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Abstract

Objectives. Combining of genomic data of different pathologies as a single phenotype has emerged as a useful

strategy to identify genetic risk loci shared among immune-mediated diseases. Our study aimed to increase our

knowledge of the genetic contribution to Kawasaki disease (KD) and IgA vasculitis (IgAV) by performing the first

comprehensive large-scale analysis on the genetic overlap between them.

Methods. A total of 1190 vasculitis patients and 11 302 healthy controls were analysed. First, in the discovery

phase, genome-wide data of 405 KD patients and 6252 controls and 215 IgAV patients and 1324 controls, all of

European origin, were combined using an inverse variance meta-analysis. Second, the top associated polymorphisms

were selected for replication in additional independent cohorts (570 cases and 3726 controls). Polymorphisms with P-

values �5�10�8 in the global IgAV–KD meta-analysis were considered as shared genetic risk loci.

Results. A genetic variant, rs3743841, located in an intron of the NAGPA gene, reached genome-wide significance

in the cross-disease meta-analysis (P¼ 8.06� 10�10). Additionally, when IgAV was individually analysed, a strong

association between rs3743841 and this vasculitis was also evident [P¼1.25�10�7; odds ratio ¼ 1.47 (95% CI

1.27, 1.69)]. In silico functional annotation showed that this polymorphism acts as a regulatory variant modulating

the expression levels of the NAGPA and SEC14L5 genes.

Conclusion. We identified a new risk locus with pleiotropic effects on the two childhood vasculitides analysed.

This locus represents the strongest non-HLA signal described for IgAV to date.
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Introduction

Systemic vasculitis comprises a heterogeneous group of

chronic diseases characterized by arterial wall inflamma-

tion. Vasculitis can be classified pathologically into three

main categories by vessel size: large (LVV), medium

(MVV) and small vessel vasculitis (SVV) [1]. However,

clinical phenotypes of the different forms of vasculitis

seem to be independent of the diameter of the vessels

and, indeed, some of these diseases can affect vessels

of variable types and sizes.

Kawasaki disease (KD), an MVV, and IgA vasculitis

(IgAV), an SVV, are the first and second most common

paediatric vasculitides in European countries, respectively

[2, 3]. KD predominantly affects children <5 years of age,

with an increased incidence in Asian countries. It is char-

acterized by fever, rash, redness and edema of the hands

and feet, mucosal changes, conjunctival injection, lymph-

adenopathy and, in some cases, arthritis [2]. IgAV largely

affects children, but it also occurs in adults. The main

features include palpable purpura, gastrointestinal pain

and bleeding, arthritis and glomerulonephritis [3].

In both diseases, the aetiology is unknown and the

heightened inflammatory pathogenesis is driven by en-

vironmental and genetic factors. In the last decade,

genome-wide association studies (GWASs) have revolu-

tionized the study of the genetics of systemic vasculitis,

including IgAV and KD [4]. In this regard, several genetic

risk loci related to immune responses and regulation

have shown robust associations with KD, such as

ITPKC, FCGR2A, CASP3, BLK and CD40 [5], whereas

only the HLA region has been consistently associated

with IgAV to date [6].

However, the low prevalence of systemic vasculitis

and the moderate effect conferred by disease-

associated variants mean GWASs require large sample

sizes for adequate power to meet the accepted stand-

ards for genome-wide significance [7]. In this regard,

the combined analysis of genomic data from rare phe-

notypes of similar pathophysiology allows a significant

increase in sample size and may identify common gen-

etic determinants indicative of shared pathogenesis.

This approach, called cross-phenotype meta-analysis,

has been successfully applied to the study of the gen-

etic component shared across different vasculitides,

including giant cell arteritis, Takayasu’s arteritis, ANCA-

associated vasculitis and IgAV [8, 9], suggesting that

common molecular mechanisms can be implicated in

these diseases.

Interestingly, coexistence of both IgAV and KD has

been described in several patients [10–12]. Moreover,

additional evidence points to the existence of shared

pathogenic mechanisms between both disorders. In this

regard, following the identification of a murine model of

KD showing deposition of IgA–C3 immune complexes in

cardiovascular lesions and kidneys, it has been pro-

posed that KD may be a form of IgAV [13].

Considering this, the aim of this study was to investi-

gate, for the first time, the common genetic components

of two forms of paediatric vasculitis by performing a

cross-disease meta-analysis of KD and IgAV GWAS

data.

Materials and methods

Study design

This study was conducted in two stages: a discovery

stage, in which IgAV and KD GWAS data from previous-

ly published studies [14, 15] were combined as a single

phenotype, with the aim of identifying potential new sus-

ceptibility variants for both vasculitides, and a validation

stage, in which the most associated single nucleotide

polymorphisms (SNPs) in the cross-phenotype meta-

analysis were tested in additional independent cohorts.

A summarized workflow of the study can be found in

Supplementary Fig. S1, available at Rheumatology

online.

Approval from the local ethical committees of the dif-

ferent participating centres and informed written consent

from all participants were obtained in accordance with

the tenets of the Declaration of Helsinki.

Discovery stage

Study population

Genomic data from a total of 620 paediatric cases and

7576 healthy controls of European descent, including

215 IgAV patients and 1324 controls from Spain and

405 KD patients and 6252 controls from Australia, The

Netherlands, the UK and the USA, were included in the

cross-disease meta-analysis. A table summarizing the

analysed cohorts is available in Supplementary Table

S1, available at Rheumatology online.

Quality control and imputation

GWAS data were filtered prior to imputation using

PLINK version 1.9 software [16]. SNPs were removed

based on a low genotyping rate (<95%), low allele
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frequency (minor allele frequency <1%) and deviation

from Hardy–Weinberg equilibrium (P< 0.001). In add-

ition, individuals with successful call rates <95% were

discarded, as well as duplicates and first-degree

relatives.

SNP genotype imputation was performed using the

Michigan Imputation Server (https://imputationserver.

sph.umich.edu), with phase 3 of the 1000 Genomes

Project as the reference panel and a probability thresh-

old for merging genotypes of 0.9. Imputed data were

subsequently filtered as described above. Additionally,

principal component analysis was performed with PLINK

version 1.9 and GCTA (Genome-wide Complex Trait

Analysis) software [17], using the first 10 principal com-

ponents to detect possible biased associations by an-

cestry. Individuals who surpassed 4 standard deviations

from the centroid were excluded by considering them as

outliers. Principal component plots are shown in

Supplementary Fig. S2, available at Rheumatology

online.

Statistical analysis

PLINK version 1.9 was used to perform logistic regres-

sion analysis on each individual disease, including the

first 10 principal components and sex as covariates.

Quantile–quantile plots are shown in Supplementary Fig.

S3, available at Rheumatology online. Summary statis-

tics of each disease were then meta-analysed by apply-

ing the inverse variance method, to identify shared

genetic variants with the same effect in both diseases.

In addition, to identify genetic variants with opposite al-

lelic effects, the direction of association was flipped,

that is, 1/OR instead of OR, in the IgAV dataset before

the KD–IgAV meta-analysis.

SNPs that met our criteria (P<0.01 in each individual

disease and P< 5�10�5 in the cross-disease meta-

analysis) were selected for the validation stage.

Validation stage

Study population and data sources

A total of 570 cases and 3726 healthy controls, including

186 KD patients and 600 controls from Korea and 384

IgAV patients and 3126 controls from four independent

cohorts (Spain, Turkey, Slovenia and the USA) were

analysed (Supplementary Table S1, available at

Rheumatology online).

For the KD validation cohort, summary statistics of

the selected SNPs were obtained from a previously pub-

lished GWAS [18]. In the case of the IgAV validation

cohorts, genotyping data from part of the samples

(cases and controls from the USA and controls from

Slovenia) were obtained using SNP genotyping arrays,

while data from the remaining samples (cases from

Slovenia and cases and controls from Spain and Turkey)

were genotyped for the selected SNPs by allelic dis-

crimination assay using TaqMan probes (Applied

Biosystems, Waltham, MA, USA) (Supplementary Table

S1, available at Rheumatology online).

Statistical analysis

Each independent cohort was individually analysed by

logistic regression analysis. Subsequently, KD and IgAV

cohorts were combined using the inverse variance

method. A fixed effects model was used in the absence

of heterogeneity across studies. Instead, when hetero-

geneity was detected, a random effects approach (RE2),

implemented in METASOFT (http://genetics.cs.ucla.edu/

meta/), was applied. After meta-analysis, those SNPs

reaching a genome-wide significance level (P�5�10�8)

in the cross-disease meta-analysis, including both dis-

covery and validation cohorts, and showing disease-

specific P-values �0.05 in the validation stage were

considered as common susceptibility loci for IgAV and

KD.

In silico functional characterization

To evaluate the potential functional role of the most

strongly associated polymorphism of each shared locus,

and their proxies (r2> 0.8), publicly available functional

annotation data were assessed. Specifically, data from

Haploreg version 4.1 (https://pubs.broadinstitute.org/

mammals/haploreg/haploreg.php) and the GTEx (https://

gtexportal.org) and ENCODE (https://www.encodepro

ject.org/) projects were explored in order to determine

whether associated SNPs overlapped with published ex-

pression quantitative trait loci (eQTLs), regulatory chro-

matin marks, DNase I hypersensitive sites (DHSs) and/or

transcription factor binding sites (TFBSs) in immune cell

lines and/or whole blood.

Results

Meta-analysis

Discovery stage

After quality control, 617 cases (215 IgAV cases and

402 KD cases) and 7538 controls were available for ana-

lysis. A total of 5 690 841 SNPs that overlapped be-

tween the discovery datasets were included in the

cross-disease meta-analysis (Fig. 1).

After combined analysis of IgAV and KD GWAS data,

assuming same allelic effects in both diseases, genetic

variants at seven loci satisfied the established criteria

for the discovery phase (P<5� 10�5 in the combined

analysis; P<0.01 in each independent disease analysis)

(Table 1 and Fig. 1). Additionally, when taking into con-

sideration potential opposite allele effects in both dis-

eases, an additional SNP (rs2659608) fulfilled the

established criteria (Table 1 and Fig. 1).

Validation stage

Subsequently the top signals within each locus were ana-

lysed in independent additional cohorts (Supplementary

Table 1, available at Rheumatology online). As shown in

Table 1, rs3743841, located in an intron of the NAGPA

(N-acetylglucosamine-1-phosphodiester alpha-N-acetyl-

glucosaminidase) gene, reached genome-wide signifi-

cance in the IgAV–KD meta-analysis, including both
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discovery and replication datasets (P¼8.06�10�10)

(Supplementary Fig. S4, available at Rheumatology on-

line). Furthermore, this polymorphism showed statistical

significance in the IgAV replication analysis

[P¼5.48�10�4; OR ¼ 1.39 (95% CI 1.15, 1.68)], al-

though no association was observed in the KD replication

cohort [P¼ 0.76; OR ¼ 1.04 (95% CI 0.82, 1.31)] (Table 1).

It should be noted that the rs3743841 variant was

near genome-wide significant in the IgAV-only meta-

analysis [P¼1.25� 10�7; OR ¼ 1.47 (95% CI 1.27,

1.69)], including both discovery and replication cohorts.

The minor allele frequency of rs3743841 in each of the

study cohorts is shown in Supplementary Table S2,

available at Rheumatology online.

Functional annotation

In order to provide biological context to our findings, we

evaluated putative regulatory effects of the rs3743841

polymorphism, using different functional annotation

databases. The rs3743841 genetic variant, and its only

proxy (r2¼ 0.99), appeared to act as eQTLs, affecting

expression levels of the NAGPA (3.89� 10�23) and

SEC14L5 (5.21�10�8) genes in whole blood [19] and in

whole blood and monocytes [20], respectively.

Discussion

In the present study, we report the first large-scale

cross-disease meta-analysis of IgAV and KD, identifying

a potential novel risk locus shared between both paedi-

atric diseases. Specifically, the rs3743841 variant,

located in an intron of the NAGPA gene, reached

genome-wide significance in the overall cross-disease

meta-analysis. This suggests a possible shared genetic

component and, presumably, common molecular mech-

anisms involved in the development of both forms of

vasculitis. In addition, the NAGPA variant showed a

strong association with IgAV (P¼1.25� 10�7; OR ¼
1.47), thus representing the strongest non-HLA signal

described for this disease to date.

Interestingly, in silico functional analysis showed that

this polymorphism, and its only proxy, acts as an eQTL,

altering NAGPA and SEC14L5 gene expression levels in

whole blood and monocytes. SEC14L5 encodes a mem-

ber of the SEC14 family of proteins, which drives inter-

actions between proteins and phospholipids that are

essential for protein targeting, signal transduction, lipid

metabolism and transport and compartment mainten-

ance [21]. The NAGPA gene is involved in mannose 6-

phosphate formation and encodes the uncovering en-

zyme that catalyzes the second step in the formation of

mannose 6-phosphate, a recognition marker on lyso-

somal hydrolases. It has been reported that inactivation

of the NAGPA gene in mice results in elevated levels of

several acid hydrolases in plasma, which showed a

decreased affinity for the cation-independent mannose

6-phosphate receptor and failed to bind to the cation-

dependent mannose 6-phosphate receptor [22].

Interestingly, a central role of the lysosomal compart-

ment in regulating different processes of the immune re-

sponse, such as secretion of inflammatory cytokines or

antigen presentation, has been described [23].

Furthermore, lysosomal enzyme activity may be involved

in autoantigen generation and, indeed, changes in lyso-

somal hydrolases have been implicated in different auto-

immune diseases [23]. Finally, lysosomes have also

been implicated in other vasculitides, specifically in

FIG. 1 Manhattan plot representing the results of the cross-disease meta-analysis for the discovery phase

The �log10 of the P-values are plotted against their physical chromosomal position. The red line represents the gen-

ome-wide level of significance (P< 5�10�8). The established significance threshold for the discovery stage

(P<5� 10�5) is highlighted in blue. Loci have been annotated only for those polymorphisms reaching the established

criteria for the discovery phase (P<5� 10�5 in the combined analysis; P<0.01 in each independent disease ana-

lysis). Ochre dots represent those signals showing opposite allelic effect in both vasculitides.
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ANCA-associated vasculitis, which are characterized by

the presence of autoantibodies targeted against lyso-

somal enzymes of monocytes and neutrophils [24].

Our study has some strengths. First, this work repre-

sents a great international collaborative effort that has

made possible the analysis of a large cohort of paediat-

ric vasculitis patients using common case definitions.

Second, this is the first study comprehensively examin-

ing the genetic overlap between IgAV and KD. However,

we acknowledge some limitations. Although the

rs3743841 variant reached the genome-wide signifi-

cance level in the cross-disease meta-analysis, it was

not statistically significant in the KD validation cohort.

One possible explanation could be that this polymorph-

ism is a genetic marker in linkage disequilibrium (LD)

with the real causal variant. In this situation, differences

in the LD pattern between Europeans and Asians might

be responsible for the observed results. Considering this

possibility, the associated polymorphism could be tar-

geting the causal variant in European but not in the

Asian population. Alternatively, the absence of associ-

ation observed in the Korean cohort could be due to a

lack of statistical power. Nevertheless, the statistical

power for this analysis was almost 80%, considering the

minor allele frequency reported in East Asian popula-

tions in phase 3 of the 1000 Genomes Project (49%)

and the effect of the allele risk observed in the discovery

phase (OR ¼ 1.39). Therefore it is unlikely that the ab-

sence of association observed in the KD replication co-

hort was due to limited statistical power, although we

cannot discard this hypothesis (Supplementary Table

S3, available at Rheumatology online). Finally, as shown

in Supplementary Table S3, available at Rheumatology

online, for all the selected SNPs, the statistical power of

the IgAV replication analysis was >80% to detect the ef-

fect size observed in the discovery IgAV cohort; how-

ever, the KD validation analysis did not reach enough

statistical power, except for rs3743841 and rs10508313,

and therefore, for the remaining six polymorphisms, the

lack of replication in KD could be due to the low statis-

tical power of the analysis.

In summary, in the first combined analysis of IgAV

and KD GWAS data, we identified a putative susceptibil-

ity risk factor shared between both diseases as well as

the strongest non-HLA signal described for IgAV to

date. Our results point to a potential role of the lyso-

somal pathway in the IgAV pathogenesis and suggest

that this process could represent a common pathogenic

mechanism for these two most common types of paedi-

atric vasculitides.
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