal.pone.0294772.g002
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3.2 Comparison with other methods

To further evaluate the performance of RWRHE algorithm, other five network-based algo-

rithms RWR [6], RWRHN [7], HGBI [12], LRWHLDA [8] and HMDAKATZ [13] are com-

pared with RWRHE. RWR algorithm is implemented on the node similarity network. The

walker returns to the seed node with a certain probability in the iterative process. All nodes are

ranked according to the final probability. The RWRHN algorithm takes into account the jump

probability of nodes in heterogeneous networks when constructing the transition matrix.

Active ingredients related to AD are retrieved from the SymMap database(release 2019–01)

[35], and the top 50 active ingredients in the inferred evidence score are selected as seed nodes.

The RWR and RWRHN algorithms are used to calculate the association scores between AD

and all active ingredients. The HGBI algorithm based on heterogeneous graph reasoning infers

potential node associations by constructing heterogeneous networks. The LRWHLDA algo-

rithm is a superimposed local random walk algorithm. The HMDAKATZ algorithm considers

the contribution of different walks to the association probability, and considers that the longer

walks tend to contribute less to similarity. We apply HGBI, LRWHLDA and HMDAKATZ

algorithms to calculate the active ingredient-target association probability matrix, which is

compared with the bi-random walk part in this study. The ROC curves of RWRHE and the

other five algorithms are shown in Fig 3(a). The results show that the RWRHE algorithm has

excellent prediction performance, and its AUC value is 0.914, which is higher than the AUC

values of the other five algorithms.

In addition, the ranks of prediction results also play an important role in evaluating the per-

formance of all algorithms. The cumulative distribution function (CDF) of the ranks is

employed to compare the performance of different algorithms. CDF refers to the proportion

of active ingredients whose ranking exceeds the top-r threshold in the positive control

group. 60� r� 100 are reported as shown in Fig 3(b). The results show that compared with

the other five algorithms, the RWRHE algorithm retrieves the largest proportion under the

same top-r threshold. The majority of the 63 active ingredients in the positive control group

are retrieved in the top 100. Therefore, RWRHE has a good performance in predicting the rela-

tionship between AD and active ingredients.

The RWRHE algorithm predicts the association scores and ranks between active ingredi-

ents and AD. According to the active ingredients contained in herbs and ranks of active ingre-

dients associated with AD, the effect score of herb k in treating AD is calculated based on

ranks as follows:

Hk ¼
X

i

1

rankðiÞ
ð18Þ

where, rank(i) represents the rank of the active ingredient i associated with AD. Finally, 20

Fig 3. (a)The ROC curves of RWRHE, RWR, RWRHN, HGBI, HMDAKATZ and LRWHLDA. (b)The ranks of CDF.

https://doi.org/10.1371/journal.pone.0294772.g003
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herbs are scored and ranked according to the predicted effect scores of herbs for AD, shown in

S10 Table, the results show that Danshen have the best effect for AD, followed by Gouteng and

Chaihu. Similarly, based on the active ingredients contained in the compound, the efficacy of

the compound for AD is scored and ranked according to Eq (18), the results are shown in

Table 2. The results show that Yiqitongyutang is the best compound for AD compared with

other compounds, which indicates that Yiqitongyutang may have better therapeutic effect for

AD.

3.3 GO enrichment analysis and KEGG pathway analysis

The top 100 targets associated with AD are regarded as potential targets of AD. To learn

more information about TCMs and AD, bioinformatics analysis is used to find relevant infor-

mation about potential targets of AD. GO enrichment analysis and KEGG pathway analysis

are performed to clarify relevant biological information about the potential targets of AD.

GO enrichment analysis includes biological process (BP), cell component (CC), and molecu-

lar function (MF). To screen out the most significantly enriched biological annotations, the

top 11 entries with the lowest P value are selected respectively, as shown in Fig 4(a)–4(c). In

Table 2. Ranking of efficacy of compound in treating AD.

Compound score rank

Yiqitongyutang 6.229121413 1

Yigansan 4.196828293 2

BKHJ TCM 2.394613178 3

Gubenjiannaoye 2.28103394 4

Dangguishaoyaosan 0.991858956 5

Yizhi 0.165683049 6

https://doi.org/10.1371/journal.pone.0294772.t002

Fig 4. GO enrichment analysis and KEGG pathway analysis of potential targets. (a): the histogram of GO biological

process; (b) the histogram of GO cell component; (c) the histogram of molecular function; (d) the bubble graph of

KEGG pathway.

https://doi.org/10.1371/journal.pone.0294772.g004
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biological process results, the most enriched GO term ‘Positive regulation of transcription

from RNA polymerase II promoter’ may be involved in the transcription of the substance

related to synaptic connectivity. Synapses play a central role in learning and memory, and

disorders of these behaviors can lead to neurological diseases, including AD [36]. The targets

are also mainly concentrated on positive and negative regulation of gene expression and apo-

ptotic biological processes, suggesting that apoptosis and gene expression regulation play an

important role in the mechanism of AD. In addition, the targets are involved in the biological

process of protein phosphorylation. Protein phosphorylation is the key mechanism of AD

[37]. Highly phosphorylated tau protein forms neurofibrillary tangles (NFTs), which is one of

the main histopathological features of AD [38]. In cell component results, the targets are

mainly concentrated on cytoplasm, nucleus, plasma membrane and so on. In molecular func-

tional results, the targets are mainly concentrated on protein kinase binding, protein kinase

activity, protein serine/threonine kinase activity and protein kinase activity. Some researchers

report that Glycogen synthase kinase-3β (Gsk3β), Ccyclin-dependent kinase 5 (CDK5) and

Microtubule affinity regulating kinase (MARK) may hyper-phosphorylate tau and accelerate

the formation of NFTs [39–41]. Cyclin-dependent kinases (Cdks), which are serine/threonine

kinases, regulate cell cycle and neuronal differentiation. Cdks pathway may have effects on

neuron loss, which is responsible for AD [42].

The involvement of pathways based on potential targets by KEGG pathway enrichment

analysis is plentiful. The top 10 pathways with the smallest P value are drawn as bubble graphs

in Fig 4(d). The size of the dots in the bubble diagram represents the number of targets

enriched in the pathway, and the depth of the color represents the size of the statistical test P-

value. The number of these targets enriched in the AD pathway is the highest. In addition, the

potential targets are mainly concentrated on neurodegenerative diseases, apoptosis, and cancer

pathways.

To further illustrate the relationship between topological properties and relevant bio-

logical functions, GO enrichment analysis and KEGG pathway analysis are performed on

top 100 targets predicted by the RWRHE_GIP and RWRHE_E algorithm, respectively,

shown in S11 Table. The results of the two algorithms do not include the GO term ‘Positive

regulation of transcription from RNA polymerase II promoter’, the GO term ‘inflamma-

tory response’ and the KEGG pathway ‘Pathways in cancer’. The GO term ‘Positive regula-

tion of transcription from RNA polymerase II promoter’ have contribution to the

pathogenesis of AD, which has been discussed above. Numerous studies have revealed the

strong contribution of inflammation to AD pathogenesis, Aβ deposition in AD is related

to inflammatory response [43–45]. Some cancer-related signaling pathways including

FOXO, mTOR, SIRT1, HIF, oxidative stress, inflammation, and metabolism have impor-

tant roles in regulating aging and AD [46]. The GIP similarity and the weights based on

entropy are necessary in integrating networks, which could further display the entries

related to AD.

To further explain the mechanism of multi-pathway and multi-target in the treatment of

AD with TCMs, a target-pathway network is constructed based on the top 10 pathways of

KEGG enrichment analysis. The relationships between the targets and the pathways are

intuitively visualized, as shown in Fig 5. The same pathway is connected to different targets,

in the meantime, the same target is connected to different pathways, which indicates that

they are interactive relationships. Different targets play a synergistic role in the same path-

way. And the pathway also regulates gene transcription and effects gene expression. Com-

pared with single-target drugs, TCMs show the advantage of multi-target and multi-

pathway.
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3.4 Molecular docking

The components of TCM are complex and the targets are diverse. Molecular docking can indi-

cate the binding ability between active ingredients and related targets. The Coach-D server is

presented to predict the protein-ligand binding sites and ligand-binding poses by molecular

docking [47]. The minimum value of Energyu by Coach-D is regarded as the final docking

energy to evaluate the binding ability between active ingredient and target.

The panel of ligands is composed of the top 15 active ingredients by RWRHE and several

approved acetylcholinesterase (ACHE) inhibitors for AD. Several approved ACHE inhibitors

for AD clinically are Galantamine, Donepezil, Rivastigmine, Tacrine and Huperzine A. The

first four are approved by FDA, and Huperzine A is approved in China.

76 key enzymes and receptors from AD metabolic network [34] are sorted out to form the

panel of proteins, and they are divided into 12 categories according to their main functions in

the AD metabolic network, the structure versions of proteins are selected according to better

resolution from Protein data bank (PDB), shown in S12 Table.

The minimum values of Energyu for these possible complexes formed by ligands and pro-

teins in the panels are calculated by Coach-D. The smaller the minimum value of docking

energy is, the stronger the stability of active ingredient-protein site binding is. The docking

energies of these five ACHE inhibitors and 12 categories of proteins are computed and the

box plots are shown in Fig 6. The docking energies of these five ACHE inhibitors and their

common target ACHE are used as the standard for active ingredients. The docking energies of

the top 15 active ingredients and 76 proteins in the panel are given by Coach-D, then the

Fig 5. The pathway-target network. The orange circles represent targets, the blue hexagons represent pathways, and

the gray lines represent the target-pathway connections.

https://doi.org/10.1371/journal.pone.0294772.g005
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average docking values of the top 15 active ingredients and 12 categories of proteins are com-

puted and represented with red dots in Fig 6. The five approved ACHE inhibitors’ common

target is the enzyme ACHE. BCHE is the isozyme of ACHE, the median docking energies of

these five ACHE inhibitors with ACHE/BCHE are -8.7/-8.5, almost all docking values of the

top 15 active ingredients and ACHE are less than -8.7 and the average value is -9.73, all dock-

ing values of the top 15 active ingredients and BCHE are less than -8.5 and the average value is

-10.10. The results indicate that the top 15 active ingredients can bind to ACHE/BCHE and

improve the level of acetylcholine (ACH), which is involved in both memory and learning.

Similarily, the average docking value of the top 15 active ingredients and BACE1 is -9.45 and

less than -8.7, the result shows that the top 15 active ingredients may bind to BACE1, which

may reduce the generation of Amyloid-β (Aβ), Aβ is the main component of senile plaques.

Among the top 15 active ingredients, some active ingredients are confirmed as ACHE or

BACE1 inhibitors in previous research through wet experiments. Álvarez-Berbel et al. show

that Quercetin and apigenin are characterized as inhibition of the enzymatic activity of ACHE

[48]. Beg et al. report that the exposure of AD flies to kaempferol reduces ACHE activity [49].

In addition, Han et al. report that Baicalein exhibits strong BACE1 and ACHE inhibitory prop-

erties [50]. Youn et al. show that oleic acid exerts significant noncompetitive inhibitory activity

against BACE1 [51]. Also, the docking results show that the top 15 active ingredients may bind

to CDK5/MARK/GSK3β and restrain the phosphorylation of tau and reduce the formation of

NFTs. It is well known that Memory loss, Senile plaques and NFTs are the main histopatholog-

ical features of AD. The results show that the active ingredients can enter the active pocket of

related targets well and act as multi-target agents in the prevention and treatment of AD.

4. Conclusion

AD is a complex neurodegenerative disease with few approved drugs. TCM has a long history

and has a strong clinical basis for more than two thousand years. TCM has the advantage of

more active ingredients, multi-target cooperative regulation and lower toxicity. Therefore, the

study of new active ingredients from herbs is of great significance for the development of anti-

AD drugs.

In this study, a novel random walk algorithm called RWRHE is devised to predict active

ingredients and effective TCMs associated with AD based on entropy and random walk with

the restart of a heterogeneous network. The comprehensive heterogeneous network is con-

structed by integrating the known active ingredient-target association network, active ingredi-

ent similarity network and target similarity networks based on entropy. The active ingredients

and effective TCMs for AD are inferred based on random walks. The results measured by

machine learning and bioinformatics show that the RWRHE algorithm achieves better

Fig 6. The box plot of molecular docking.

https://doi.org/10.1371/journal.pone.0294772.g006
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prediction accuracy. Particularly, the docking energies of the five approved ACHE inhibitors

and their common target ACHE are used as the standard for active ingredients, the results

show that the top 15 active ingredients may improve the level of Ach, reduce the generation of

Aβ and restrain the phosphorylation of tau, which are involved in the main histopathological

features of AD. 20 herbs are ranked according to the active ingredients contained in herbs and

ranks of active ingredients associated with AD, Danshen, Gouteng and Chaihu are recom-

mended as effective TCMs for AD. Yiqitongyutang is recommended as effective compound

for AD in the same way.

This study may provide new directions for building more effective prediction models to

identify novel AD drugs. But there are several potential limitations in the current study that

could be improved. In future, more validated association data would be incorporated to

improve the quality of the heterogeneous network, and more useful and detailed studies would

be integrated to improve the prediction ability. Only some predicted active ingredients have

been validated for acting on key enzymes of AD in different published papers, we will take

experimental validation into account and try to design wet experiments to verify the effective-

ness of the predicted active ingredients in future.
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