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Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancyworldwide. The tumormicroenvironment (TME) can
affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component
of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding
RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs),
comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of
HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT),
and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components
of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the
challenges faced in the future.
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Introduction
Liver cancer is a fatal malignant tumor. According to CA: A Cancer
Journal for Clinicians, the incidence of liver cancer ranks fifth
among men, seventh among women, and second among malignant
tumors in China [1]. Therefore, finding a treatment for liver cancer
has become increasingly important. Liver cancer can be divided into
primary liver cancer and metastatic liver cancer, with the most
common being hepatocellular carcinoma (HCC), accounting for
75%–85% of primary liver cancers.
Noncoding RNAs (ncRNAs) are a class of RNA molecules that do

not encode proteins but have important regulatory functions.
According to their length and source, ncRNAs include microRNAs
(miRNAs), long chain noncoding RNAs (lncRNAs), circular RNAs
(circRNAs), and tRNA-derived fragments (tRFs). Yong et al. [2]
reviewed the use of endogenous expression of miRNAs to silence
target genes to achieve therapeutic approaches for HCC in 2007.
With advances in bioinformatics and next-generation sequencing
technologies, many ncRNAs were found to play important roles in
the crosstalk between HCC cells and tumor microenvironment
(TME) [3]. TME is a small microenvironment around tumor cells,

including fibroblasts, immune cells, blood vessels, inflammatory
cells, various signaling molecules and extracellular matrix (ECM).
The interaction between tumor and TME plays a key role in
tumorigenesis and tumor progression [4]. The oxygen concentra-
tion in the tissue is blocked, resulting in a low oxygen concentration
in the TME, which is called hypoxia [5]. Hypoxia is a typical feature
of the TME and a sign of cancer. To adapt to the hypoxic
environment, cancer cells acquire invasiveness, metastasis and
resistance to chemotherapy and radiotherapy, which together
constitute a lethal cancer phenotype [6].
Recent studies also suggested possible therapeutic strategies to

target HCC metabolism by regulating the expression of specific
ncRNAs [7,8]. ncRNAs are considered biomarkers and therapeutic
targets for the treatment of cancers, including HCC. This review
focuses on the regulatory role of ncRNAs in the TME of HCC.

TME and Tumorigenesis
Hypoxia inducible factors (HIFs) and TME
HIF-1 transcription factor activation is one of the widely studied
pathways in the TME. HIF-1 has two subunits, an oxygen-sensitive
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α-subunit (HIF-1α) and a constitutively expressed β-subunit (HIF-
1β) [9]. HIF-1α is a major regulator of hypoxia signal transduction
and is widely expressed [10]. The α subunits degrade rapidly under
normal oxygen conditions but remain stable during hypoxia [11].
The β subunit is constitutively expressed, not regulated by
intracellular oxygen concentration, and has no transcriptional
activity alone. Only the heterodimer of HIF-1α and HIF-1β subunits
is active [12]. Under normal oxygen conditions, HIF-1α undergoes
hydroxylation of conservative proline residues 402 and 564 by the
prolyl hydroxylase domain (PHD) [13]. Subsequently, von protein
(pVHL) mediates HIF-1α ubiquitination, followed by degradation by
the proteasome [14]. Under anoxic conditions, the hydroxylation
and acetylation of HIF-1α are inhibited, thereby stabilizing HIF-1α
and allowing it to form a dimer with HIF-1β. The dimer then
combines with CREB-binding protein (CBP)/p300, forming a
transcription initiation complex and activating target genes [15]. In
recognition of their contributions to the study of hypoxia, William G.
Kaelin, Peter J. Ratcliffe, and Gregg L. Semenza were awarded the
2019 Nobel Prize in Physiology or Medicine.
Saurabh et al. [9] reviewed the role of HIF in tumor progression,

specifically as a fuel for cancer progression. Chen et al. [16]
reviewed the major impact of intratumoral hypoxia on the
development and progression of breast cancer (BC). Instead of
exerting a limited regional impact, hypoxia creates a positive
environment for BC. HIF-1 is broadly induced under BC hypoxia,
activating the transcription of multiple oncogenes. Zhang et al. [17]
showed that HIF mediates a cascade of molecular events that enable
cancer cells to adapt and multiply. In summary, hypoxia is
beneficial to cancer cell growth in the TME. In most tumors within
the TME, the hypoxic environment leads to the production of HIF-1α
[18]. In an anoxic environment, activated HIF-1α increases the
activity of Snail and Twist, which reduces the expression of E-
cadherin and promotes EMT [19]. Goyette and his colleagues [20]
found that interference with AXL (a member of the TAM receptor
tyrosine kinase family) reduced HIF-1α levels during hypoxia,
thereby altering the hypoxia response. This led to a reduction in the
production of key cytokines involved in hypoxia-induced EMT,
invasion, and macrophage behavior, ultimately enhancing the
antitumor microenvironment and immunotherapy response. Mut
homologue 6 (MSH6) is an overexpressed oncogene in glioblastoma
(GBM). The expression of β-lactamase forms an anoxic TME in
GBM, thus promoting EMT, proliferation, migration, invasion and
angiogenesis and ultimately promoting the development of GBM
[21]. Collectively, the pivotal role of HIF-1α in driving tumorigenesis
and promoting tumor progression under hypoxic conditions has
been extensively elucidated. Consequently, HIF-1α has emerged as
a promising candidate for targeted cancer therapy, holding immense
potential in the realm of oncological interventions.

HIF in HCC
Tumor hypoxia is a unique and critical environmental factor for
tumor cells to survive under insufficient oxygen supply by
modifying tumor cell metabolism through hypoxia, but normal
cells cannot survive in the hypoxic TME. However, hypoxia could
induce genomic changes, enabling tumor cells to adapt to the
adverse microenvironment characterized by hypoxia and malnutri-
tion so that living cell subsets with the genetic mechanism required
for malignant tumor progression could survive [22,23]. HCC is a
highly metabolized tumor that consumes more oxygen than

surrounding normal tissues [12]. In recent years, the in-depth
study of the hypoxic microenvironment has provided new ideas for
the treatment and possible prevention strategies of liver cancer [24,
25]. Zheng and his colleagues [26] found that HIF-1α overexpres-
sion is associated with poor overall survival (OS) and disease-free
survival (DFS). HIF-1α is mainly involved in promoting tumor
proliferation [27], migration, invasion and angiogenesis [28], as
well as EMT [29], glycolysis regulation [30] and lipid metabolism
[31], involving various signaling pathways (Table 1).
HIF-1α, through the IL-8/nuclear factor kappa B (NF-κB) axis,

promotes the migration and invasion of hepatoma cells. In addition,
HIF-1α-activated TM4SF1-AS1 plays an important role in promoting
the proliferation, migration and invasion of liver cancer cells by
enhancing the expression of TM4SF1 [32]. HIF-1α-induced EMT is a
key process related to metastasis. Ma et al. [29] found that activated
hepatic stellate cells promoted the upregulation of transglutaminase
2 (TGM2) in HCC cells through inflammatory signals, leading to
HIF-1α accumulation. This results in a pseudo-hypoxic state and
promotes EMT in HCC cells. Reprogramming of lipid metabolism
has become a sign of cancer. Recently, it was reported that HIF-1α is
related to this process. Fatty acid binding protein 5 (FABP5)
promotes HIF-1α synthesis and disrupts the FIH/HIF-1α interaction,
enhancing HIF-1α’s ability to promote lipid accumulation and cell
proliferation in HCC cells [31].

ncRNAs and TME
Additional studies have shown that ncRNAs participate in
intercellular communication [39] and regulate the activation,
proliferation and cytokine secretion of tumor immune cells [40],
thus affecting tumor invasion, metastasis and immune escape.
Many ncRNAs have been found to play an important role between
HCC cells and the TME. HIF-1α is involved in the regulation of the
hypoxia response and could be used as the central hub for
regulating multiple cancer markers. Therefore, exploring the
interaction between ncRNAs and HIF-1α has become a promising
target for anticancer therapy.
It was reported that more than 1000 target genes are affected by

HIF-1α regulation to mediate the hypoxia-induced phenotype [6].
ncRNAs regulated by hypoxia signals are called hypoxia-responsive
ncRNAs (HRNs). According to their interaction with the HIF-1α
complex, HRNs can be divided into those participating in HIF-1α-
mediated direct regulation and those participating in HIF-1α-
mediated indirect regulation [14]. miRNA is the most studied
subgroup of ncRNAs. Hypoxia-responsive miRNAs (HRMs) show
promising carcinogenic or tumor suppressive functions in the

Table 1. Role and potential mechanism of HIF-1α in HCC

Function Related genes and pathways Ref.

Migration Increase TM4SF1-AS1 and TM4SF1 [32]

Invasion HIF-1α/IL-8/NF-κB axis [33]

Proliferation Activate KDM4A-AS1/KPNA2/AKT pathway [34]

Autophagy YTHDF1/ATG2A/ATG14 axis [35]

Angiogenesis Upregulation of Bclaf1 expression [36]

EMT TGM2/VHL/HIF-1α axis [29]

Glycolysis TFBM2/SIRT3/HIF-1α signal pathway [37]

Lipid metabolism FABP5/HIF-1α axis [31]

Drug resistance PFKFB3/HIF-1α feedback loop [38]
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occurrence and development of cancer [41]. lncRNA expression
could be altered by hypoxia, which in turn regulates HIF-1α activity
through a variety of mechanisms, such as chromatin modification,
RNA stability and protein stability, and regulation of the transcrip-
tional activity of HIF-1α [42]. It has also been shown that lncRNAs
can act as competing endogenous RNAs (ceRNAs) for miRNAs to
regulate the expression of related mRNAs at the posttranscriptional
level [43], including HIF-1α mRNA. The mechanisms of ncRNA
regulation of HIF-1α expression are summarized in Table 2.

NF-κB Signaling Regulates the TME of HCC
The NF-κB family is involved in a large number of biological
processes, including inflammation, the immune response, and the
regulation of cellular homeostasis [58,59]. These biological phe-
nomena are closely related to the occurrence, progression, and
metastasis of various malignant tumors. Additionally, NF-κB plays
multiple roles in the TME, including promoting tumor cell growth
and invasion, suppressing immune surveillance, and promoting
angiogenesis [60,61]. Therefore, NF-κB signaling is not only an
important regulatory pathway of inflammation and immunity but
also a key factor in malignancy (Figure 1). The NF-κB transcription
factor family consists of five major subunits, including Rel (c-Rel),
RelB, p65 (RelA, NF-κB3), p50 (NF-κB1) and p52 (NF-κB2), all of
which have an N-terminal fragment containing approximately 300
amino acid residues, known as the Rel homeodomain (RHD).
Among them, p65, c-Rel and RelB have C-terminal transactivation
domains (TADs), which confers the ability to activate NF-κB and
actively regulate its expression. Although p50 and p52 lack
transcriptional activation domains, their homodimers inhibit
transcription. The correlation between activation of the NF-κB

pathway and hypoxic conditions, particularly in relation to HIF, has
been shown to be a major mediator of the hypoxic response that
promotes cancer progression [62,63]. Additionally, the NF-κB
signaling pathway is one of the most important signaling pathways
involved in physiological and pathological conditions. It is always
quiescent in normal tissues and activated in a variety of
inflammatory diseases and tumors [64]. Growing evidence suggests
that dysregulated NF-κB signaling enhances cancer cell proliferation
and metastasis and mediates radio- and chemoresistance [65–67].
Sustained activation of NF-κB is responsible for tumorigenesis,

metastasis, tumor evasion, resistance to apoptosis, angiogenesis
and proliferation in HCC [68]. ncRNAs have been found to regulate
the NF-κB signaling pathway in different settings, and our
laboratory has also reviewed the regulatory role and clinical
significance of ncRNAs in NF-κB signaling in cancer [69].

Proliferation and apoptosis
Xie et al. [70] found that lncRNA-PDIA3P1 is upregulated in HCC,
and its higher level is associated with recurrence and survival rates
in human HCC. Additionally, upregulation of PDIA3P1 is signifi-
cantly associated with elevated tumor necrosis factor receptor-
associated factor 6 (TRAF6), p-p65, and NF-κB downstream anti-
apoptotic genes in human HCC tissues. Mechanistically, PDIA3P1
binds to miR-125a/b and miR-124 and thereby deregulates their
inhibitory effects on TRAF6, activating the NF-κB signaling pathway
to confer chemoresistance [70]. Yang et al. [71] investigated the
regulatory role of miR-20a on NF-κB in Huh7 HCC cells and its effect
on the sensitivity of Huh7 cells to chemotherapeutic drugs. It was
found that miR-20a activates the NF-κB signaling pathway and
decreases the expressions of apoptosis-related proteins by upregu-

Table 2. Major research advances in ncRNA and HIF-1α in cancer

ncRNAs Cancer Regulatory mechanisms Functions Ref.

miRNA

miR-671-5p Oophoroma Inhibiting HIF-1α expression via activating
HDAC5

Proliferation and apoptosis [44]

miR-29a HCC Supressing HIF-1α expression Proliferation [45]

miR-142-3p HCC Inhibiting PI3K/AKT/HIF-1α signaling Invasion and apoptosis [46]

miR-138-5p HCC Targeting HIF-1α and regulating its expression Vascular mimicry [47]

miR-322/424 Cirrhosis Inducing HIF-1α protein expression Angiogenesis and migration [48]

miR-200c HCC Downregulating the transcriptional activity
of HIF-1α

[49]

lncRNA

LINC00649 Breast cancer Maintaining the stability of HIF-1α Metastasis [50]

NORAD Colorectal cancer Acting as miR-495-3p sponge to adjust HIF-1α Angiogenesis and chemotherapy resistance [51]

FAM83A-AS1 Lung adenocarcinoma Suppressed combination of HIF-1α and VHL
leads to HIF-1α accumulation

Proliferation and migration [52]

LINC00525 Colorectal cancer Activating HIF-1α via miR-338-3p/UBE2Q1/
β-catenin axis

Proliferation [53]

PAARH HCC Promoting HIF-1α/VEGF signaling Progression and angiogenesis [54]

HIFAL Breast cancer Enhancing HIF-1α transactivation Proliferation [55]

MAPKAPK5-AS1 HCC Adjusting HIF-1α expression via PLAGL2 Progression [56]

circRNA

circ_03955 Pancreatic cancer Promoting HIF-1α through sponging
miR-3662 expression

Tumorigenesis and Warburg effect [57]
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lating the expressions of the proteins Livin and Survivin, which
attenuates the sensitivity of cells to chemotherapeutic drugs and
reduces the level of apoptosis [71]. The expression of miR-26b is
significantly downregulated in human liver cancer tissues com-
pared to paraneoplastic tissues. By forcibly upregulating miR-26b, it
was found to inhibit cell proliferation and induce apoptosis,
exerting an anticancer effect. Next, upregulation of miR-26b could
significantly inhibit the NF-кB pathway and thus suppress tumor
growth in human HCC [72]. Wen et al. [73] found that the
expression of miR-27b in HCC is lower than that in adjacent
nontumor tissue (ANT). The decreased expression of hsa-miR-27b
is associated with poor survival among HCC patients. They
demonstrated that miR-27b acts as an inhibitor of the NF-κB
pathway in HCC by targeting transforming growth factor-activated
kinase-binding protein 3 (TAB3). Furthermore, miR-27b signifi-
cantly inhibits HCC cell proliferation.

Epithelial-mesenchymal transition (EMT), migration and
invasion
The expression of miR-605-3p is downregulated in HCC tissues
compared to paraneoplastic tissues, and the OS and DFS rates are
lower in HCC patients with lowmiR-605-3p expression than in those
with high miR-605-3p expression. Additionally, immunofluores-
cence and western blot analysis revealed that miR-605-3p inhibited
EMT and attenuated the activation of NF-κB signaling in HCC cells,
thus exerting its oncogenic function [74]. It was demonstrated that
lncRNA fragment cancer susceptibility candidate 2 (CASC2) is
downregulated in human HCC tissues and HCC cell lines compared
to paraneoplastic tissues and the normal hepatocyte line LO2. By
downregulating its expression, it was found to significantly promote

migration and invasion of HCC cells. Mechanistically, CASC2 was
found to regulate hepatocellular carcinogenesis by targeting miR-
362-5p and thereby inhibiting the NF-κB pathway [75]. To
investigate the role of lncRNA and NF-κB in the regulation of
cancer metastasis, Chen and colleagues [76] identified the lncRNA
that interacts with NF-κB, NKILA, which was found to be down-
regulated in HCC tissues and cell lines, and its reduced level is
associated with poor prognosis in HCC patients. In addition, NKILA
inhibits the migration and invasion of HCC cells in vitro and in vivo.
Mechanistically, NKILA blocks the Slug/EMT pathway by inhibiting
the phosphorylation of IκBα, p65 nuclear translocation and NF-κB
activation [76].

Regulation of the TME by ncRNAs in HCC
Role of ncRNAs in TME homeostasis
ncRNAs regulate cancer-associated fibroblasts (CAFs) in
the TME of HCC
Fibroblasts were identified as the predominant cell population in
solid tumors and are stimulated by various factors secreted by
tumor cells or immune cells, leading to their transformation into
CAFs. CAFs, recognized as a distinct subset of activated fibroblasts
within the TME [77], play a crucial role in tumor growth,
proliferation, and metastasis as one of the most abundant and
critical components of the tumor mesenchyme. Studies have
demonstrated the impact of CAFs on the malignant progression,
metastasis, drug resistance, and recurrence of HCC [78]. Through a
comparison between primary cultured CAFs and noncancerous
fibroblasts (NFs) obtained from resected HCC specimens of the
same patient, it was observed that CAFs significantly enhance HCC
cell proliferation, migration, and invasion. The upregulation of

Figure 1. Regulation of NF-κB signaling by ncRNA in the HCC TME
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CXCL11 expression in HCC tissues and CAFs has been reported, and
CXCL11 secreted by CAFs was found to promote HCC cell
proliferation and migration. To explore the specific mechanism,
Liu et al. [79] identified that LINC00152 exerts a positive regulatory
effect on CXCL11 expression in CAFs through direct binding to miR-
11-205p. This regulatory axis influences the proliferation and
migration abilities of HCC cells in vitro and the growth of HCC
tumors in vivo. A growing body of evidence suggests that cellular
interactions between cancer cells and surrounding stromal cells
within the TME play a crucial role in modulating cancer progression
and treatment response [80,81]. CAFs were identified as key
contributors to the promotion of human cancer growth, invasion,
metastasis, and therapy resistance through exosome-mediated
cellular communication [80]. It was found that exosomal lncRNA
TUG1 derived from CAFs promotes the migration, invasion, and
glycolysis of HepG2 cells. However, these effects could be
attenuated by miR-524. Mechanistically, SIX1 was identified as a
target gene of miR-524, and the inhibition of SIX1 abolishes the
promoting effects of miR-524-5p inhibitors on migration, invasion,
and glycolysis [82]. Qi et al. [83] reported that CAFs exert oncogenic
effects on HCC cells through the transfer of exosomes carrying miR-
20a-5p. Mechanistically, LIM domain and actin-binding 1 (LIMA1)
was identified as a tumor suppressor in HCC, and miR-20a-5p was
found to act as an oncogene in HCC. Furthermore, it was observed
that miR-20a-5p is present in CAF-derived exosomes that are
transferred from CAFs to HCC cells, leading to the suppression of
LIMA1 expression [83]. CAF-derived extracellular vesicles (EVs)
were shown to promote tumor progression through the delivery of
miRNA. Zhang et al. [84] found that CAF-derived EVs could
promote the proliferation, migration, invasion potential, and
resistance to sorafenib in HCC cells. Specifically, miR-1228-3p
carried by CAF-EVs was found to enhance the chemoresistance of
HCC by activating the placenta-associated 8 (PLAC8)-mediated
PI3K/AKT pathway [84]. CAFs have been recognized for their
contribution to tumor progression, with miRNAs playing a crucial
role in regulating the tumor-promoting properties of CAFs. The
dysregulated expression of miRNAs in HCC-CAFs and their
oncogenic characteristics were examined. The study revealed that
miR-101-3p and miR-490-3p were downregulated in HCC-CAFs, and
their common target gene was identified as TGFBR1 [85]. The
downregulations of miR-101-3p and miR-490-3p, along with the
upregulation of TGFBR1, were found to be associated with a poor
clinical prognosis in HCC patients. Furthermore, increased expres-
sion of TGFBR1 is correlated with the infiltration of immunosup-
pressive immune cells such as MDSCs, M2 macrophages, and Treg
cells [85].
ncRNAs affect extracellular matrix (ECM) remodeling
The ECM is recognized as one of the most crucial components of the
TME and consists of protein components, including collagen,
fibronectin, glycosaminoglycans, and proteoglycans. It serves as a
significant tissue barrier against tumor invasion and metastasis
[60]. The ECM exhibits a highly dynamic network structure, and
matrix metalloproteinases (MMPs) play a vital role in the remodel-
ing and turnover of the ECM. MMPs act as key regulators in multiple
tumor pathological processes [86,87]. ncRNAs were reported to
participate in ECM remodeling by regulating the expressions of
MMPs [88,89]. Wang et al. [90] discovered that aspirin decreases
the level of the tumor suppressor miRNA let-7g by inhibiting the
lncRNA LMCD1-AS1, which acts as a sponge. Consequently, this

inhibition enhances the targeting of let-7g on its target gene, prolyl
4-hydroxylase (P4H), thereby exerting inhibitory effects on tumor
growth in HCC and collagen deposition. These findings revealed a
novel role and regulatory mechanism of aspirin in inhibiting HCC
through the disruption of abnormal collagen deposition. Excessive
accumulation of ECM can lead to hepatic fibrosis (HF), where
hepatic stellate cells (HSCs) are the main cells involved. In a study
by Xu et al. [91], miR-708 was found to regulate HSC activation and
enhance ECM accumulation by directly targeting transmembrane
protein 88 (TMEM88). These findings provide a potential target for
future research on the process of liver fibrosis. In a study conducted
by Wang et al. [92], miR-22-3p and miR-29a-3p were found to act as
fibrosis inhibitors and synergistically inhibit HF. Serine/threonine
kinase 3 (AKT3) was identified as the common target gene of these
two miRNAs. This study provided new insights into the regulation
of AKT3 expression in HF and opened up new possibilities for
miRNA-based therapeutic regimens for HF. Similarly, Zhang et al.
[93] found that the expression of the lncRNA SNHG16 is
significantly increased in HCC tissues and cell lines and is
associated with poor prognosis in HCC patients. Mechanistically,
SNHG16 promotes the malignant behavior of HCC cells by
activating the ECM-receptor interaction pathway [93]. ECM
remodeling requires the concerted action of multiple proteolytic
enzymes and their endogenous inhibitors, among which tissue
inhibitor of metalloproteinases 2 (TIMP2) plays an important role.
Kai and colleagues [94] found that TIMP2 is frequently and
significantly downregulated in human HCC, and this downregula-
tion is associated with aggressive tumor behavior and poorer patient
prognosis. Mechanistically, TIMP2 suppression in a hypoxic
environment is induced through a regulatory feedback circuit
consisting of HIF-1α, miR-210 and HIF-3α [94]. Cao et al. [95] found
that abnormal expression of miR-324-5p in HCC cells is involved in
cell migration and invasion. Overexpression of miR-324-5p reduces
the expressions of E26 transformation-specific 1 (ETS1) and
specificity protein 1 (SP1) and potentially inhibits ECM degradation
by suppressing MMP2 and MMP9 in HCC. Therefore, miR-324-5p
could be considered a potential new target for the treatment of
invasive HCC.

ncRNAs and angiogenesis in HCC
Angiogenesis plays a pivotal role in the pathophysiology of cancer and
is intricately regulated by diverse components within the TME [96]. A
large amount of vascularization was observed in rapidly growing
tumors at an early stage, which was the significance of tumors in
tumor treatment proposed by Judah Folkman [97]. Excessive
proliferation of tumor cells leads to an increase in oxygen consump-
tion, and when the tumor mass exceeds the blood supply, the tumor
becomes hypoxic. Hypoxia induces the production of angiogenic
factors, leading to enhanced angiogenesis [98]. Hypoxia-induced HIF-
1α is stable and promotes the upregulation of several angiogenic
factors, including vascular endothelial growth factor (VEGF),
fibroblast growth factor 2 (FGF-2), and platelet-derived growth factor
(PDGF) [99]. Liu et al. [47] identified that miR-138-5p targets HIF-1α
and regulates the expressions of HIF-1α and vascular endothelial
growth factor A (VEGFA), thereby inhibiting angiogenesis in HCC.
Overall, miRNAs were identified to be involved in different stages of
tumor progression, and some of them even play an important role in
regulating multiple cancer features, making them promising targets
for cancer therapy, which deserves further exploration.
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Angiogenesis is essential for the occurrence, progression and
metastasis of HCC. To investigate the biological function of the
lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in HCC,
Guo et al. [100] detected elevated levels of NEAT1 and reduced
levels of miR-125a-5p in HCC tissues and cells. The dual luciferase
reporter gene assay showed that NEAT1 binds to miR-125a-5p,
which in turn binds to VEGF. NEAT1 enhances VEGF angiogenesis
in HCC by regulating competitive endogenous RNA (ceRNA) for
miR-125a-5p in the AKT/mTOR and ERK pathways. Fei and
coworkers [101] demonstrated that upregulation of MYLK-AS1 is
associated with enhanced angiogenesis and tumor progression in
HCC tumor tissues and cell lines. MYLK-AS1 acts as a ceRNA that
regulates angiogenesis in HCC, and miR-424-5p was identified as a
direct target of MYLK-AS1. Mechanistically, MYLK-AS1 promotes
tumor progression and angiogenesis by targeting the miR-424-5p/
E2F7 axis and activating the VEGFR-2 signaling pathway in HCC.
Oncogenic MALAT1 exerts an antiangiogenic effect in HCC by
sponging miR-3064-5p as a competitive ceRNA with its attenuated
inhibitory effect on the FOXA1/CD24/Src pathway [102]. These
findings suggest that angiogenesis plays an important role in rapid
tumor growth and metastasis [97]. Wu et al. [103] identified a
downregulated circRNA, circ_0004018, in HCC by RT-qPCR.
Through a series of functional assays, it was found that over-
expression of circ_0004018 significantly inhibited angiogenesis in
HCC. Mechanistically, circ_0004018, activated by estrogen receptor
1 (ESR1), inhibits angiogenesis in HCC by binding to FUS and
stabilizing TIMP2 expression.

ncRNAs and immune modulation in the TME
In the TME, immune cells are the most abundant cellular
component and have been the target of interest due to their potent
cytotoxicity [104–106]. Macrophages are one of the major compo-
nents of the innate immune system and are responsible for
pathogen clearance and antigen presentation. Tumor-associated
macrophages (TAMs), the most abundant immune cells in the TME,
are critical for cancer initiation and progression [105]. Based on
various stimuli, macrophages were acknowledged to undergo
polarization into either the M1 phenotype characterized by
antitumor activity or the M2 phenotype characterized by protumor
activity [60]. M2-like polarized TAMs represent a predominant
subset of infiltrating immune cells in HCC, demonstrating sub-
stantiated evidence of profound immunosuppressive properties and
protumor effects [107]. Yu et al. [108] found that exosomal miR-21-
5p derived from HCC cells directly targeted the ras homolog family
member B (RhoB) 3′-untranslated region (UTR), downregulating
RhoB levels, which weakened mitogen-activated protein kinase
(MAPK) axis signaling pathways and induced macrophage M2
polarization. Kupffer cells (KCs) have been recognized for their
crucial role in HCC through intricate communication with various
immune cell populations, thereby exerting a protective effect
against HCC development. Liu et al. [109] found that the
polarization of KCs towards the M2 phenotype is a pivotal factor
contributing to the pathogenesis of HCC in AKT/Ras mice. Notably,
the dysregulation of miR-206 was observed to promote the M1
polarization of KCs, thereby facilitating the augmented infiltration
of CD8+ T cells and exerting a protective effect against HCC
progression [109]. These significant findings underscore the
potential of miR-206 as a promising immunotherapeutic interven-
tion for HCC. A previous study demonstrated that miR-15a/16-1

exhibited the capacity to mitigate immune suppression by interfer-
ing with C-C motif chemokine 22 (CCL22)-mediated intercellular
communication between KCs and regulatory T cells (Tregs) [110].
This modulation of the KC-Treg interaction highlights miR-15a/16-1
as a prospective immunotherapeutic approach for HCC. CD8+ T cell
dysfunction is a critical factor in HCC immune escape. Hu et al.
[111] discovered upregulated expression of circCCAR1 in HCC
samples and cell lines, promoting HCC growth and development in
vitro and in vivo. The circCCAR1/miR-127-5p/Wilms tumor 1-
associated protein (WTAP) feedback loop enhances HCC prolifera-
tion and metastasis. Exosomal circCCAR1 from HCC cells impair
activated CD8+ T cells by stabilizing PD8 protein, suggesting
therapeutic potential in targeting exosomal circCCAR1 or cell
division cycle and apoptosis regulator 1 (CCAR1) for improving
HCC immunotherapy [111]. Zhang et al. [112] identified a
significant upregulation of LINC01132 expression in HCC with a
concurrent association with poorer OS in HCC patients. Function-
ally, LINC01132 overexpression was found to exert promotive
effects on HCC cell growth, proliferation, invasion, and metastasis.
Mechanistically, silencing of LINC01132 results in CD8+ T cell
infiltration, implicating its role in modulating the tumor immune
microenvironment [112]. Moreover, the combined approach of
LINC01132 knockdown and anti-PDL1 treatment demonstrated
enhanced antitumor immunity, highlighting the potential of this
novel therapeutic combination for HCC.
In summary, ncRNAs play multiple roles in the TME, which could

promote or inhibit the immune system and angiogenesis, increase
the permeability of endothelial cells, promote cancer metastasis,
and cause ECM remodeling, which together support tumor
progression. The communication between cells and the TME
mediated by ncRNAs is shown in Figure 2.

Conclusions and Prospects
Hepatocarcinogenesis is a multifactorial process in which ongoing
liver injury and concurrent regeneration might produce an
environment that ultimately leads to hypoxia and inflammation,
which are key features of the liver TME [113,114]. Under hypoxic
conditions, HIF-1α is an important transcription factor that mediates
the effects of hypoxia on the adaptive regulation of tumor cells and
the TME [115]. The feasibility of using HIF-1α as a therapeutic target
has been demonstrated in a number of studies, suggesting that
interventions that alter HIF-1α activity by direct or indirect means
could be effective in the treatment of HCC. In a review, Shant et al.
[23] provided a comprehensive analysis of diverse potential novel
therapeutic agents for HCC treatment. These agents include
hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, anti-
sense oligonucleotides, and natural compounds, all of which
specifically target the HIF/hypoxia signaling pathway in HCC.
Their findings underscore the promising potential of HIFs as
effective therapeutic targets in the management of HCC.
ncRNAs have emerged as key regulators of posttranscriptional

activation in cancer. miRNAs, among the most extensively studied,
were found to be significantly dysregulated in HCC, thereby
promoting tumor progression [116]. Furthermore, alongside miR-
NAs, other ncRNAs, such as lncRNAs that predominantly function
as miRNA sponges, are implicated in modulating sorafenib
resistance by regulating EMT and stemness in HCC [117]. No
studies have reported the role for circRNAs in sorafenib resistance;
however, circRNAs are involved in regulating the stemness
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characteristics of HCC cells [118]. Several ncRNA biomarkers or
therapeutic targets could be highly specific for a single liver disease,
considering the tissue-specific expression of ncRNAs, thus enabling
rapid diagnosis and improved management of HCC. These findings
provide new insights into ncRNA-mediated interactions between
the HCC microenvironment, metabolism and tumor cell state,
thereby further enhancing our understanding of ncRNA-mediated
cell state transitions in sorafenib resistance.
Due to the important role of the HIF pathway in conferring

survival and resistance to cancer cells, the search for HIF inhibitors
is critical to overcome the chemotherapy resistance that is observed
in many cancers. Over the years, direct and indirect HIF inhibitors
have been identified and evaluated in clinical trials at various stages
[119]. Equally promising are miRNA mimics (agomiRs) that
supplement tumor suppressor miRNAs and/or miRNA inhibitors
(antagomiRs) targeting oncomiR-dependent tumor sites. Some of
these inhibitors show promising response rates in patients,
although many are still in early clinical trials. However, challenges
persist concerning the specificity, stability, and short half-life of the
target molecules. Hence, it is imperative that we amplify our
endeavors to surmount the challenges hindering the translation of
our present knowledge into clinical applications. By doing so, we
can broaden our horizons and develop new therapeutic strategies
against HCC.
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