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Intermediate conformations of CD4-bound 
HIV-1 Env heterotrimers

Kim-Marie A. Dam1,3, Chengcheng Fan1,3, Zhi Yang1,2 & Pamela J. Bjorkman1 ✉

HIV-1 envelope (Env) exhibits distinct conformational changes in response to host 
receptor (CD4) engagement. Env, a trimer of gp120 and gp41 heterodimers, has been 
structurally characterized in a closed, prefusion conformation with closely associated 
gp120s and coreceptor binding sites on gp120 V3 hidden by V1V2 loops1–4 and in fully 
saturated CD4-bound open Env conformations with changes including outwardly 
rotated gp120s and displaced V1V2 loops3–9. To investigate changes resulting from 
substoichiometric CD4 binding, we solved single-particle cryo-electron microscopy 
(cryo-EM) structures of soluble, native-like heterotrimeric Envs bound to one or  
two CD4 molecules. Most of the Env trimers bound to one CD4 adopted the closed, 
prefusion Env state, with a minority exhibiting a heterogeneous partially open Env 
conformation. When bound to two CD4s, the CD4-bound gp120s exhibited an open 
Env conformation including a four-stranded gp120 bridging sheet and displaced 
gp120 V1V2 loops that expose the coreceptor sites on V3. The third gp120 adopted  
an intermediate, occluded-open state10 that showed gp120 outward rotation but 
maintained the prefusion three-stranded gp120 bridging sheet with only partial V1V2 
displacement and V3 exposure. We conclude that most of the engagements with one 
CD4 molecule were insufficient to stimulate CD4-induced conformational changes, 
whereas binding two CD4 molecules led to Env opening in CD4-bound protomers only. 
The substoichiometric CD4-bound soluble Env heterotrimer structures resembled 
counterparts derived from a cryo-electron tomography study of complexes between 
virion-bound Envs and membrane-anchored CD4 (ref. 11), validating their physiological 
relevance. Together, these results illuminate inter mediate conformations of HIV-1 Env 
and illustrate its structural plasticity.

The HIV-1 Env glycoprotein, a heavily glycosylated homotrimer contain-
ing gp120 and gp41 subunits, mediates entry into host cells to initiate 
infection12. On the surface of virions, Env adopts a closed, prefusion 
conformation similar to that observed in soluble native-like Env trimer 
ectodomains1–4,13. The viral entry process is initiated when gp120s bind 
to the host receptor, CD4, at the CD4-binding site (CD4bs) located distal 
to the Env apex on the sides of each of the three gp120s5–9. This triggers 
conformational changes in gp120 that expose the gp120 V3 coreceptor 
binding site, which is occluded in the prefusion conformation beneath 
gp120 V1V2 loops5–9. Coreceptor binding results in further conforma-
tional changes that lead to insertion of the gp41 fusion peptide into 
the host cell membrane and fusion of viral and host membranes1,10.

X-ray crystallography and single-particle cryo-EM structures 
have enabled characterization of soluble versions of HIV-1 Envs14 in 
closed, prefusion1,2, CD4-bound open5–7, and intermediate partially 
open conformations5,9,10. Several studies have demonstrated that the 
native-like soluble Envs (SOSIPs)14 used for structural studies resemble 
virion-bound Envs, indicating that these conformations may be relevant 
to the viral Env entry process3,4,14–17. The closed, prefusion Env conforma-
tion is characterized by gp120 V1V2 loops interacting around the trimer 

apex, thereby shielding the coreceptor binding sites on the V3 loops1,2,18. 
CD4-bound open Env trimer structures revealed receptor-induced 
changes in which the gp120 subunits rotated outwards, the V1V2 loops 
were displaced from the apex by approximately 40 Å to the sides of 
Env, and the coreceptor binding site on each V3 was exposed and 
became mostly disordered5–9 (Supplementary Video 1). This process 
also converted the closed, prefusion conformation three-stranded 
gp120 bridging sheet composed of the β20, β21 and β3 β-strands1 to a 
four-stranded antiparallel β-sheet in which strand β2, whose residues 
are located in a proximal helix in the closed, prefusion formation, is 
intercalated between strands β21 and β3 (refs. 1,5,6,9). Intermediate 
Env conformations include occluded-open5,10 and partially open con-
formations9,19. In the occluded-open conformation observed in trimer 
complexes with the CD4bs antibody b12 (ref. 5) and similar antibodies 
raised in vaccinated non-human primates10, the gp120 subunits were 
outwardly rotated from the central trimer axis as in CD4-bound open 
conformations, but V1V2 displacement and V3 exposure did not occur, 
and the prefusion three-stranded gp120 β-sheet was maintained5,10. In 
partially open Env conformations, CD4 binding led to the characteristic 
CD4-induced structural changes in gp120, but subsequent binding of 
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the gp120–gp41 interface antibody 8ANC195 led to partial closure of 
the gp120s9.

A prevailing enigma about Env conformational changes and the role 
of CD4 in initiating the fusion process concerns whether the gp120/
gp41 protomers that form the Env trimer behave cooperatively or inde-
pendently during receptor-induced transformations. This information 
would reveal how many CD4 receptor and CCR5 coreceptor molecules 
are needed to engage each Env trimer to initiate fusion and further 
explain Env function as it relates to virus infectivity, thereby informing 
the design of entry inhibitors and mechanisms of antibody neutraliza-
tion and fusion. To investigate the role of receptor stoichiometry in 
CD4-induced conformational changes in HIV-1 Env, we designed soluble 
Env heterotrimers that can bind only one or only two CD4 receptors for 
comparisons with Env homotrimers binding either zero CD4s (closed, 
prefusion trimers) or three CD4s (fully saturated CD4-bound open trim-
ers). Using single-particle cryo-EM, we solved structures of one or two 
CD4s bound to the clade A BG505 trimer14 to 3.4 and 3.9 Å, respectively. 
We found that binding one CD4 primarily resulted in a closed, prefusion 
Env conformation that showed only subtle indications of CD4-induced 
changes. Binding two CD4 molecules induced an asymmetric, partially 
open Env conformation in which the gp120 subunits resembled open 
(for CD4-bound protomers) and occluded-open (for the unliganded 
protomer) conformations, whereas the three gp41 subunits were struc-
turally different from each other. Together, these results illustrate 
intermediate Env conformations and inform our understanding of the 
events that lead to HIV-1 fusion.

Heterotrimer Env construct design
A soluble heterotrimer Env that can bind only one CD4 receptor, 
termed HT1, was generated by coexpressing plasmids encoding 
BG505 SOSIP.664 (refs. 14,20) bearing a D368Rgp120 mutation that 
eliminates CD4 binding21,22 and an affinity-tagged mutant BG505 at a 
20:1 ratio (Extended Data Fig. 1a). For HT2, designed to bind only two 
CD4 receptors, plasmids encoding BG505 SOSIP.664 and a tagged 
BG505-D368Rgp120 SOSIP.664 were coexpressed in a 20:1 ratio (Extended 
Data Fig. 1a). Assuming random assembly, 13% of the Env population 
would be the desired singly tagged heterotrimer, and less than 1% 
would contain dually and triply tagged trimers23. For both constructs, 
immuno affinity column purification resulted in purified tagged het-
erotrimers (Extended Data Fig. 1a).

To validate BG505 HT1 and BG505 HT2, we performed enzyme-linked 
immunosorbent assays (ELISAs) to compare binding of soluble CD4 
to heterotrimeric Envs and to homotrimeric wild-type and D368Rgp120 
mutant Envs (Extended Data Fig. 1b). As expected, wild-type BG505 
exhibited the highest level of CD4 binding, BG505-D368Rgp120 showed 
only limited CD4 binding at high concentrations, and BG505 HT1 and 
BG505 HT2 showed intermediate levels of CD4 binding, with more 
binding to BG505 HT2 than to BG505 HT1.

Closed conformation of one CD4-bound Env
We used single-particle cryo-EM to solve structures of the BG505 HT1 
heterotrimer in the presence of CD4 (Fig. 1a, Extended Data Fig. 2 and 
Extended Data Table 1). We found three classes of HT1 heterotrimer: 
class I (132,550 particles; 3.4 Å resolution; density for one bound CD4), 
class II (68,508 particles; 4.2 Å resolution; strong density for one bound 
CD4 and weak density for a second bound CD4), and class III (260,558 
particles; 3.2 Å resolution; no density corresponding to bound CD4 
molecules). Weak density for a second bound CD4 in the class II recon-
struction indicates that this map may represent an average of HT1 Envs 
in different conformations bound to one or two CD4 molecules, with 
one CD4-bound Envs in the majority. Owing to heterogeneity (class II) 
or no bound CD4 (class III), we fitted CD4 and Env trimer coordinates 
to only the class I CD4–HT1 reconstruction.

Despite CD4 recognition of one gp120 protomer, the class I HT1 
trimer maintained the prefusion closed Env conformation with V1V2 
loops at the apex and V3 loops shielded beneath V1V2 (refs. 1,2,14) 
(Fig. 1b and Supplementary Video 1), indicating that interactions of 
a soluble Env with one CD4 molecule are predominantly insufficient 
to trigger conformational changes that lead to trimer opening5,6,9. 
CD4 binding to a closed Env conformation was also observed in a 
low-resolution structure of CD4 bound to a homotrimeric SOSIP that 
included mutations to prevent Env opening24. However, the HT1 hetero-
trimer used for the structural studies here did not include mutations 
that lock Env into a closed, prefusion conformation.

We compared interactions in the CD4bs of the CD4-bound protomer 
of the class I CD4–HT1 complex with the CD4bs in the gp120 of a 
CD4-bound open BG505 trimer (PDB 6CM3) by calculating the surface 
area of gp120 buried by CD4 (buried surface area; BSA) (Fig. 1c,d). In the 
CD4bs region of gp120, the CD4 BSA footprints were comparable for 
class I CD4–HT1 and CD4–BG505. However, V1V2 displacement in the 
CD4–BG505 complex resulted in approximately 200 Å2 more BSA on 
gp120 (Fig. 1c,d). These contacts have been previously demonstrated 
to stabilize the CD4-induced open conformation of Env5,9. Thus, the 
Env–CD4 interface remained largely unchanged during CD4 engage-
ment with HT1, with the primary difference between one CD4-bound 
HT1 and CD4-bound open homotrimeric Env structures5–9 being dis-
placement of V1V2 to the side of gp120 where it makes further contacts 
with CD4.

CD4-induced Env conformational changes are triggered, at least in 
part, by insertion of Phe43CD4 into a conserved, hydrophobic cavity (the 
Phe43 cavity) on gp120 (refs. 5,6,9,25,26). Small-molecule CD4 mime-
tics such as BNM-III-170 and M48U1 insert hydrophobic entities into 
the Phe43CD4 cavity, thereby competing with CD4 binding and induc-
ing Env opening8,27–32. Some CD4bs broadly neutralizing antibodies 
(bNAbs) also mimic Phe43CD4 interactions by inserting a hydrophobic 
residue at antibody heavy chain (HC) position 54 into the Phe43 cavity 
on gp120. However, in contrast to the conformational effects of CD4 
and selected small mimetic inhibitors on Env conformation, CD4bs 
bNAbs with a hydrophobic HC residue 54 stabilize the prefusion closed 
Env conformation when bound to trimeric Env33–37.

To examine the consequences of insertion of Phe43CD4 into a single 
gp120 Phe43 cavity in the class I CD4–HT1 complex, we compared the 
structural landscape of the Phe43 cavity in the gp120s of two symmetric 
Env trimer complexes: the CD4bs bNAb 1-18 bound to a closed, prefu-
sion conformation BG505 (ref. 35) and CD4 bound to an open, fully 
CD4-saturated BG505 trimer9 (Fig. 1e). We identified and compared 
the positions of conserved residues in the Phe43 cavity, some of which 
undergo rearrangements during CD4-induced Env opening6,25. Residues 
in the CD4 binding loop (E370gp120, V371gp120) together with T257gp120 and 
exit loop (G473gp120, M475gp120) residues maintained analogous posi-
tions in the class I one CD4-bound HT1, zero CD4-bound closed and 
three CD4-bound open trimers (Fig. 1e). However, subtle differences in  
the gp120 β20/β21 loop were observed; for instance, in the 1-18–BG505 
complex, the N425gp120 side chain pointed away from Phe541-18 HC,  
whereas the M426gp120 side chain pointed towards Phe541-18 HC, and the 
planes of the W427gp120 side chain and Phe541-18 HC side chain were par-
allel. By contrast, in the CD4–BG505 open complex, the N425gp120 side 
chain pointed upwards from the Phe43 cavity ceiling, the M426gp120 
side chain pointed away from Phe43CD4 and the W427gp120 side chain 
was perpendicular to the Phe43CD4 side chain. The class I CD4–HT1 
complex showed an intermediate orientation of gp120 β20/β21 loop 
residues, with the N425gp120 and M426gp120 side chains oriented similarly 
to their positions in the CD4–BG505 complex, whereas the W427gp120 
side chain adopted a position similar to that in the 1-18–BG505 complex. 
Thus, whereas the overall conformation of the Env trimer in the class I  
CD4–HT1 complex represented a closed, prefusion Env, the gp120 
Phe43 cavity showed indications of structural changes consistent with 
CD4 binding.

https://doi.org/10.2210/pdb6CM3/pdb
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Open conformation of two CD4-bound Env
To structurally characterize BG505 HT2 complexed with CD4, we col-
lected single-particle cryo-EM data, recovering three classes (Extended 
Data Fig. 3 and Extended Data Table 1): class I (92,660 particles; 3.9 Å 
resolution; BG505 heterotrimer with two CD4-bound protomers and 
one unliganded protomer), class II (48,577 particles; 3.8 Å resolution, 
BG505 trimer bound to a single CD4 and similar to the class I CD4–HT1 
structure; Extended Data Fig. 3e), class III (28,548 particles; 6.4 Å resolu-
tion; poorly resolved with one Env protomer showing clear CD4 density, 
an adjacent protomer with less defined CD4 density, and density for 
the third, unliganded protomer extending across the trimer apex to 
potentially contact the adjacent CD4-bound protomer). Subsequent 
analyses of the CD4–BG505 HT2 complex were confined to the 3.9 Å 
class I structure.

We quantified gp120 rearrangements using measurements of 
interprotomer distances between the Cα atoms of conformationally 
characteristic Env residues to compare the class I two CD4-bound HT2 
structure with other Env conformations (Fig. 2a,b). The relationship 
between the CD4-bound HT2 gp120 protomers resembled a typical 

CD4-induced open conformation5–9, with V1V2 loops displaced from 
the Env apex to the sides of gp120 and V3 loops exposed (Fig. 2a), con-
sistent with increased interprotomer distances between these proto-
mers compared with closed35, occluded-open10 and partially open9 Env 
conformations (Fig. 2b). The unliganded HT2 protomer did not show 
V1V2 or V3 loop movement to the extent observed in the CD4-bound 
protomers. Instead, the V1V2 and V3 loops were displaced as a rigid 
body from the Env apex, as observed in the protomers of the homotrim-
eric occluded-open Env conformation10 (Fig. 2a). Asymmetry of the HT2 
Env with two bound CD4s was demonstrated by variable interprotomer 
distances: the measured distance between the two CD4-bound gp120s 
(protomers A and B) was consistent with the open, CD4-bound Env con-
formation, in contrast to distances between the CD4-bound gp120s and 
the unliganded gp120 (protomer C), which were slightly smaller than 
distances between CD4-bound gp120s. Thus, the HT2 Env adopted an 
asymmetric conformation in which the distance to the central trimer 
axis was smaller in the unliganded protomer than in the CD4-bound 
protomers (Fig. 2b and Supplementary Video 1).

As a hallmark of CD4-induced gp120 structural changes is the tran-
sition of the three-stranded β-sheet to a four-stranded antiparallel 
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bridging sheet5–7,9, we next examined the β-sheet conformations in the 
class I CD4–HT2 complex. The Env β-sheet conformations observed 
in the CD4–HT2 complex differed: CD4-bound protomers A and B 
included the four-stranded bridging sheet observed in CD4-bound open 
Env trimer structures5,6,9, whereas the unliganded gp120 in protomer C 
contained a three-stranded sheet resembling its counterpart gp120s in 
closed and occluded-open conformations10,35 (Fig. 2c). In summary, the 
binding of two CD4s to BG505 HT2 resulted in an asymmetric and par-
tially open Env trimer composed of two CD4-bound open-conformation 
gp120s and one unliganded gp120 in an occluded-open conformation.

To address the generality of these observations, we prepared HT2 
heterotrimers for the clade B B41 SOSIP.664 (ref. 38) (Extended Data 
Fig. 1a), obtaining a 4.1 Å cryo-EM density map of B41 HT2 bound to 
two CD4 molecules (Extended Data Fig. 4). Fitting the CD4–BG505 
HT2 structure into the density map for CD4–B41 HT2 showed agree-
ment in overall structural features, including V1V2 displacement of 
CD4-bound protomers and partial outward gp120 rotation of the unli-
ganded protomer (Extended Data Fig. 4).

In addition, we solved 4.2 Å and 3.8 Å structures of CD4 complexes 
with BG505 HT1 and HT2 plus 17b39, a CD4-induced antibody that recog-
nizes the exposed coreceptor binding site on V3 (refs. 5,6,8,9) (Extended 
Data Fig. 5). For both complexes, the Envs showed three bound 17b 
Fabs and three CD4s and adopted an open conformation, as indicated 

by density for V1V2 that was displaced to the sides of gp120 on each 
protomer (Extended Data Fig. 5). Superimposition of CD4–17b–HT1 
and CD4–17b–HT2 density maps with a cryo-electron tomography 
(cryo-ET)/subtomogram-averaged map of membrane-bound BaL Env 
bound to CD4 and 17b4 showed similarities in the orientations of Env 
gp120s, CD4 molecules and 17b Fabs (Extended Data Fig. 5i). How-
ever, poor local map densities surrounding the Fab–gp120 and CD4 
interfaces in the single-particle reconstructions with HT1 and HT2 
heterotrimers prevented building of reliable atomic models. Although 
low resolution, these structures can be interpreted by assuming that 
BG505 Env is in equilibrium between closed and open conformations, 
with the equilibrium generally favouring the closed, prefusion con-
formation and transitions to an open conformation in the absence 
of CD4 binding sampled less frequently. The structural results indi-
cate that the binding of CD4 to an unmutated CD4bs on a gp120 may 
occur first, enabling subsequent exposure of the V3 loop and binding 
to 17b Fab in those protomers. Disruption to the prefusion trimer apex 
through V1V2 displacement probably allows the remaining, unliganded 
gp120 protomer(s) in the heterotrimer to sample open conformations 
more frequently, thereby enabling 17b binding. Once the gp120–17b 
interaction occurs, gp120 could adopt an open conformation with 
displaced V1V2 loops and become trapped in this state. CD4 could then 
make contacts with the displaced V1V2, allowing CD4 binding to that 
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protomer. This interaction could overcome the unfavourable effects 
of the D368Rgp120 mutation, which would otherwise hinder or prevent 
CD4 binding to the protomer containing that mutation.

gp120-mediated changes in gp41
HIV-1 gp41 subunits mediate fusion events between host and viral mem-
branes to enable viral infection12,40,41. Prefusion gp41 is composed of 
a long HR1 helix that extends from beneath the gp120 apex, an HR2 
helix that surrounds the amino termini of the HR1 coils and the fusion 
peptide and fusion peptide proximal region (FPPR) between the HR1 
and HR2 helices12,40,42. CD4 binding leads to compacting of the carboxyl 
termini of the HR1 (HR1c) helices, triggering formation after coreceptor 
binding of a prehairpin intermediate in which HR1 extends away from 
HR2 and the viral membrane12,40,42. These movements lead to formation 
of compact FPPR helices and transitions of the fusion peptides from 
α-helices shielded in hydrophobic environments to solvent-exposed 
disordered loops7,12,40,42.

Previous studies have indicated that changes in Env gp120 conforma-
tion may correlate with gp41 changes, indicating cooperativity between 
the gp120 and gp41 subunits5–7,9. Indeed, in closed and CD4-saturated 
open Env conformations, gp41 subunits undergo the characterized 
CD4-induced changes described above5–9 (Fig. 3a). Closed Env trimers 
contain gp41s with a disordered HR1c, a helical fusion peptide and an 

FPPR bent helix, whereas the gp41 subunits in open Envs contain a heli-
cal HR1c, disordered fusion peptide and straight helical FPPR (Fig. 3b). 
The gp41 subunits in the class I CD4–HT1 complex largely represent 
gp41s in closed Env trimers, in which each of the three gp120 and gp41 
subunits largely retain closed, prefusion conformations despite binding 
one CD4 (Fig. 3a). The only deviation from the closed gp41 conforma-
tion in the class I HT1 heterotrimer is a disordered fusion peptide in 
all protomers (Fig. 3b).

In the class I CD4–HT2 complex, individual gp41 subunits adopted 
distinct conformations despite nearly identical conformations of the 
two CD4-bound gp120s (Fig. 3a,b). The gp41 in CD4-bound protomer 
A showed a slanted HR1 helix, a short helical HR1c, a disordered fusion 
peptide and a bent helical FPPR (Fig. 3b). The other CD4-bound gp120 
in protomer B contained contrasting elements in gp41: the HR1 and 
HR1c helices were erect (HR1) or fully extended (HR1c), consistent with 
CD4-induced structural changes (Fig. 3b). By contrast, the fusion pep-
tide and FPPR resembled their conformations in closed Envs (Fig. 3b). 
Despite protomer C being unliganded, its gp41 most resembled the 
CD4-induced gp41 conformation, with a helical HR1c, disordered 
fusion peptide and a helical FPPR (Fig. 3b). Thus, individual gp41 sub-
units can adopt different, distinct conformations in the context of a 
two CD4-bound Env.

A potential link between gp120 and gp41 Env conformations involves 
the gp120 α0 region. During Env trimer opening, the HR1c extension 
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displaces the α0 disordered loop located above HR1c in the prefusion 
conformation and forms a stable α-helix that caps the neighbouring 
gp41 HR1 helix5,7,8 (Fig. 3c). In the class I CD4–HT1 complex, the α0 
loops resembled those in the prefusion conformation, whereas the 
α0 conformations in the CD4–HT2 complex were variable (Fig. 3a,c). 
Despite only a partial extension of HR1c in CD4-bound protomer A of the 
class I HT2 heterotrimer, the gp120 α0 helix was formed and displaced 
towards the protomer C HR1c, where it was stabilized through interac-
tions with the short disordered protomer C HR1c tip (Fig. 3c). Similarly, 
for CD4-bound protomer B, HR1c extension created a gp120 α0 helix 
that interacted with its neighbouring protomer A HR1c (Fig. 3c). In unli-
ganded protomer C, the gp120 α0 region remained in the prefusion dis-
ordered loop conformation despite extension of its HR1c (Fig. 3c). The 
loop conformation was probably accommodated because protomer 
C gp120 does not undergo the full outwards displacement from the 
Env trimer axis. However, partial outwards rotation of the protomer 
C gp120 still enabled interactions with the neighbouring protomer 
B HR1c (Fig. 3c). These interprotomer interactions between gp120s 
and gp41s in CD4–HT2 rationalize why each gp41 subunit adopted a 
distinct conformation, indicating that formation of the α0 helix may 
be dependent on CD4 occupancy and probably drives gp41 confor-
mational changes.

CD4-bound SOSIP and virion Envs
In a study described in an accompanying paper, cryo-ET and sub-
tomogram averaging was used to determine the conformations of 
membrane-bound Envs complexed with substoichiometric numbers of 
membrane-bound CD4s11, allowing comparison of our higher resolution 
soluble CD4–soluble heterotrimer Env structures with structures of 
CD4–Env complexes investigated under more physiological conditions.

Rigid-body fitting of the class I CD4–HT1 model into the cryo-ET/
subtomogram-averaged density of a one CD4-bound Env trimer 
showed substantial differences (Extended Data Fig. 6a). Unlike the 
closed Env conformation observed for the soluble class I CD4–HT1 
complex (Fig. 1a), the membrane-bound Env adopted a partially open 
conformation in response to engagement with a single CD4 in which 
the CD4-bound protomer seemed to undergo CD4-induced confor-
mational changes consistent with V1V2 displacement11 (Extended Data 
Fig. 6a). However, the single-particle cryo-EM-derived heterogene-
ous class II CD4–HT1 complex reconstruction (Extended Data Fig. 2c) 
superimposed well with the cryo-ET/subtomogram-averaged density 
for the one CD4-bound Env trimer11 (Extended Data Fig. 6b), consistent 
with the ability of soluble and membrane-bound Envs to adopt similar 
conformations on binding of a single CD4.

The two CD4-bound membrane-embedded and soluble Envs exhib-
ited similar conformations. Rigid-body fitting of the soluble class I  
CD4–HT2 structure into the corresponding cryo-ET/subtomogram- 
averaged CD4–Env density showed alignment of bound CD4s and 
Env gp120s (Fig. 4a,b). The displaced V1V2 loops in the CD4–HT2 
CD4-bound protomers A and B were clearly matched with density 
from membrane-embedded Env (Fig. 4c,d), and the partial outward 
gp120 rotation described in unliganded protomer C in the soluble 
CD4–Env structure (Fig. 2a,b) aligned with density for the unliganded 
protomer in the membrane-bound Env (Fig. 4e). However, the V1V2 and 
V3 densities were not resolved in the cryo-ET map11, probably owing 
to flexibility of this region, limiting our comparisons of the V1V2 and 
V3 regions of the unliganded protomer in membrane-bound Env and 
soluble Env (Fig. 4e).

Discussion
HIV-1 Env trimers on virions are likely to encounter multiple CD4 
receptors on the surfaces of target cells. However, experimental stud-
ies have yet to definitively address whether one, two or all three CD4bs 

on each trimer must be occupied to induce characterized structural 
rearrangements in Env (for example, V1V2 displacement and gp120 
rotation) that expose the coreceptor binding site. In addition, the 
degree of cooperativity between Env protomers on binding to CD4 
have not been investigated structurally. The characterization of a 
non-neutralizing antibody isolated from an immunized macaque that 
mimicked fusion peptide interactions with a single gp41 per trimer, 
rendering one fusion peptide per trimer inactive43, implies that not 
all protomers in each Env trimer are required for virus–host cell mem-
brane fusion. Consistent with this conclusion, fusion and infectivity 
studies that incorporated Env mutations resulting in defective CD4, 
coreceptor and fusion activity in individual protomers of Env hetero-
trimers44–47 indicated that Env entry may not require each subunit in 
an individual trimer to be competent in performing all functions44–46. 
However, the effects of substoichiometric binding of CD4 in these 
experiments were complicated by the necessity for Env protomers 
with different defective mutations to be randomly assembled as 
homotrimeric and heterotrimer Envs that were compared for fusion 
and infectivity with homotrimeric controls44–46. In addition, these 
experiments did not include structural characterizations to examine 
the conformational effects of substoichiometric CD4 interactions 
with individual Env trimers. Our single-particle cryo-EM investiga-
tion of Env heterotrimers binding one or two CD4s, together with 
the accompanying cryo-ET visualization of the native HIV-1 virions 
and membrane-bound CD4 (ref. 11), adds to our knowledge of Env 
structures, which was previously limited to closed, prefusion Env 
conformations with either no bound CD4s or three CD4s bound to 
fully saturated open Env trimers1–6,8,9,11.

By engineering soluble Env heterotrimers with either one or two 
wild-type CD4bs, we solved structures of Env trimers with substoichio-
metric numbers of bound CD4s at sufficient resolutions to monitor 
CD4-induced changes to gp120 and gp41 subunits. We found that bind-
ing of one CD4 to the dominant class I three-dimensional reconstruc-
tion of CD4–HT1 resulted in minor structural changes to a native-like 
soluble Env trimer in the closed, prefusion state; for example, we did 
not observe opening of any of the gp120 subunits of the trimer or the 
accompanying changes in the CD4-bound gp120 that result from CD4 
associating with gp120 in CD4-bound open trimers5–9 (in particular, 
changes resulting from insertion of Phe43CD4 into a gp120 hydrophobic 
cavity, which facilitates induced changes such as V1V2 displacement in 
CD4-bound gp120 subunits of fully saturated open Env trimers5,6,9,25,26, 
were minor). By contrast, the one CD4-bound conformation of the 
membrane-bound Env trimer revealed by cryo-ET/subtomogram aver-
aging showed a partially open conformation in which the CD4-bound 
protomer seemed to undergo CD4-induced conformational changes11. 
This conformation aligned well with a second CD4–HT1 cryo-EM recon-
struction, a subdominant heterogeneous class that also showed partial 
Env opening.

The single-particle cryo-EM class I CD4–HT1 and the cryo-ET struc-
tures of one CD4-bound Env trimers may represent different con-
formational intermediates involved in engagement of a single CD4, 
with the closed trimer conformation likely to precede the more open 
conformation (Fig. 5). Several factors could contribute to the obser-
vation of these different one CD4-bound Env trimer conformations: 
(1) differences in the Env clade being investigated (tier 2 BG505 for 
single-particle cryo-EM versus tier 1B BaL for cryo-ET), with tier 2 viruses 
being more resistant than tier 1 to neutralization and probably also 
CD4-induced changes48; (2) the increased ability of membrane-bound 
CD4 compared with soluble CD4 to engage with and then dissociate 
from Envs over the course of an incubation, perhaps leading to visu-
alization in the cryo-ET experiments of one CD4-bound Envs that had 
recently bound two CD4s; (3) SOSIP substitutions that stabilize the 
prefusion, closed conformation (including the interprotomer disulfide, 
I556P, A316W)14,20 preventing CD4-induced structural changes when 
only one CD4 is bound; (4) a lower temperature incubation for the 
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single-particle cryo-EM CD4–HT1 complex (4 °C) compared with the 
analogous cryo-ET sample (room temperature), perhaps contribut-
ing to observation of the closed trimer conformational state with one 
CD4 bound that probably precedes a more open trimer conformation 
(Fig. 5). In any case, the heterogeneous class II CD4–HT1 single-particle 
cryo-EM reconstruction superimposed well with the one CD4-bound 
cryo-ET Env density (Extended Data Fig. 6b), indicating the ability of 
the SOSIP HT1 Env to adopt a more open conformation in response to 
primarily binding a single CD4.

The single-particle cryo-EM and cryo-ET structures of two CD4- 
bound Env trimers were remarkably consistent, such that both  
showed two protomers in CD4-bound open conformations and the 
remaining unbound protomer in a conformation resembling an 

occluded-open Env protomer10 (Fig. 4). These results provide fur-
ther evidence of SOSIP Env trimers resembling their virion-bound 
counterparts3,4, both in the closed, prefusion conformation and in 
various CD4-bound conformations that adopt different conforma-
tions compared with unliganded Env trimers. Thus, this study and 
the accompanying cryo-ET imaging11, together with previous Env 
structures, complete a description of the conformations of HIV-1 Env 
trimers at each stage of engaging CD4, from no bound receptors to 
the final conformation with three bound receptors (Fig. 5 and Sup-
plementary Video 1).

The ability to confirm single-particle soluble Env heterotrimer con-
formations that include residue-level details using lower-resolution 
Env trimer structures derived by cryo-ET under more physiological 
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conditions11 lends confidence to the proposed order of structural transi-
tions induced by CD4 binding (Fig. 5 and Supplementary Video 1). The 
single-particle cryo-EM structures also include descriptions of details of 
CD4-induced structural changes in gp120 and gp41, including coopera-
tive intersubunit structural transitions. These results reveal intermediate 
Env conformations that expand our understanding of receptor-induced 
structural changes preceding host and viral membrane fusion, thereby 
informing the design of therapeutics to block HIV-1 infection.
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Methods

Protein expression and purification
SOSIP.664v4 Env constructs included the following stabilizing 
mutations: introduced cysteines 501C and 605C, I559P, A316W and 
the furin cleavage site mutated to six arginine residues14,20. SOSIPs 
with D7324 tags included a GSAPTKAKRRVVQREKR sequence 
after residue 664 in the gp41 ectodomain14. The D368R mutation 
was encoded in Envs to impair CD4 binding21,50–52. Genes encoding 
tagged and untagged SOSIP.664 Env homotrimers were expressed 
by transient transfection of Expi293 cells (Thermo Fisher Scientific). 
Env heterotrimers were purified from cotransfections involving a 
20:1 expression plasmid DNA ratio of untagged to tagged Env con-
structs: a 20:1 ratio of Env-D368R/Env-D7324 (HT1) and a 20:1 plasmid 
of Env/Env-D368R-D7324 (HT2). Trimeric Envs were purified from 
cell supernatants by PGT145 immunoaffinity chromatography and 
size-exclusion chromatography (SEC) using a Superose 6 10/300 
column (Cytiva)14,53. Tagged Env homotrimers and heterotrimers (HT1 
and HT2) were further purified using JR-52 immunoaffinity chroma-
tography as previously described14.

Genes encoding CD4 D1D2 (domains 1 and 2) and D1–D4 (domains 
1–4) with C-terminal 6x-His or StrepII tags were transiently transfected 
using the Expi293 expression system (Thermo Fisher Scientific)6. CD4 
proteins were purified using Ni2+-NTA (Cytiva) or Strep-Tactin XT (IBA 
Life Sciences) affinity columns, followed by SEC using a Superdex 200 
10/300 column (Cytiva).

The Fab from the CD4i antibody 17b39 was expressed by transient 
transfection using expression vectors encoding the light chain and a 
C-terminally tagged HC portion of the Fab using the Expi293 expres-
sion system (Thermo Fisher Scientific)6. Fab was purified from cell 
supernatants by Ni2+-NTA (Cytiva) chromatography followed by SEC 
using a Superdex 200 10/300 column (Cytiva).

D7324 capture ELISA
ELISAs were performed as previously described8,10,54. Briefly, 5 µg/ml 
of JR-52 IgG14 (gift from J. Robinson, Tulane University) was coated 
on Corning Costar high-binding 96-well plates in 0.1 M NaHCO3  
(pH 9.6). Plates were incubated overnight at 4 °C. After washing, plates 
were blocked with 3% bovine serum albumin in TBS-T (20 mM Tris, 
150 mM NaCl, 0.1% Tween-20) for 1 h at room temperature. Blocking 
buffer was removed, and D7324-tagged Envs were applied to plates at 
5 µg/ml in 3% bovine serum albumin in TBS-T. Plates were incubated 
for 1 h at room temperature, and then buffer was removed. For some 
experiments, 6x-His tagged CD4 was serially diluted in 3% bovine serum 
albumin in TBS-T at a top concentration of 100 µg/ml and added to 
plates, followed by incubation for 4 h at room temperature. The CD4 
solution was removed, and plates were washed twice with TBS-T. A 
horseradish-peroxidase-labelled secondary against the His tag (Gen-
script) was added at a 1:5,000 dilution in 3% bovine serum albumin in 
TBS-T. Plates were incubated for 30 min and then washed with TBS-T 
three times. Colorimetric detection of CD4 binding was accomplished 
using Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific), 
and quenching was performed with 1.0 N HCl. Absorption was meas-
ured at 450 nm. Two independent biological replicates (n = 2) were 
used for all assays.

Assembly of protein complexes and cryo-EM sample 
preparation
The D1–D4 version of CD4 was chosen instead of CD4 D1D2 for struc-
tural studies with BG505 HT1 and HT2 to increase particle size. HT1–
CD4 and HT2–CD4 complexes were prepared by incubating purified 
Env heterotrimers with a 1.1× molar excess of CD4 D1–D4 overnight 
at 4 °C. We attempted CD4–Env incubations at different tempera-
tures (namely 37 °C and room temperature) and found that overnight 
incubation at 4 °C produced the most favourable particle quality 

when frozen on cryo-EM grids. For HT1–CD4–17b and HT2–CD4–17b 
complexes, 17b Fab was added before grid-freezing at a 1.1× molar 
excess, followed by incubation at 4 °C for 30 min. QuantiFoil 300 mesh 
1.2/1.3 grids (Electron Microscopy Sciences) were glow discharged with 
PELCO easiGLOW (Ted Pella) for 1 min at 20 mA. Fluorinated octyl-
maltoside solution (Anatrace) was added to the protein complex to a 
final concentration of 0.02% (w/v), and 3 µl of the complex–detergent 
mixture was applied to glow-discharged grids. A Mark IV Vitrobot 
(Thermo Fisher Scientific) was used to blot grids for 3 s with 0 blot 
force using Whatman No.1 filter paper and 100% humidity at room 
temperature. Grids were plunge-frozen and vitrified in 100% liquid 
ethane.

Cryo-EM sample preparation and data collection
Single-particle cryo-EM datasets for HT1–CD4, HT2–CD4, HT1– 
CD4–17b and HT2–CD4–17b were collected on a 300 keV Titan Krios 
(Thermo Fisher Scientific) cryo-electron microscope equipped with 
a K3 direct electron detector camera (Gatan) using SerialEM v.3.7  
(ref. 55) automated data collection software. Videos were recorded 
with 40 frames at a total dosage of 60 e−/Å2 using a 3 × 3 beam image 
shift pattern with three exposures per hole in super resolution mode, 
a defocus range of −1 to −3 µm and pixel size of 0.416 Å.

Data were processed using cryoSPARC v.3.2 (ref. 56). Patch motion 
correction was applied to each dataset with a binning factor of 2, 
followed by Patch CTF to estimate contrast transfer function para-
meters. The blob picker with a diameter of 100 to 230 Å was used to 
pick particles. Particles were extracted and then two-dimensional 
classified. Particle classes representing the expected complex were 
selected and used for ab initio modelling. The ab initio models and 
corresponding particles that represented the expected complex under-
went subsequent rounds of heterogeneous, homogeneous and non- 
uniform refinements. Resolutions were calculated in cryoSPARC 
v.3.2 (ref. 56) using the gold-standard Fourier shell correlation 
0.143 criterion. Fourier shell correlation plots were generated with  
cryoSPARC v.3.2 (ref. 56).

Model building and refinement of cryo-EM structures
The model coordinates for class I BG505 HT1–CD4 were generated by 
fitting the following reference coordinate files into cryo-EM density 
using UCSF ChimeraX v.1.2.5 (ref. 57): BG505 gp120 monomer (PDB 
6UDJ), gp41 monomer (PDB 6UDJ) and CD4 D1D2 (PDB 5U1F). For the 
class I BG505 HT2–CD4 reconstruction, the initial coordinates included 
the BG505 gp120 CD4-bound monomer (PDB 7LOK), BG505 gp120 
unliganded monomer (PDB 7TFN), gp41 monomer (PDB 6UDJ) and CD4 
D1D2 (PDB 5VN3). Domains 3 and 4 of CD4 D1–D4 were not modelled 
owing to potential flexibility between CD4 domains 2 and 3. Initial 
BG505 HT–CD4 models and N-linked glycans were manually refined 
using Coot v.0.8.9.1 (ref. 58). Iterative rounds of whole-complex refine-
ments using Phenix v.1.17.1 (phenix.real_space_refine)59,60 and Coot 
v.0.8.9.1 (ref. 58) were then performed to generate the final models.

Structural analyses
Structure figures were created with PyMOL v.2.4.0 (Schrödinger 
LLC) and UCSF ChimeraX v.1.2.5 (ref. 57). BSA was calculated using  
PDBePISA61 with a 1.4 Å probe. gp120 BSA was calculated for protein 
components of gp120 without including glycan coordinates. Owing to 
the low resolution of complexes, interactions were assigned tentatively 
using the following criteria: hydrogen bonds were assigned as pairwise 
interactions less than 6.0 Å and with an A-D-H angle greater than 90°, 
and van der Waals interactions were assigned as distances between 
atoms that were less than 6.0 Å.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

https://doi.org/10.2210/pdb6UDJ/pdb
https://doi.org/10.2210/pdb6UDJ/pdb
https://doi.org/10.2210/pdb5U1F/pdb
https://doi.org/10.2210/pdb7LOK/pdb
https://doi.org/10.2210/pdb7TFN/pdb
https://doi.org/10.2210/pdb6UDJ/pdb
https://doi.org/10.2210/pdb5VN3/pdb


Data availability
The cryo-EM maps and atomic structures have been deposited in the 
Protein Data Bank (PDB) and/or Electron Microscopy Data Bank (EMDB) 
under accession codes 8FYI and EMD-29579 for class I CD4–BG505 
HT1, EMD-40437 for class II CD4–BG505 HT1, EMD-40438 for class III 
BG505 HT1, 8FYJ and EMD-29580 for class I CD4–BG505 HT2, EMD-29581 
for class II CD4–BG505 HT2, EMD-29582 for class III CD4–BG505 HT2, 
EMD-29601 for CD4–B41 HT2, EMD-29583 for CD4–17b–BG505 HT1 and 
EMD-29584 for CD4–17b–BG505 HT2. PDB entries (6UDJ, 5U1F, 7LOK, 
7TFN, 5VN3 and 6CM3) used in this study were downloaded from the 
PDB. EMDB entry EMD-21411 used in this study was downloaded from 
the EMDB.
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Extended Data Fig. 1 | Design and validation of soluble HIV-1 Env 
heterotrimer constructs. a, Methods used to create soluble HT1 and HT2  
HIV-1 Env heterotrimers. A 20:1 transfection ratio of untagged and D7324-tagged 
Env expression plasmids, one of which encoded the D368R CD4 knockout 
mutation in gp120, was co-transfected to produce two predominant populations: 
untagged trimers and singly tagged trimers. Transfection supernatants were 

harvested and Env proteins purified by JR-52 immunoaffinity chromatography 
(as described), resulting in the HT1 and HT2 heterotrimers. Schematics were 
generated using BioRender.com. b, ELISA comparing CD4 binding of BG505, 
BG505 HT2, BG505 HT1, and BG505-D368R. Values from two biological 
replicates (n = 2) are represented by points, with the mean indicated by the 
dotted line.



Extended Data Fig. 2 | Cryo-EM data processing and validation for BG505  
HT1 in complex with CD4. a, Representative micrograph and b, representative 
2D classes for the CD4-BG505 HT1 complex. c, Workflow of single-particle 
cryo-EM data processing. Class I shows one CD4 bound to a closed, prefusion 
conformation of HT1. Class II shows density for one CD4 molecule bound to 
HT1 and weak density for an additional bound CD4 (red arrow). The class II 

density map may represent an average of HT1 Envs bound to one or two CD4 
molecules. We were unable to further separate these particles into different 
subclasses. Class III resembles an unliganded, closed prefusion Env trimer.  
d, Fourier shell correlation (FSC) plots of the final reconstructions for CD4-BG505 
HT1 classes I, II, and III.
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Extended Data Fig. 3 | Cryo-EM data processing and validation for BG505  
HT2 in complex with CD4. a, Representative micrograph and b, representative  
2D classes for the CD4-BG505 HT2 complex. c, Workflow of single-particle 
cryo-EM data processing. d, Fourier shell correlation (FSC) plot of the final 

reconstruction for CD4-BG505 HT2 classes I, II, and III. e, Side and top-down 
views of superimposed CD4-BG505 HT1 class I and CD4-BG505 HT2 class II 
single-particle cryo-EM density maps. The densities for CD4 overlap extensively, 
thus obscuring the purple density for CD4 in the BG505 CD4-HT2 map.



Extended Data Fig. 4 | Cryo-EM data processing, validation, and 
interpretation for B41 HT2 in complex with CD4. a, Representative 
micrograph (5,450 total), b, representative 2D classes, and c, density map for 
the CD4-B41 HT2 complex. d, Fourier shell correlation (FSC) plot of the final 

reconstruction for CD4-B41 HT2. e,f, Top-down (panel e) and side (panel f) 
views of class I CD4-BG505 HT2 model fit into class I CD4-BG505 HT2 (left) or 
CD4-B41 HT2 (middle) density maps and alignment of both density maps (right).
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Extended Data Fig. 5 | Cryo-EM data processing and validation for BG505  
HT1 and BG505 HT2 in complex with CD4 and 17b Fab. a, Representative 
micrograph and b, representative 2D classes for the CD4-17b-BG505 HT1 
complex. c, Workflow of single particle cryo-EM data processing. d, Fourier 
shell correlation (FSC) plot of the final reconstruction for CD4-17b-BG505  
HT1. e, Representative micrograph and f, representative 2D classes for the 
CD4-17b-BG505 HT2 complex. g, Workflow of single particle cryo-EM data 
processing. h, Fourier shell correlation (FSC) plot of the final reconstruction 

for CD4-17b-BG505 HT2. i, Side and top-down views of CD4-17b-BG505 HT1 and 
CD4-17b-BG505 HT2 single-particle cryo-EM densities (both processed with  
C1 symmetry) superimposed with the cryo-ET/subtomogram averaged density 
map (C3 symmetry) of a CD4- and 17b-bound virion-bound BaL Env trimer 
(EMD-21411). Despite the single-particle cryo-EM structures being derived from 
heterotrimeric Envs that lack C3 symmetry and the cryo-ET structure being 
derived from symmetric homotrimeric Envs, the CD4-17b-Env trimer maps  
are similar.

http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-21411


Extended Data Fig. 6 | Comparisons of single particle cryo-EM densities of 
CD4-HT1 with one CD4-bound Env cryo-ET/subtomogram averaged density. 
a, Top-down (top) and side (bottom) views of class I CD4-HT1 model fit into 
one-CD4 bound Env from single-particle cryo-EM (left) or cryo-ET/subtomogram 
averaged (middle) density maps. Right: alignment of single-particle cryo-EM 
and cryo-ET/subtomogram averaged density maps. b, Side and top-down views 

of class II CD4-HT1 single-particle cryo-EM density super imposed with one 
CD4-bound Env from cryo-ET/subtomogram averaged density map. The 
densities for CD4 overlap extensively, thus obscuring the purple density for 
CD4 in the cryo-ET map. Weak densities in the single-particle cryo-EM map  
for a second bound CD4 and a rearranged V1V2 in the protomer adjacent to the 
protomer with strong CD4 density are marked with red arrows.
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Extended Data Table 1 | Cryo-EM data collection, refinement, and validation statistics

Single-particle cryo-EM data collection and structure refinement statistics for CD4–BG505 HT1 (class I) (left) and CD4–BG505 HT2 (class I) (right).
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Patch CTF to estimate CTF parameters. The blob picker with a diameter of 100 to 230 Å was used to pick particles. Particles were extracted 
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The cryo-EM maps and atomic structures have been deposited in the PDB and/or Electron Microscopy Data Bank (EMDB) under accession codes 8FYI [http://
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Antibodies
Antibodies used Antibodies used in this study include 17b Fab and JR-52 IgG.  

 
For ELISA data, THE™ His Tag Antibody conjugated to to horse-radish peroxidase (GenScript) was used. Details of usage were 
described in the Methods section of this manuscript.

Validation The structural binding mechanisms and binding affinities or HIV-1 Env-targeting antibodies have been described in previous 
literature: 
 
Dam, K.-M. A., Mutia, P. S. & Bjorkman, P. J. Comparing methods for immobilizing HIV-1 SOSIPs in ELISAs that evaluate antibody 
binding. Sci. Rep. 12, 11172 (2022). 
 
Yang, Z., Wang, H., Liu, A. Z., Gristick, H. B. & Bjorkman, P. J. Asymmetric opening of HIV-1 Env bound to CD4 and a coreceptor-
mimicking antibody. Nat. Struct. Mol. Biol. 26, 1167–1175 (2019). 
 
Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nat. Publ. Group 547, 360–
363 (2017). 
 
The binding specificity for THE™ His Tag Antibody conjugated to to horse-radish peroxidase (GenScript) has been validated through a 
commercial source. The effectiveness of this antibody has been repeatedly tested in ELISA experiments in our lab.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Expi293F cells (Thermo Fisher)

Authentication Cell lines were  not authenticated in the lab.

Mycoplasma contamination No contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified lines were used.
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