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PD-1- CD45RA+ effector-memory CD8 T cells
and CXCL10+ macrophages are associated
with response to atezolizumab plus
bevacizumab in advanced hepatocellular
carcinoma

SarahCappuyns 1,2,3,4, GinoPhilips3,4, Vincent Vandecaveye5,6, BramBoeckx3,4,
Rogier Schepers3,4, Thomas Van Brussel3,4, Ingrid Arijs 3,4,
Aurelie Mechels 3,4, Ayse Bassez3,4, Francesca Lodi3,4, Joris Jaekers7,
Halit Topal7, Baki Topal7, Orian Bricard3,4, JunbinQian 3,4,8,9, Eric VanCutsem1,2,
Chris Verslype1,2, Diether Lambrechts 3,4,10 & Jeroen Dekervel 1,2,10

The combination of atezolizumab plus bevacizumab (atezo/bev) has drama-
tically changed the treatment landscape of advanced HCC (aHCC), achieving
durable responses in some patients. Using single-cell transcriptomics, we
characterize the intra-tumoural and peripheral immune context of patients
with aHCC treated with atezo/bev. Tumours from patients with durable
responses are enriched for PDL1+ CXCL10+ macrophages and, based on
cell–cell interaction analysis, express high levels of CXCL9/10/11 and are pre-
dicted to attract peripheral CXCR3+ CD8+ effector-memory T cells (CD8 TEM)
into the tumour. Based on T cell receptor sharing and pseudotime trajectory
analysis, we propose that CD8 TEM preferentially differentiate into clonally-
expanded PD1- CD45RA+ effector-memory CD8+ T cells (CD8 TEMRA) with pro-
nounced cytotoxicity. In contrast, in non-responders, CD8 TEM remain frozen
in their effector-memory state. Finally, in responders, CD8TEMRA display a high
degree of T cell receptor sharing with blood, consistent with their patrolling
activity. These findings may help understand the possible mechanisms
underlying response to atezo/bev in aHCC.

Hepatocellular carcinoma (HCC) is the most common form of liver
cancer and one of the few neoplasms with increasing incidence and
mortality worldwide1. The majority of HCC patients (50-60%) even-
tually evolve to an advanced stage (aHCC) requiring systemic
treatment2. Like in other cancer types, immune checkpoint inhibitors
(CPI) have dramatically changed the treatment landscape of aHCC. In
front line clinical trials, the combination of the PDL1 inhibitor, atezo-
lizumab, with the anti-VEGFA antibody, bevacizumab, demonstrated

median overall survival (OS) of 19.2 months3,4, which is almost double
compared to results achieved using tyrosine kinase inhibitors (TKI)5,6

or anti-PD(L)1 monotherapy7–11. In the adjuvant setting, dual PDL1/
VEGFA inhibition has also shown promise to reduce the risk of recur-
rence after curative resection or ablation12.

Despite great efforts to characterize the tumour-
microenvironment (TME) of HCC13–17, factors associated with
response/resistance to the combination of atezolizumab plus
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bevacizumab (atezo/bev) remain tobeelucidated. PD1-expressingCD8
T cells have been identified as key effector cells in response to PD(L)1
inhibition in several tumour types, including breast cancer18, lung
cancer19 and melanoma20, where persistent exposure of CD8 T cells to
tumour antigenswill stimulate differentiation towards a dysfunctional,
exhausted phenotype. CD8 T cells express typical exhaustionmarkers,
such as PDCD1 (PD1), upon which their activation status and anti-
tumoural cytolytic function are dampened. PD(L)1 blockade reinvigo-
rates the anti-tumoural immune response leading to proliferation of
these cytotoxic T cells that are able to overcome tumour-induced
immunosuppression and induce durable clinical benefits. However, in
HCC, the role of PD1+ CD8 T cells is controversial. The presence of
exhausted PD1+ CD8 T cells in HCC has been associated with a more
aggressive disease biology21 and poor prognosis22. In pre-clinical
models of non-alcoholic steatohepatitis (NASH)-associated HCC,
exhausted, unconventionally activatedPD1+ CD8Tcellswere related to
impaired tumour surveillance, causing tissue damage and facilitating,
rather than inhibiting, hepatocarcinogenesis upon anti-PD1
treatment23. Moreover, response to the combination of atezo/bev
has been linked to a pre-existing immune response characterizedby an
increased CD8 T cell infiltration as well as overexpression of CD274
(PDL1), and not PDCD1 (PD1)24. The differences betweenHCC and other
solid tumour types might be in part explained by the unique immune
context of the liver as well as the fact that liver cancer most often
develops in a background of chronic inflammation caused by a variety
of chronic liver diseases2.

Understanding which effector cells facilitate response to atezo/
bev in aHCC and characterizing the optimal pre-treatment immune
context for subsequent treatment success is crucial. It would not only
enable the identification of patients likely to respond to atezo/bev,
currently still an important unmet clinical need, but also contribute to
the development of new strategies for the majority of aHCC patients
who experience rapid disease progression and poor outcomes with
current treatment options.

Here, we use pre-treatment tissue biopsies and serial peripheral
blood mononuclear cell (PBMC) samples from patients with aHCC
(n = 44) treated with systemic therapy to single-cell transcriptome
(scRNAseq) and T cell receptor sequencing (scTCRseq). Patients trea-
ted with atezo/bev (n = 25) were stratified according to clinical
response and various single-cell readouts were correlated with
response and clinical outcome.We report that, in tumours responding
to atezo/bev, CXCR3+ effector memory T cells differentiated primarily
towards PD1- CD45RA+ effector-memory CD8 T cells. This population
was clonally expanded and characterized by a high degree of TCR
sharingwith peripheral blood. In addition, the intra-tumoural presence
of this population prior to treatment is associated with durable
response to atezo/bev in aHCC. Furthermore, PDL1+ CXCL10+ macro-
phages are enriched in responding tumours, where they interact with
the peripheral T cell compartment ensuring effective recruitment of
primed effector-memory T cells into the TME. These findings were
validated in transcriptomic data of aHCC patients treated with atezo/
bev versus sorafenib3,4, confirming CD45RA effector-memory CD8
T cells and CXCL10+ macrophages as potential predictive biomarkers
of response to atezo/bev in aHCC.

Results
The tumour microenvironment and peripheral immune system
of advanced HCC
For 38 (out of 44) aHCC patients, a pre-treatment tissue biopsy was
subjected to scRNAseq (Fig. 1a; Supplementary Table 1 and 2), yielding
high quality transcriptomic data from 97 947 single-cells (Fig. 1b).
Subsequent analysis involving dimensionality reduction and clustering
identified several clusters, assigned to T cells and NK-cells (30%), B-cells
(5%), myeloid cells (12%) and stromal cell types (12%) based on marker
gene expression (Supplementary Fig. 1a). We also identified a

proliferative cluster, which mainly consisted of proliferating T cells
(Supplementary Fig. 1b) and a large cluster of HCC cancer cells (40%)
expressing both genes associated with normal liver function (ALB, HP,
FGA, FGB) and liver cancer (AFP, SPINK1, GPC3, AKR1C1). Inferring copy
number variations (CNV) from the scRNAseq data25 confirmed the
malignant origin of the HCC cluster that displayed CNV alterations
previously described in HCC (Supplementary Fig. 1c)26. There was no
evidence of cluster bias based on underlying liver disease, treatment or
biopsy type in immune cells and stromal cell types (Supplementary
Fig. 1d). Similarly, single-cell profilingof serial on-treatment (week0-3-6)
PBMC samples (n = 72 from 25 aHCC patients; Supplementary Table 2),
yielded high-quality transcriptomic data for 268 807 PBMCs, annotated
to their respective cell types usingmarker genes (Fig. 1c; Supplementary
Fig. 1e). Together, these data provide a unique cell atlas of both theTME
and peripheral immune system of aHCC patients treated with systemic
therapies and an invaluable resource for future research endeavours
(see Data Availability).

The intra-tumoural T-/NK-cell composition is distinct from the
peripheral T-/NK-cell composition
First, we explored the T-/NK-cell compartment of the TME and
peripheral blood in more detail. Sub-clustering a total of 26 380
intra-tumoural T-/NK-cells and 170 919 peripheral T-/NK-cells (64%
of PBMCs) separately, we identified several phenotypes of CD4 T
cells, CD8 T cells and natural killer cells (NK cells) (Fig. 2a, b; Sup-
plementary Fig. 2a, b). Notably, CD4 (CD4 CXCL13) and CD8 (CD8
TEX) ‘exhausted’ T cells were unique to the TME and characterized
by the highest expression of PDCD1 (PD1) and other known
exhaustion markers (Supplementary Fig. 2c–e). Importantly, CD8
TEX expressed the highest levels of IFNG along with a number of
cytotoxic markers (PRF1, NKG7; Supplementary Fig. 2e), despite
their ‘exhaustion’ phenotype, supporting their denomination as
‘antigen-experienced’ T cells18. On the other hand, CD4 CXCL13 have
been previously described as ‘exhausted’ CD4 T cells in HCC13,14.
Though this cluster was very small in aHCC, previous studies18

suggest that it consists of both Th1 CD4 T cells (IFNG, CXCR3) and
follicular-helper CD4 T cells (BCL6, CD200)27. Finally, based on the
expression of typical marker genes (CX3CR1, SPON2, FGFBP2; Sup-
plementary Fig. 2a), we identified CD45RA effector-memory CD8
T cells (CD8 TEMRA) both in the TME and in peripheral blood. We
confirmed their expression of CD45RA at the protein level using
TotalSeq-C data (Supplementary Fig. 2f). Importantly, CD8 TEMRA

were phenotypically similar and clustering close to the cytotoxic
NK-cells, but distinguishable based on their expression of CD8
(CD8A, CD8B; Supplementary Fig. 2g) and the detection of a pro-
ductive TCR sequence (Supplementary Fig. 2h).

Combining scRNAseq and scTCRseq, we identified 17 842 T cells
carrying 12 690unique TCRs in the TME,while 115 711 peripheral T cells
carried 90 188 unique TCR sequences. We identified TCR clonotypes
based on identical TCR sequences, and defined dominant clonotypes
as TCRs shared by >5 T cells. In intra-tumoural T cells, dominant clo-
notypes were concentrated within effector (CD8 TEM, CD8 TEMRA) and
‘antigen-experienced’ T cell clusters (CD8 TEX, CD4 CXCL13; Fig. 2c),
while non-dominant clonotypes were mostly found in naive, memory
or regulatory T cell subtypes. Similarly, dominant peripheral T cell
clonotypes, in linewith their phenotypical counterparts in the tumour,
were concentrated within peripheral effector T cells (CD8 TEM, CD8
TEMRA, CD4 TCYTO; Fig. 2d). These findings were replicated when
defining dominant clonotypes as TCRs representing 1% or more of the
TCR repertoire (Supplementary Fig. 3a, b) in order to account for the
number of T cells detected.

In short, though phenotypically distinct, both CD8 effector T cells
(CD8 TEM, CD8 TEMRA) and CD8 exhausted T cells (CD8 TEX) were
characterized by dominant T cell clonotypes both in the tumour and in
peripheral blood.
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Clonally-expanded CD8 TEMRA are associated with response to
atezolizumab/bevacizumab
In order to identify those CD8 T cells phenotypes associated with
response to atezo/bev, we compared several characteristics of the
tumoural and peripheral immune system between responders and
non-responders, including i) abundancies of intra-tumoural CD8
T cells, ii) the tumoural and peripheral TCR repertoire and iii) the
degree of TCR sharing between tumour and blood.

First, comparing relative abundancies of various T cell pheno-
types in the TME between responders and non-responders, we found
that CD8 TEMRA were more abundant in responding tumours
(p =0.04), while CD8 TEM were increased in non-responders
(p = 0.005; Fig. 2e; Supplementary Fig. 3c). Of note, though CD8 TEX

expressed the highest levels of the therapeutic target PDCD1 (PD1;
Supplementary Fig. 3d, e), their presence (i.e. relative abundancies) in
the TME did not differ according to response (Fig. 2e; Supplementary
Fig. 3c). Differential gene expression of CD8T cells in the TME revealed
upregulation of cytotoxic genes (GZMB, GNLY, PRF1, GZMH) and typical
CD8 TEMRA markers (FGFBP2, FCGR3A), suggesting that CD8 TEMRA

might play an important role in achieving durable response to atezo/
bev (Fig. 2f). In contrast, non-responding tumoursweremorememory-
like (FOS) and, upregulated GZMK, a typical CD8 TEM marker (Fig. 2f).
Secondly, responding tumours were characterized by a more clonal
pre-treatment TCR repertoire while non-responders displayed a richer
and more diverse, non-clonal baseline TCR repertoire (Fig. 2g; Sup-
plementary Fig. 3f). Calculating the Gini-index, which takes both TCR
evenness (1-clonality) and TCR richness into account, for each CD8 T
cell phenotype, intra-tumoural CD8 TEM, CD8 TEMRA and CD8 TEX were
most clonally-expanded (Fig. 2h left). Importantly, when stratifying for

response to atezo/bev, CD8 TEMRA in responding tumours had a sig-
nificantly higher Gini-index compared to non-responders (p = 0.045;
Fig. 2h right). In contrast, we did not detect significant differences in
clonal expansion ofCD8TEM andCD8TEXwhen comparing responders
to non-responders. Thesefindings suggest that clonally expandedCD8
TEMRA residing within the TME prior to treatment may facilitate
response to atezo/bev in aHCC.

TCR sharing confirms CD8 TEMRA as crucial effector T cells in the
TME of aHCC
As intra-tumoural T cells that share identical TCR sequences with
T cells residing in peripheral blood28,29 are more likely to be tumour-
reactive, we explored TCRs shared between tumours and PBMCs in 17
atezo/bev-treated patients, 10 of which were atezo/bev-responders.
We focussed specifically on those TCR sequences present in tumour
and peripheral blood prior to treatment initiation (PBMC week 0),
hypothesizing that these shared TCRs represent a baseline immune
response, directed at and driven by the tumour. A total of 403 unique
shared, potentially ‘tumour-specific’, TCRs were detected, represent-
ing approximately 7.1% of all TCRs detected in the tumour compared
to 0.6% of all TCRsdetected in peripheral blood. In order to correct for
the number of T cells detected in each sample, we calculated the
proportion of shared TCRs relative to the total number of TCRs
detected in PBMCs and found that responders displayed a higher
degree of TCR sharing (on average 2%; p =0.03; Fig. 3a). Similar trends
were detected in proportions of shared peripheral T cells (Supple-
mentary Fig. 3g). Importantly, increased TCR sharing was associated
with significantly longer PFS (median PFS 12 versus 2 months;
p = 0.012; Fig. 3b), supporting our hypothesis that TCR sharing may
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Fig. 1 | The tumour-microenvironment and peripheral immune system of
advanced HCC. a. Study design, patient and sample overview. b. UMAP depicting
cell types identified in pre-treatment TME of advanced HCC (n= 38 tumour biop-
sies). c. UMAP representation of cell types identified in blood (n= 72 PBMC sam-
ples). (cDC, conventional dendritic cells; pDC, plasmacytoid dendritic cells; DN

T cells, Double negative T cells; GD T cells, Gamma-delta T cells; HCC, hepatocel-
lular carcinoma; PD1, Programmed cell death protein 1; PDL1, Programmed death-
ligand 1; scRNAseq, single-cell RNA sequencing; scTCRseq, single-cell T cell
receptor sequencing; TME, tumour-microenvironment; UMAP, Uniform Manifold
Approximation and Projection).
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indeed identify the fraction of intra-tumoural T cells that truly target
the tumour.

Linking these shared TCRs to their T cell phenotype in the TME
(Fig. 3c left) revealed that the majority represented CD8 T cells, con-
centrated within CD8 effector subtypes (CD8 TEM and CD8 TEMRA). In
fact, 63% of CD8 TEMRA and 22% of CD8 TEM in the TME were char-
acterized by a TCR also detected in peripheral blood prior to treat-
ment, while CD8 TEX displayed far less TCR sharing with peripheral
blood (13%; Supplementary Fig. 3h). In line with these findings,

differential gene expression, demonstrated an overexpression of CD8
(CD8A and CD8B) and cytotoxic markers (GZMA, GZMB, GZMH, GNLY,
PRF1), aswell as typical CD8TEMRAmarkers (CX3CR1, SPON2, FGFBP2) in
intra-tumoural T cells with shared TCRs (n = 970 shared T cells). In
contrast, T cells carrying a TCR found exclusively in the tumour were
enriched for exhaustion markers (CTLA4) and regulatory genes
(FOXP3, TNFRSF4; Fig. 3d). Importantly, while shared CD8 TEM were
present in the TME of both responders and non-responders (18% ver-
sus 8% of all intra-tumoural CD8 TEM respectively), shared CD8 TEMRA,
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were almost exclusively seen in responding tumours (57% of all intra-
tumoural CD8 TEMRA in responders, compared to 6.1% in non-respon-
ders; Fig. 3c right).

CD8 TEMRA have been described as ‘recently-activated’ CD8
effector-memory T cells30. They do not express PDCD1 or other
markers traditionally associated with antigen-experience. Instead
they re-express CD45RA after antigenic stimulation31,32. They are
considered a sentinel-like T cell phenotype that patrols inflamma-
tory sites of frequent antigenic encounter33. They are endowed with
potent cytolytic properties based on their high expression of
cytotoxic markers (PRF1, NKG7, GZMA, GZMB, GZMH, GNLY; Fig. 3e)
that relies on direct interaction between the T cell and its target cell
and constitutively express receptors that direct their migration to
inflamed tissue (CX3CR1)33.

Interaction with tumour-antigens drives intra-tumoural differ-
entiation towards CD8 TEMRA

In order to gain insights into the origins of CD8 TEMRA in the TME, we
computed pseudotime trajectories of intra-tumoural CD8 T cells using
Slingshot34. We considered CD8 naive T cells (CD8 TN) as the root of
the trajectory because they had the highest TCR richness (Supple-
mentary Fig. 4a). In line with previous reports13,18, naive T cells were
connected to TEM cells and then diverged into three distinct trajec-
tories, connecting naive and TEM T cells to TRM, TEMRA and TEX (Fig. 4a
left). TCR richness decreased along each of these trajectories (Sup-
plementary Fig. 4b). CD8 TEM displayed most TCR clonotype overlap
with TEX, but also with TEMRA and TRM (Fig. 4b), while there was almost
no TCR overlap between T cells belonging to different lineages, sup-
porting the validity of the three trajectories. Profiling marker genes
along each trajectory confirmed their functional annotation (Supple-
mentary Fig. 4c).

When plotting the densities of T cells along each trajectory, we
found striking differences between responders and non-responders.
Intra-tumoural CD8 T cells in responders were capable of evolving
towards more differentiated phenotypes, an effect that was most
pronounced in the TEMRA trajectory, while non-responders seemed
frozen at an earlier stage of the pseudotime (p<0.001; Fig. 4c). There
was a steady increase in Gini-index along both the TEMRA and TEX tra-
jectories of responding tumours. Importantly, when assessing the
density of shared T cells along the CD8 trajectories (Fig. 4a right), we
found these were clearly enriched towards the end of the TEMRA tra-
jectory in responders (Fig. 4d). In contrast, along theTEX trajectory, the
greatest T cell densitywas seen at theTEMstage inboth responders and
non-responders.

We then used TradeSeq35 to identify sets of genes differentially
expressed along theTEMRA versus TEX trajectories (usingdiffEnd test). A
total of 13 pathways and 46 pathways from the REACTOME or the ‘GO:
biological processes’ gene sets were significantly enriched in the CD8
TEMRA and TEX trajectories, respectively. Importantly, the TEMRA tra-
jectory was dominated by pathways related to innate-like immunity

(Fig. 4e), reflecting their role as potent effector T cells that eliminate
cancer cells through direct cytotoxicity. In contrast, the TEX trajectory
was enriched in pathways involved in IFNG signalling and immune cell
activation and differentiation. In order to understand which factors
drive this dual differentiation, we again used TradeSeq35 to assess
differences in expression patterns before and after the pointwhere the
trajectories diverge (using earlyDEG test) and found a total of 333
pathways to be enriched. Importantly, pathways involved in antigen-
binding were top ranked, suggesting that further differentiation
requires direct interaction with antigens (Fig. 4f).

Finally, to study the on-treatment immune response, we used
shared TCR clonotypes present in PBMCs and the TME prior to treat-
ment, linked them to their phenotype in peripheral blood and tracked
their evolution during treatment in PBMCs sampled during treatment
(week 0-3-6). Firstly, the 422 unique TCRs characterizing CD8 TEMRA in
the TME were found predominantly in peripheral CD8 TEMRA. Prior to
treatment they represented 18% of all CD8 peripheral T cells in
responders (1183 out of 6575 peripheral CD8 T cells), compared to just
2% in non-responders (Fig. 4g left). Tracking their evolution during
treatment, the degree of TCR sharing remained high in responders
(18.6% after 6 weeks), and we did not observe any significant changes
in non-responders (1.6% at week 6; Fig. 4g left). This was in stark con-
trast to the 1065 unique TCRs found in CD8 TEX in the TME that were
found in less than 1% of CD8 peripheral T cells in responders and non-
responders alike (Fig. 4g right). Moreover, these TCRs found in intra-
tumoural CD8 TEX did not emerge in peripheral blood during
treatment.

Taken together, these data suggest thatwhileCD8TEMarepresent
in the TME of both responders and non-responders alike, upon sti-
mulation by tumoural antigens, CD8 TEM are more likely to differ-
entiate into CD8 TEMRA in responders specifically, potentially resulting
in direct anti-tumour cytotoxicity. Furthermore, CD8 TEMRA display
significant TCR sharing with PBMC in responders, and continue to do
so upon treatment with atezo/bev, in line with their patrolling phe-
notype. In contrast, intra-tumoural differentiation from CD8 TEM to
CD8 TEX occurs equally in responders and non-responders to atezo/
bev and CD8 TEX do not share TCRs with blood prior to treatment, nor
do they appear during treatment with atezo/bev.

Pro-inflammatory PDL1-expressing CXCL10+ macrophages are
associated with response
While intra-tumoural CD8 TEMRA were associated with subsequent
response to atezo/bev, they donot expressPDCD1 (PD1). Therefore, we
wondered whether the true target of atezo/bev in aHCC might be
found in PDL1-expressing cells. Expression of CD274 (PDL1) in the TME
was generally low, but clearly detectable in myeloid cells (Supple-
mentary Fig. 5a, b). Therefore, we subclustered the 11 678myeloid cells
into monocytes/macrophages (n = 10 609) and dendritic cells (DC;
n = 764; Supplementary Fig. 5c, d). Within the monocyte/macrophage
compartment, we identified several tumour-associated macrophage

Fig. 2 | Clonally-expanded CD8 TEMRA are associated with response to atezoli-
zumab/bevacizumab. a. UMAP representation depicting intra-tumoural T/NK-cell
phenotypes (n = 38 tumour biopsies). b. UMAP representation of peripheral T/NK-
cell phenotypes(n = 72PBMC samples). c. UMAP representation of dominant versus
non-dominant clonotypes in intra-tumoural T cells (n = 38 tumour biopsies).
Dominant clonotypes were defined as TCR sequences shared by >5T cells.d. UMAP
representation of dominant versus non-dominant clonotypes in peripheral T cells
(n = 72 PBMC samples). Dominant clonotypes were defined as TCR sequences
shared by >5T cells. e. Boxplots depicting relative abundance of intra-tumoural
T-/NK-cell phenotypes in atezo/bev-treated patients (n = 20), calculated per patient
and stratified for response (12 Resp versus 8 NonResp). P-values calculated using
two-sided Mann-Whitney U-test, only p-values < 0.05 are shown. Boxes indicate
median +/- interquartile range; whiskers showminima and maxima. f. Volcano plot
depicting differentially expressed genes in intra-tumoural CD8 T cells (n = 4313)

from responders (n = 12; 3425 CD8 T cells) versus non-responders (n = 8; 888 CD8
T cells). P-values were obtained using the two-sidedWilcoxon test and Bonferroni-
corrected (Seurat 453). Red: adjusted p-value < 0.01 and log2 fold change >0.25. g.
TCR clonality of intra-tumoural T cells in atezo/bev-treated patients (n = 20), cal-
culated per patient and stratified for response (12 Resp versus 8 NonResp). P-value
calculated using Mann-Whitney U-test. Boxes indicate median +/- interquartile
range; whiskers show minima and maxima. h. Gini-index of intra-tumoural CD8
T cells. Left: calculated per patient (n = 37), per CD8 T cell phenotype. Right: in
atezo/bev-treated patients (n = 20), calculated per patient and stratified for
response (12 Resp versus 8 NonResp). P-values calculated using two-sided Mann-
Whitney U-test, only p-values < 0.05 are shown. Boxes indicate median +/- inter-
quartile range; whiskers show minima and maxima. (GD, γδ T cells; TCR, T cell
receptor; UMAP, Uniform Manifold Approximation and Projection; Resp, respon-
der; NonResp, non-responder).
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(TAM) subtypes (Fig. 5a; Supplementary Fig. 5e), of which themajority
expressed high levels of anti-inflammatory markers, suggesting a
predominantly immunosuppressive baseline TME in aHCC (Supple-
mentary Fig. 5f). However, we also identified pro-inflammatory
CXCL10+ TAMs (Macro CXCL10) characterized by high expression of
genes involved in T cell recruitment (CXCL9, CXCL10) and interferon-
gamma signalling (STAT1, IDO1, GBP1) (Supplementary Fig. 5f).

Comparing relative abundancies of the various TAM subtypes
between responding and non-responding tumours, we found non-
responders to have a higher abundance of TREM2-expressing macro-
phages, previously identified as immunosuppressive macrophages in
HCC tumours36, where their presence has been linked to resistance to
anti-PD1 therapy18,37,38 (Supplementary Fig. 6a). Differential gene
expression showed an enrichment of genes involved in T cell
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recruitment (CXCL9, CXLC10) and interferon-gamma activity (GBP1,
STAT1) in themacrophage compartment of responding tumours, while
non-responders were enriched in immunosuppressive markers
(GPNMB, CCL18; Fig. 5b). Responding tumours also displayed higher
levels of CCL2, which is a potent monocyte-attracting chemokine39,40,
but is also involved in recruitment of other immune cells into the TME.
Finally, responders displayed higher expression of SPP1, previously
associated with response to CPI monotherapy in lung cancer41. Addi-
tional pathway analysis confirmed that macrophages of responding
tumourswereenriched inpro-inflammatorypathways (Supplementary
Fig. 6b). Importantly, on average, myeloid cells from responders
expressed significantly higher levels of CD274 (Fig. 5c top). More spe-
cifically, CD274 expression was highest in Macro CXCL10 (Supple-
mentary Fig. 6c, d) and Macro CXCL10 derived from responding
tumours displayed higher CD274 expression (Fig. 5c bottom). High
CD274 (PDL1) expression in Macro CXCL10 was also associated with
longer PFS (median PFS 13 versus 3 months; p = 0.035; Fig. 5d). Taken
together, response to atezo/bev is associated with an activated, pro-
inflammatory, PDL1-expressing myeloid component in the pre-
treatment TME.

PDL1-expressing CXCL10+ macrophages recruit effector-
memory T cells into the TME
Tumour-associated macrophages have been associated with recruit-
ment of peripheral T cells into the TME42. Therefore, we used
CellChat43 to predict receptor-ligand interactions between myeloid
cells and T cells. Firstly, calculating the significant interactions
between immune cell types in the TME separately for responders and
non-responders, we found that overall, responders displayed more
interaction possibilities (Supplementary Fig. 6e). Focussing on the
CXCL signalling pathway network, we found predicted interactions
between liver-resident macrophages (Kupffer cells) and T cells in all
patients, regardless of response. In contrast, when compared to non-
responders, responding tumours displayed more predicted interac-
tions between CXCL10+ macrophages and the T cell compartment
(Fig. 5e). While the CXCL12/CXCR4 interaction, which originated
almost exclusively from Kupffer cells, was found both in responders
and non-responders, the CXCL9/10/11 and CXCR3 ligand-receptor pairs
were significantly enriched in responders compared to non-
responders (Fig. 5f).

In the TME,CXCR3wasprominently expressed in several activated
T cell subtypes (i.e. CD4 CXCL13 and CD8 TEX, in addition to CD4 TEM

and CD8 TEM, Fig. 5g), but not in CD8 TEMRA and along the TEMRA

trajectory, CXCR3 expression reached its peak at the effector-memory
state (Supplementary Fig. 6f). In peripheral T cells, CXCR3 was
expressed mostly in effector-memory T cells (Fig. 5h). Based on these
findings, we hypothesized that the interaction between CXCR3 and its
ligands CXCL9/10/11 plays an important role in recruiting peripheral
CD8 effector-memory T cells (CD8 TEM) into the TME. To confirm this,
we again used CellChat to explore receptor-ligand interactions
between the intra-tumoural macrophages and peripheral CD8 T cells.
Indeed, taking all cell-cell communication networks into account, we
found that CD8 peripheral T cells were the most dominant signalling
‘receivers’ in responders (Fig. 5i), with higher levels of incoming signals

compared to their phenotypical counterparts in non-responding
tumours. Furthermore, within the CXCL-signalling pathway, there
were more predicted interactions between intra-tumoural CXCL10+

macrophages andperipheral CD8TEM in responders compared to non-
responders (Supplementary Fig. 6g).

Overall, this supports the notion that the intra-tumoural myeloid
compartment, which is characterized by upregulated expression of
CXCL9/10/11 in responders, may be involved in the recruitment and
activation of CXCR3+ effector-memory T cells in the TME, potentially
playing a role in determining response to atezo/bev.

CD8 TEMRA and CXCL10+ macrophages as predictive biomarkers
of response to atezolizumab/bevacizumab in aHCC
Using scRNAseq,we identified clonally expanded, cytotoxic CD8TEMRA

as possible effector cells that drive response to atezo/bev, while
CXCL10+macrophages (MacroCXCL10)might function as gatekeepers
responsible for the recruitment of primed effector-memory peripheral
T cells (Fig. 6). Next, we aimed to validate these single-cell derived
findings and explore the potential of CD8 TEMRA andMacro CXCL10 as
predictive biomarkers of response to atezo/bev in aHCC. Calculating a
per sample CD8 TEMRA and Macro CXCL10 enrichment score in tran-
scriptomic data of 311 pre-treatment tumour biopsies of aHCCpatients
treated with atezo/bev (n = 253) versus sorafenib (n = 58), we found
that high CD8 TEMRA and Macro CXCL10 enrichment scores were
associated with significantly longer PFS in atezo/bev-treated patients
(Fig. 7a top), but not in sorafenib-treated patients (Fig. 7a bottom).
Furthermore, the presence of CD8 TEMRA and Macro CXCL10 in the
TME was strongly correlated (R =0.84; p < 0.00001; Fig. 7b), sup-
porting the notion that they populate the TME of aHCC together.
Indeed, combining CD8 TEMRA andMacro CXCL10marker genes into a
single gene set, we found that atezo/bev-treated patients with a high
enrichment score for the 'atezo/bev-response biomarker' had sig-
nificantly longer OS and PFS (p =0.049 and p <0.0001, respectively),
an association that was not seen in sorafenib treated patients (Fig. 7c).
Taken together, the combined presence of CD8 TEMRA and Macro
CXCL10 in the pre-treatment TME of aHCC patients is associated with
improved outcomes upon atezo/bev treatment, specifically, validating
the single-cell derived findings and underlining the potential value of
the 'atezo/bev-response biomarker' as a predictive biomarker of
response to atezo/bev in aHCC.

Discussion
Our study represents thefirst, homogenous single-cell atlas of both the
TME and peripheral immune system of aHCC patients treated with
atezo/bev, allowing the correlation of single-cell readouts with durable
and clinically-meaningful response.

Within the pre-treatment TME of aHCC, we found PD1-negative,
CD45RA effector-memory CD8 T cells (CD8 TEMRA) to be associated
with response to atezo/bev. This clearly differs from other cancer
types, where instead of CD8 TEMRA, PD-1 expressing CD8 TEX have
repeatedly been identified as key effector cells in response to CPI.
Although both CD8 TEX and CD8 TEMRA contained clonally-expanded
T cells, it was the CD8 TEMRA, that were more abundant in the pre-
treatment TME of responding tumours and found typical CD8 TEMRA

Fig. 3 | TCR sharing confirms CD8 TEMRA as crucial effector T cells in the TME
of aHCC. a. Proportion of TCRs shared between tumour and blood prior to treat-
ment (PBMCweek 0), relative to the total number of TCRs detected, calculated per
sample (n = 17) and stratified for response (10 Resp versus 7 NonResp). P-values
calculated using two-sided Mann-Whitney U-test. Boxes indicate median +/- inter-
quartile range; whiskers show minima and maxima. b. Kaplan-Meier plot of pro-
gression free survival in atezo/bev-treated patients (n = 17; 10 Resp versus 7
NonResp) with high or low (split by median) TCR sharing between tumour and
blood. c. UMAP representation of T cells characterized by a TCR shared between
tumour and blood prior to treatment (n = 970T cells). Left: coloured per T cell

phenotype. Right: coloured for response to atezo/bev. d. Volcano plot depicting
differentially expressed genes in shared (i.e. intra-tumoural T cells characterizedby
a TCR found in PBMCweek 0; n = 970T cells) versus non-shared T cells in the TME.
P-values were obtained using the two-sided Wilcoxon test and Bonferroni-
corrected (Seurat 453). Red: adjusted p-value < 0.01 and log2 fold change >0.25. e.
Heatmaps showing expression of cytotoxic genes in intra-tumoural CD8 T cells.
(PFS, Progression free survival; Resp, responder; NonResp, non-responder; TCR, T
cell receptor; TME, tumour-microenvironment; UMAP, Uniform Manifold Approx-
imation and Projection).
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genes (CX3CR1, SPON2 and FCGR3A) to be overexpressed in intra-
tumoural T cells from responders compared to non-responders.
Additionally, CD8 TEMRA displayed the highest degree of TCR sharing
with peripheral blood, a phenomenon almost exclusively observed in
responders which persisted on treatment, potentially suggesting that
CD8 TEMRA are targeting tumour-specific antigens. Finally, using

trajectory analyses, we observed how intra-tumoural CD8 T cells in
responders were capable of evolving towards more differentiated
phenotypes, an effect most pronounced in the TEMRA trajectory, while
non-responders seemed frozen at an earlier stage of the pseudo-time.
T cells carrying a TCR shared between tumour and blood were also
enriched towards the end of the TEMRA trajectory in responders,
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specifically. In contrast, PD1-expressing CD8 TEX cells were not more
abundant or more clonal in responders compared to non-responders.
Along the TEX trajectory, the greatest T cell density was seen at the TEM

stage both in responders and non-responders and their TCRs were not
found in blood prior to treatment, nor did they appear during therapy.
This suggests that against the backdrop of the immunosuppressive
milieu of the liver, PD1-expressingCD8T cells donot become activated
during response to CPI, as they do in other cancer types18,20.

Certainly, it seems that CD8 TEMRA are able to overcome immu-
nosuppression within the liver TME as our findings point towards CD8
TEMRA as the main candidate effector cell type of anti-tumoural
immunity upon atezo/bev treatment in aHCC. While CD8 TEMRA have
been previously identified in the TME of early stage HCC patients13,14,17,
their role in response to systemic therapy has never been described.
Interestingly, CD8 TEMRA are more abundant and more clonally-
expanded in aHCC compared to our observations in other cancer
types18,44. Notably, CD8 TEMRA do not express the typical exhaustion
markers associated with activation and antigen-experience, nor do
they expressmarkers associatedwith a TMEenriched for high cytokine
expression or marked interferon gamma signalling. Instead, they re-
express CD45RA upon antigen stimulation and are characterized by an
NK-like functional phenotype, endowed with potent cytolytic proper-
ties that aremediated by the release of lytic granules and rely on direct
interaction with target cells.

Nonetheless, the PD1-negative status of CD8 TEMRA suggests
that they may not be the direct therapeutic targets of atezo/bev.
Indeed, within the myeloid compartment, we identify activated,
pro-inflammatory, PDL1-expressing CXCL10+ macrophages as
potential regulators. Analogously to the suppressive role of PD1 in
T cells, PDL1 is an inhibitory activation marker for macrophages,
designed to prevent uncontrolled inflammation45. Pre-clinical
research has shown that upon treatment with CPI, PDL1-
expressing myeloid cells proliferate and are activated45,46. In line
with this, we found that CXCL10+ macrophages in atezo/bev-
responders express higher levels of PDL1 and this was associated
with better outcomes upon treatment, suggesting that atezo/bev
treatment may lead to increased activation of PDL1-expressing
CXCL10+ macrophages, releasing their chemokines (CXCL9/10/11)
into the TME. The importance of CXCL9/10/11 in the therapeutic
efficacy of CPI, by their role in T cell recruitment, has been pre-
viously described in other cancer types47–49. Intriguingly, CXCR3, the
main target of CXCL9/10/11, was expressed predominantly in per-
ipheral TEM and along the TEMRA trajectory CXCR3 expression
reached its peak during the effector-memory phase. This suggests
that increasing CXCL10+ macrophage activity may lead to more
efficient and continued peripheral T cell recruitment, replenishing
the intra-tumoural CXCR3+ TEM population. Subsequently, within
the tumour and upon antigen stimulation, these CXCR3+ TEM

preferentially differentiate towards PD-1 negative CD8 TEMRA, the
proposed effectors of direct anti-tumour cytotoxicity within the
TME. Indeed, the presence of CD8 TEMRA and Macro CXCL10 in the
pre-treatment TME was strongly linked and our data suggest that
their combined presence is associated with improved outcomes
upon atezo/bev-treatment, specifically, advocating for their
potential value as predictive biomarkers of response to atezo/bev
in aHCC.

Our findings also highlight key questions for future research.
Firstly, in line with their patrolling phenotype, CD8 TEMRA display
significant TCR sharing with peripheral blood, particularly in atezo/
bev-responders and TCR sharing was associated with improved PFS.
Whether this peripheral CD8 TEMRA population is identifiable prior
to therapy remains to be confirmed, providing a unique opportunity
for exploration of their potential as non-invasive biomarkers. A
second question relates to the molecular signals that mediate the
preferential differentiation of CD8 TEM towards CD8 TEMRA. HCC
most often develops in a background of chronic inflammation that
eventually leads to cirrhosis and malignant transformation. This
unique inflammatory milieu may be the ideal ground to attract CD8
TEM into the liver via CXCR3. We identified antigen presentation
pathways as elements that may influence whether CD8 TEM cells
then subsequently differentiate towards clonally-expanded TEMRA

or not, but these observations require further validation and the
exact underlying molecular signals still need to be identified.
Finally, characterizing the signals that influence the differentiation
from CD8 TEM to CD8 TEX could offer novel therapeutic targets to
stimulate the differentiation of anti-tumoural CD8 TEX cells towards
a more activated phenotype, particularly in those patients display-
ing primary resistance to atezo/bev.

There were a number of limitations associated with our study,
including the lack of on-treatment tissue biopsies, which are nota-
bly difficult to obtain in this setting. Collecting tissue biopsies from
aHCC patients prior to treatment is already quite exceptional, as
they are not always feasible in a fragile aHCC patient population
and, though recommended, not mandated by clinical guidelines. As
a result, we cannot capture the effect of atezo/bev within the
tumour and are potentially missing emerging new dimensions of
anti-tumour immunity. Additionally, due to a limited number of
viral aHCC samples, our study does not allow us to draw conclusions
related to the role of viral versus non-viral aetiologies and response
to atezo/bev, a much debated concept that warrants further
research. We validated the association of the intra-tumoural pre-
sence of CD8 TEMRA and CXCL10+ macrophages with overall and
progression free survival in a publicly available bulk RNAseq data-
set. Additional patient or tumour characteristics were not available
to perform a multivariate cox regression analysis. Finally, due to
their descriptive nature, single-cell studies are appropriate to

Fig. 4 | Interaction with tumour-antigens drives intra-tumoural differentiation
towards CD8 TEMRA. a. UMAP representation of intra-tumoural CD8 T cells (n =
8989). Left: depicting three distinct trajectories: CD8 TRM, CD8 TEX and CD8 TEMRA.
Right: depicting shared T cells (i.e. intra-tumoural T cells characterized by a TCR
found in PBMC week 0) versus non-shared T cells. b. Bar plot showing the shared
TCR weight for CD8 TEM with other CD8 phenotypes in the TME. c. T cell density,
TCR richness and Gini-index along each CD8 trajectory in atezo/bev-treated
patients (n = 20), stratified for response (12 Resp versus 8 NonResp). The density
plots reflect the relative number of T cells separately for Resp versus NonResp
along each CD8 trajectory. P-values reflect the difference in distributions, calcu-
lated using the two-sided Kolmogorov-Smirnov test. d. Density of shared T cells
along each CD8 trajectory in atezo/bev-treated patients (n = 17) stratified for
response (10 Resp versus 7 NonResp). The density plots reflect the relative number
of shared T cells separately for Resp versus NonResp along each CD8 trajectory.
Shared intra-tumoural T cells are characterized by a TCR found in peripheral blood
prior to treatment. P-values reflect the difference in distributions, calculated using

the two-sided Kolmogorov-Smirnov test. e. Top 15 pathways identified using fGSEA
on differentially expressed genes alongCD8 TEX versus CD8TEMRA trajectory (using
diffEnd test; TradeSeq35) for theREACTOMEandGO: Biological processes gene sets.
Significantly enriched pathways (adjusted p-value < 0.01) were identified and
ranked based on enrichment score for each gene set separately. Only the top 15
pathways of each gene set, enriched in each trajectory were retained. f. Top
pathways identified using fGSEA on differentially expressed genes identified at the
point where the three trajectories diverge (using earlyDEG test; TradeSeq35) for the
REACTOME and GO: Biological processes gene sets. Adjusted p-value calculated
using the Benjamini-Hochberg method. g. UMAP representation of peripheral
T cells atweek 0 (W0), week 3 (W3) andweek 6 (W6) characterized by a TCR shared
with CD8 TEMRA (left) and CD8 TEX (right) in the pre-treatment TME, stratified for
response to atezo/bev (top: Resp (n= 10), bottom: NonResp (n= 17)). (PBMC, per-
ipheral blood mononuclear cells; TCR, T cell receptor; TME, tumour micro-
environment; UMAP, Uniform Manifold Approximation and Projection; Resp,
responder; NonResp, non-responder).
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explore associations. Demonstrating causation would require
functional validation studies.

In conclusion, we propose a novel paradigm, where response to
atezo/bev in aHCC is driven by clonally expanded, cytotoxic CD8TEMRA

characterized by a high degree of TCR sharing with peripheral blood
and present in the tumour prior to therapy. PDL1-expressing CXCL10+

macrophages are positioned as essential gatekeepers in the TME,
interacting with the peripheral T cell compartment to ensure effective
T cell recruitment into the TME. While the single-cell resolution was
essential for explorativepurposes,wedemonstrate thepredictive value
of CD45RA effector-memory CD8 T cells and CXCL10+ macrophages as
biomarkers of response to atezo/bev in aHCC using bulk RNAseq.
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Methods
Inclusion and Ethics
The study was approved by the Ethics Committee of University Hos-
pitals Leuven (UZ/KUL, S62548). All patients gave written informed
consent for the use of their samples for research purposes.

Patients and methods
Between December 2018 and June 2023, all patients diagnosed with
aHCC and eligible for systemic treatment at the University Hospitals
Leuven, were invited to participate in our study. Clinical eligibility
was based on good performance status (ECOG 0-1) and adequate
haematologic and end-organ function. Selection of systemic treat-
ment was at the discretion of the treating physician, guided by
clinical practice guidelines, individual patient eligibility and treat-
ment availability at time of inclusion. Radiological response was
evaluated by computed tomography (CT) or magnetic resonance

imaging (MRI) approximately every 3 months, according to stan-
dard clinical practice and assessed by an independent radiologist
using the modified RECIST criteria50. Response was defined as
objective response (partial or complete response) at 3 months or
disease control (stable disease) during at least 6 months after
treatment initiation.

Prospective sample collection included a fresh tissue biopsy
before start of treatment and serial PBMC samples collected prior to
and during treatment (week 0-3-6). Overall 38 tissue biopsies and 72
PBMC samples were available, an overview is provided in Supple-
mentary Table 2. For two patients, two biopsies from the same
tumour nodule were taken. All samples were subjected to simulta-
neous scRNAseq and scTCRseq, as previously described18,44,51.
scRNAseq data from all available samples was used for clustering
and annotation of single cells into their respective tumoural and
peripheral cell phenotypes. As we specifically aimed to explore the

Fig. 5 | Pro-inflammatory PDL1-expressing CXCL10+ macrophages recruit
effector-memory T cells into the TME. a. UMAP representation of monocyte and
macrophage phenotypes in the TME. b. Volcano plot of differentially expressed
genes in macrophages (n = 9233) in the TME of responders (n = 12) versus non-
responders (n = 8). P-values were obtained using the two-sided Wilcoxon test and
Bonferroni-corrected (Seurat 453).Red: adjustedp-value < 0.01 and log2 fold change
>0.25. c. Boxplots depicting average CD274 (PDL1) expression level in the TME of
atezo/bev-treated patients, calculated per patient in myeloid cells (top; n = 20; 12
Resp versus 8NonResp) andCXCL10+macrophages (MacroCXCL10,bottom;n = 17;
12 Resp versus 5 NonResp), stratified for response. P-values calculated using two-
sidedMann-WhitneyU-test. Boxes indicatemedian +/- interquartile range; whiskers
show minima and maxima. d. Kaplan-Meier plot of progression free survival in
atezo/bev-treated patients (n = 17) with high or low (split by median) PDL1-
expression in CXCL10+ macrophages. e. Hierarchy plot of the CXCL signalling
pathway in the TME, depicting cell-cell interactions between intra-tumoural

macrophages (source) and intra-tumoural T cells (target cells) in responders (left)
and non-responders (right). The width of edges represents the strength of com-
munication. f. Bar plot depicting the overall information flow for each ligand-
receptor pair of the CXCL signalling pathway in the TME of responders versus non-
responders. Overall information flow is defined by the sum of the communication
probability among all pairs of cell groups in the inferrednetwork. P-value calculated
using two-sided Wilcoxon test. g. Dot plot of CXCR3 expression in intra-tumoural
T cells.h. Dot plot ofCXCR3 expression inperipheral T cells. i. Scatterplot depicting
the dominant senders (sources) and receivers (targets) between intra-tumoural
macrophage phenotypes and peripheral CD8 T cells. X- and y-axis represent the
total outgoing or incoming communication probability associated with each cell
group. Symbol size is proportional to the number of inferred links (both outgoing
and incoming) associated with each cell group. (PBMC, peripheral blood mono-
nuclear cells; PDL1, Programmed death-ligand 1; TME, tumour-microenvironment;
UMAP, Uniform Manifold Approximation and Projection).
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effect of atezo/bev, all subsequent comparative analyses focussed
on atezo/bev-treated patients (n = 25), stratified according to clin-
ical response (15 responders versus 10 non-responders). For all
comparative analyses, response to atezo/bev was the primary end-
point, while progression free survival was considered a secondary
endpoint.

Sample collection and processing
Fresh tissue biopsies (n = 38) were obtained via diagnostic needle
biopsy with 18-G needles prior to start of systemic therapy and
immediately subjected to single-cell dissociation as previously
described18,44,51. The tissue samples were first mechanically dissociated
using a scalpel, followed by enzymatic dissociation in digestion
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medium (2mgml−1 Collagenase P (Sigma Aldrich) and 0.2mgml−1

DNAse I (Roche) in DMEM (Thermo Fisher Scientific)). Red blood cells
were removed from the cell suspensionusing redblood cell lysis buffer
(Roche), and the cells were filtered using a 40-µm Flowmi tip strainer
(VWR). The number of living cells was determined using a LUNA
automated cell counter (Logos Biosystems). Peripheral blood mono-
nuclear cells (PBMCs) were extracted from serial peripheral blood
samples (n = 72) by immunomagnetic negative selection using
‘EasySepTM Direct Human PBMC Isolation Kit’ (Stemcell Technologies).
Redblood cells were removed using red blood cell lysis buffer (Roche).
Cells were filtered using a 40-µm Flowmi tip strainer (VWR), the
number of living cells was determined using a LUNA automated cell
counter (Logos Biosystems) and stored at −80 °C (in FBS + 10% DMSO)
for simultaneous thawing at a later timepoint.

PBMC samples were thawed simultaneously by adding DMEM
stepwise, cells were filtered using 40-µmFlowmi tip strainer (VWR) and
the number of living cells was counted using a LUNA automated cell
counter (Logos Biosystems). Up to 1 million cells from two or three
different samples were pooled together in equal proportions. The
pooling matrix was designed in such a way to allow for bio-informatic
identification of samples after sequencing (see below for details).
Simultaneous epitope measurement was performed on 41 PBMC
samples. First, the cells were incubated on ice with 5 µl of Fc receptor
blocking solution (TruStain Fcx from Biolegend) for 10minutes. Next,
15.9 µl of TotalSeq-C (Biolegend) 162 antibody-oligo pool (1:1,000
diluted in labelling buffer (PBS + 1%BSA) until 100 µm; full list in Suppl.
Dataset 1), followed by another 30-min incubation on ice. Cells were
washed three times with labelling buffer and filtered through a 40-µm
Flowmi strainer.

Single-cell RNA-sequencing, T cell repertoire profiling and cell
surface epitope profiling
We performed single-cell TCR-seq and 5’ gene expression profiling
on the single-cell suspensions derived from fresh tissue biopsies
and PBMC samples using Chromium Single Cell V(D)J Solution from
10X Genomics according to the manufacturer’s instructions. Up to
5000 cells per sample for biopsies and up to 20 000 live cells for
pooled PBMC samples were loaded onto a 10X Genomics chip to
generate cell-barcoded 5′ gene expression libraries. For two
patients, we obtained two biopsies from the same tumour nodule
for which separate libraries were generated. The libraries were
sequenced on an Illumina NextSeq and/or NovaSeq6000 system,
and mapped to the GRCh38 human reference genome using Cell-
Ranger (10x Genomics). V(D)J enriched libraries were sequenced on
an Illumina HiSeq4000 system and TCR alignment and annotation
were achieved with CellRanger VDJ (10x Genomics; Version 3.1.0).
Additional epitope profiling was performed by TotalSeq-C (Biole-
gend) on a subset of PBMC samples (n = 41). These samples were
processed as described above, with the addition of a separate
library of barcode-tagged antibodies for each cell. The RNA-derived
‘Gene Expression library’ was mapped to the GRCh38 human
reference genome using CellRanger (10x Genomics) as described
above, while the protein-derived ‘Antibody Capture library’ was
mapped to the whole TotalSeq-C antibody list.

PBMC patient-ID assignment using Souporcell
As described above, PBMC samples were pooled, loading two or three
samples per lane in the 10X Genomics chip in equal proportions. The
Souporcell tool52 was used to assign each cell back to its sample of
origin. In short, the tool first remaps the scRNAseq data of the input
samples using the Minimap2 mapper. The remapped data is then
analysed for variants on a per cell basis, followed by clustering based
on co-occurring variants to assign each cell a probability of belonging
to each of the clusters. Cells carrying co-occurring variants are
assigned to a sample specific cluster. The poolingmatrix was designed
in such a way that each cell cluster in Souporcell could easily be linked
back to the corresponding sampleID. The design of the poolingmatrix
is represented in Supplementary Table 3.

Single-cell gene expression analysis (scRNAseq) of tumour
biopsies
Raw gene expression matrices generated by CellRanger (10x Geno-
mics) were analysed further using Seurat 453 using default parameters
unless otherwise specified. All samples were merged into a single
Seurat object. Barcodes expressing <200 and >6000 genes and <400
unique molecular identifiers (UMIs) were removed. All cells with >50%
mitochondrial RNA content were removed as they likely represent
dying cells. Previous single-cell studies in liver and liver cancer have
used varying cut-off from 30%54 to up to 50%17,55. Gradually decreasing
the threshold from 50% to 30% primarily removed annotated cancer
cells or low-quality cells in downstream analysis, leaving the immune
cells unchanged.

A total of 97 947 cells ([58-7311] cells per sample) with on average
1320 genes per cell and 4676 unique transcripts per cell were retained
and normalized (using NormalizeData function). The 2000 most vari-
able genes were identified (using FindVariablesFeatures function) and
principal component analysis (PCA) was applied to reduce dimen-
sionality after regressing for the number of UMIs, percentage of
mitochondrial RNA and cell cycle genes (S and G2M scores, calculated
using CellCycleScoring function). The 25 most informative principal
components (PCs) were retained for clustering and Uniform Manifold
Approximation and Projection for dimension reduction (UMAP).
However, the resulting UMAP revealed clustering based on sample-
specific variation. To correct for this, the Harmony56 algorithm was
applied to regress out sample-specific effects (using the first 25 PCs),
resulting in a well-integrated dataset (Supplementary Fig. 7). As
expected, malignant cell clusters were patient-specific, while non-
malignant clusters contained cells derived from different patients
(Supplementary Fig. 7). There was no evidence of cluster bias based on
underlying liver disease, treatment or biopsy type in immune cells and
stromal cell types (Supplementary Fig. 1d). The data were clustered
using FindNeighbours and FindClusters functions. The resulting two-
dimensional UMAP representation of the dataset consisted of distinct
major cell types, identified and annotated based on the expression of
known marker genes.

scRNAseq clustering leading to cell subtypes in tissue biopsies
To subcluster T- and NK-cells into their respective phenotypes, we
subset T-/NK-cells annotated at the major cell type level. We applied

Fig. 7 | CD8 TEMRA and Macro CXCL10 as predictive biomarkers of response to
atezolizumab/bevacizumab. a. Kaplan-Meier plots of progression free survival in
253 atezo/bev-treated (top) versus 58 sorafenib-treated advanced HCC patients
(bottom) with high versus low (split by median) CD8 TEMRA (left) or Macro CXCL10
(right) enrichment score, calculated per sample in bulk RNA-sequencing data.
P-values calculated using the log-rank test. Median progression free survival as
indicated. b. Scatter plot depicting the correlation between CD8 TEMRA and Macro
CXCL10 enrichment scores, calculated per sample in bulk RNA-sequencing data of
311 advanced HCC patients. P values calculated using two-sided Spearman’s rank

correlation test. R-values are Spearman’s rank correlation coefficients (rho). Error
bands represent the 95% confidence interval. c. Kaplan-Meier plots of overall sur-
vival (left) and progression free survival (right) in 253 atezo/bev-treated (top) versus
58 sorafenib-treated advanced HCC patients (bottom) with high versus low atezo/
bev-response biomarker enrichment score (using optimal cut-off determined by
maximally selected rank statistics, see Methods for details), calculated per sample
in bulk RNA-sequencing data. (Atezo/bev, atezolizumab plus bevacizumab; PFS,
Progression free survival).
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the same process as described above, with an additional removal of
TCR genes prior to the identification of variable features, in order to
avoid clustering based on TCR genes. We first used marker genes to
identify CD4+ T cells, CD8+ T cells, NK-cells and proliferating cells.
Subsequently, applying an identical process, we subclustered theCD4+

T cells, CD8+ T cells, and proliferative cluster separately into their
cellular (sub-)phenotypes. Finally, all subsets were merged back into
one annotated T-/NK-cell Seurat object for further downstream ana-
lyses. Similarly, myeloid cells were annotated into dendritic cells ver-
sus monocytes/macrophages. Dendritic cells were merged with
plasmacytoid dendritic cells for subclustering and annotation. Mono-
cytes and macrophages were subclustered separately into their
respective phenotypes.

Single-cell copy number analysis in tumour biopsies
Copy number variations (CNV) were assessed with the R package
inferCNV25, designed to infer CNVs from tumoural scRNAseq data.
InferCNV compares the expression of genes in malignant cells to the
expression in cells annotated as non-malignant. T-/NK-cells, B-cells and
myeloid cells were used as a reference for non-malignant cells.

Integration, clustering and annotation of scRNAseq and
TotalSeq-C data in PBMC samples
Rawgene expressionmatrices from the PBMC samplesweregenerated
usingCellRanger 3.1 (10xGenomics) and analysedusing Seurat453.One
Seurat object was generated with the scRNA-seq data and the anti-
bodies present in the antibody pool (Supplementary Dataset 1). All
barcodes expressing <200 and >6000 genes, <400 UMIs and >15%
mitochondrial DNA content were removed. Next, we used the Sou-
porcell clusters to link each barcode to its sample of origin. All cells
classified with insufficient confidence were removed. A total of 268
807 cells ([240-8528] cells per samples)with on average 1223 genes per
cell and 3235 unique transcripts per cell were retained.

The PBMC subset with only scRNAseq data available was pro-
cessed similarly to the scRNAseqdata frompre-treatment biopsies. For
PBMC samples with RNA and antibody data available all features were
reported as variable features. The data were normalized by Centred-
Log-Normalisation (CLR) using the second margin (using Normal-
izeData) and subsequently scaled for ADT-count. Finally, dimension-
ality reduction was performed using PCA and the UMAP
representation was generated.

Next, the RNA- and ADT-assays were combined using a ‘weighted
nearest neighbour’ analysis53. In short, a new ‘integrated’ assay was
generated using FindMultiModalNeighbours function by assigning a
weight to each cell based on the relative contribution of the RNA-
versus ADT-assay to the clustering process. A new UMAP was gener-
ated using the integrated dataset and clustering analysis was per-
formed (using FindCluster function with the Smart Local Moving
algorithm).

Subsequently, the PBMC subset without ADT-data was projected
onto the ‘integrated’ assay. Combining both the RNA- and ADT-assay,
allowed for a better biological separation of cells based on ADT-data
(e.g., CD4+ versus CD8+ T cells). Manual annotation was performed
iteratively based on marker gene expression. First, the major periph-
eral cell typeswereannotated, followedby annotationof peripheral T-/
NK-cells into their respective phenotypes.

Differential gene expression and pathway analysis
Differentially expressed genes (DEG) were identified using Wilcoxon’s
test with the FindMarkers function from Seurat without a threshold for
log fold-change (logFC) and for expression in a minimum fraction of
cells. DEGs were then ordered based on average log fold-change and
used as input for GSEAusing the R package f-GSEA for theHallmarks of
the cancer gene set. The resulting list of enriched gene sets wasfiltered
for adjusted p-values < 0.01 (using Benjamini–Hochberg method).

Assessing the TCR repertoire using V(D)J analysis
In the biopsies, we detected 19,220 out of 26 380 T cells with a pro-
ductive TCR sequence, meaning that they could be joined in the
proper reading frame by V(D)J recombination without a premature
stop codon, enabling the expression of a complete TCR alpha or beta-
chain for downstream analysis. Excluding NK-cells, gamma-delta
T cells, and MAIT cells (restrictive TCR), 90% of annotated T cells
annotated carried a productive TCRs, resulting in a total of 19 818
annotated T cells with a productive TCR, carrying a total of 12 690
unique TCRs. Of note, one sample (HCC006) was removed from fur-
ther TCR analysis, as we did not detect annotated T cells carrying
productive TCRs.

In PBMCs, we detected 121 765 out of 170 919 T-/NK-cells carrying
a TCR sequence. Again, we considered only productive TCR sequen-
ces. Excluding NK-cells, gamma-delta T -cells and MAIT cells (restric-
tive TCR), 90% of peripheral T cells carried a productive TCRs. A total
of 25 unique TCR sequences were shared between at least two patients
andwere removed for further analysis. This resulted in a total of 115,711
annotated peripheral T cells, carrying 90,188 unique TCRs.

Next, TCR clonotypes were defined as TCRs with the same
complementarity-determining region 3 (CDR3) nucleotide sequences.
Dominant clonotypes were defined as 1) TCRs shared by 5 or more
T cells and 2) clonotypes representing at least 1% of the TCR repertoire
in each sample. Clonality was defined as the complement of evenness
(1-evenness), as previously described18,57, where evenness represents
the normalized Shannon entropy. The evenness value lies between 0
and 1, with a high value indicating a more equal distribution of TCRs
and a low value indicating TCR skewing due to clonal expansion. TCR
richness was defined as the number of unique TCRs divided by the
total number of cells with a unique TCR and was calculated as ametric
for clonotype diversity. Finally, the Gini-index was calculated using the
ineq (v0.2-13) package in R and captures the distribution of T cells
across the TCR repertoire. The value ranges between 0 and 1. The
higher the Gini-index, the less equal the distribution of the clonotypes.
Each TCR metric (clonality, evenness, richness, Gini-index) was calcu-
lated per sample and then per T cell phenotype in each sample.

TCR sharing between intra-tumoural T cells and peripheral
T cells
For 19 patients both pre-treatment tumour biopsies and serial PBMC
samples were available (Supplementary Table 2), of which 17 were
treated with atezo/bev. In this overlap-dataset, we detected a total of
112 810 annotated T cells, carrying 80 363 unique TCRs. A total of 442,
464, and 339 TCRs were shared between biopsy and PBMC at week 0,
week 3, and week 6, respectively. The proportion of shared TCR in
peripheral blood was calculated by dividing the number of shared
TCRsbetweenpre-treatmentbiopsy andPBMCsby the total number of
TCRs detected in each sample. Similarly, the proportion of shared
peripheral T cells was calculated by dividing the number of Tcells
carryingTCRs sharedbetweenpre-treatment biopsy andPBMCsby the
total number of Tcells carrying a productive TCR in each sample.

Trajectory inference analysis
The R package Slingshot v2.2.034 was used to define computationally
imputed pseudotime trajectories of CD8 T cells in the TME. Naive
T cells (CD8 TN) were considered as the root state when calculating the
trajectories and the pseudotime. To visualize the degree of overlap in
TCR clonotypes between T cell phenotypes, the connection weight for
each pair of T cell phenotypes was calculated as the shared number of
unique TCRs divided by the total number of unique TCRs in the T cell
phenotype located first on the trajectory (=shared TCR weight). We
thenused TradeSeq v1.7.0735 to identifyDEGsbetween trajectories.We
first used the diffEnd function, a between-lineage test to identify DEGs
between the terminallydifferentiated endsof each trajectory. Then,we
used the earlyDEG function using knots 1-6, to assess the differences in
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expressionpatterns early on in theCD8 trajectories. TheDEG lists were
then used as input for GSEA using the R package f-GSEA for the
REACTOME and GO: Biological Processes gene sets. Only significantly
enriched pathways were retained (adjusted p-value < 0.01).

Predicting cell-to-cell interactions in scRNAseq data
The CellChat (v1.1.3) algorithm43 was used to predict cell-cell interac-
tions between cell types in scRNAseq data, using default parameters
with the following exceptions: the number of permutations used was
10 000 and cell-cell interactions between cell types were not con-
sidered when less than 15 cells represented a group. We focused on
significant cell-cell interactions between immune cell types in
responders and non-responders, separately (p-value < 0.01).

Estimating progression free survival in the single-cell cohort
Progression free survival (PFS)was defined as the time from the startof
atezo/bev to documented radiological progression (according to
mRECIST) or death of any cause. The progression free survival prob-
ability was calculated for two features associated with response to
atezo/bev: (1) TCR sharing between tumour and peripheral blood
(PBMC Week 0) and (2) PDL1-expression in CXCL10+ tumour-
associated macrophages (Macro CXCL10). For each metric, patients
were grouped into two groups compared to the median (high versus
low). The Kaplan-Meier method was used to estimate PFS curves and
the log-rank test was used to assess significant differences between
groups. Considering the limited number of events in the scRNAseq
cohort, the PFS analysis was not corrected for baseline patient or
tumour characteristics in a multivariate analysis. Analyses were done
using the R packages ‘survival’ (version 3.3.1) and ‘survminer’ (ver-
sion 0.4.9).

Validating single-cell findings in bulk RNA seq dataset of 311
advanced HCC patients
In order to validate single-cell derived insights and explore the
potential of CD8 TEMRA andMacro CXCL10 as predictive biomarkers of
response to atezo/bev, we used CD8 TEMRA andMacro CXCL10marker
genes in order to deconvolute a publicly available bulk RNAseq
dataset24 (EGAS0001005503; DA00468). Overall, 311 prospectively
collected tumour samples of advanced HCC patients treated with
atezo/bev (n = 253) or sorafenib (n = 58) in the context of the phase Ib
(GO30140; arms A and F)11 and phase III clinical trials (IMBrave150)3,4

were used. For details on study design and patient cohorts refer to the
original publication24. The per sample raw RNA read files and asso-
ciated clinical data were downloaded from the European Genome
Archive (EGAS0001005503; DA00468). The raw read files were map-
ped to the human reference genome (refdata-gex-GRCh38-2020-A)
using the STAR aligner (STAR.2.7.2a) in paired-endmode. Gene counts
per sample were then computed using featureCounts (Subread
toolkit) and the RNA counts were normalized based on the trimmed
mean of M-values (TMM) method using the R-package edgeR (version
3.3.2). The resulting effective library size was used for downstream
analysis.

CD8 TEMRA (n = 36) and Macro CXCL10 (n = 16) marker genes
were selected based on differential gene expression analysis and
used to deconvolute bulk RNAseq data. The CD8 TEMRA gene sig-
nature consisted of “GZMH”, “GNLY”, “NKG7”, “FGFBP2”, “GZMB”,
“CST7”, “CCL5”, “PRF1”, “CX3CR1”, “CTSW”, “GZMA”, “KLRD1”,
“GZMM”, “CD3D”, “CD8A”, “CD52”, “PTPRC”, “CD3G”, “HCST”,
“CD3E”, “PLEK”, “KLRG1”, “RAC2”, “LCK”, “CD247”, “HOPX”, “KRLK1”,
“BIN2”, “S100A4”, “CORO1A”, “IL2RG”, “ITGB2”, “IFITM1”, “EMP3”,
“TRBC1”, “FLNA”. The Macro CXCL10 signature consisted of
“CXCL10”, “CXCL9”, “GBP1”, “TYMP”, “CALHM6”, “CCL2”,
“TNFSF13B”, “WARS”, “CCL8”, “IL4I1”, “ICAM1”, “LILRB4”, “CXCL11”,
“SOD2”, “LAP3”, “STAT1”. Each gene set was used to calculate per
sample enrichment scores for CD8 TEMRA and Macro CXCL10,

respectively using single-sample Gene Set Enrichment Analysis
(ssGSEA) function from the R-package ‘GSVA’ (version 1.38.2). For
each cell type, samples were divided into two groups: high versus
low enrichment score (split by median) and the Kaplan-Meier
method was used to estimate and compare PFS between groups
using the log-rank test. Finally, we combined the CD8 TEMRA and
Macro CXCL10 markers genes into an atezo/bev response bio-
marker, comprising a total of 52 genes. Calculating the per sample
bulk RNAseq enrichment score (ssGSEA), two groups with high
(biomarkerhigh) versus low (biomarkerlow) enrichment score for the
atezo/bev response biomarker were delineated using maximally
selected rank statistics as described in the R package ‘maxstat’
(version 0.7.25). Kaplan-Meier curves for OS and PFS were gener-
ated for patients treated with atezo/bev (n = 253) versus sorafenib
(n = 58). Significant differences between groups (biomarkerhigh vs
biomarkerlow) were evaluated using the log-rank test. Patient and
tumour characteristics were not publicly available to perform a
multivariate cox regression analysis for PFS. All analyses were done
using the R packages ‘survival’ (version 3.3.1) and ‘survminer’ (ver-
sion 0.4.9).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing reads of the scRNAseq, scTCRseq, and Totalseq
experiments are available with restricted access in the European
Genome-phenome Archive under accession number
EGAS00001007547. Requests for accessing raw sequencing reads will
be reviewed by the UZLeuven-VIB data access committee. Any data
shared will be released via a Data Transfer Agreement that will include
the necessary conditions to guarantee the protection of personal data
(according to European GDPR law). Alternatively, a download of the
read count data per sample, necessary to reproduce all analyses
included in this manuscript, will be made available at https://
lambrechtslab.sites.vib.be/en/data-access. Source data are provided
in this paper.

The per sample rawRNA readfiles from the publicly available bulk
RNAseq dataset and associated clinical data were downloaded from
the European Genome Archive (EGAS00001005503; DA00468;
https://ega-archive.org/studies/EGAS00001005503). Source data are
provided in this paper.
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