Skip to main content
. 2023 Nov 15;7:e50998. doi: 10.2196/50998

Table 2.

Performance comparison of four machine learning models with different sampling ratios.

Model AUCa, mean (SD) F1, mean (SD) Accuracy, mean (SD) Recall, mean (SD) Precision, mean (SD)
Ratio=1

LGBMb 0.75 (0.12) 0.7 (0.14) 0.72 (0.08) 0.71 (0.19) 0.73 (0.18)

LRc 0.75 (0.1) 0.73 (0.13) 0.73 (0.1) 0.76 (0.16) 0.72 (0.15)

RFd 0.76 (0.11) 0.72 (0.09) 0.72 (0.1) 0.73 (0.11) 0.76 (0.2)

XGBe 0.75 (0.11) 0.71 (0.13) 0.71 (0.1) 0.73 (0.13) 0.7 (0.16)
Ratio=3

LGBM 0.73 (0.07) 0.52 (0.08) 0.72 (0.07) 0.62 (0.16) 0.47 (0.1)

LR 0.74 (0.07) 0.54 (0.06) 0.7 (0.09) 0.72 (0.11) 0.46 (0.11)

RF 0.75 (0.08) 0.5 (0.08) 0.69 (0.08) 0.64 (0.14) 0.44 (0.11)

XGB 0.76 (0.08) 0.53 (0.11) 0.71 (0.12) 0.65 (0.19) 0.48 (0.12)
Ratio=5

LGBM 0.74 (0.09) 0.42 (0.11) 0.7 (0.1) 0.66 (0.18) 0.35 (0.14)

LR 0.73 (0.09) 0.43 (0.11) 0.68 (0.13) 0.68 (0.13) 0.34 (0.15)

RF 0.74 (0.07) 0.43 (0.11) 0.71 (0.14) 0.65 (0.15) 0.35 (0.13)

XGB 0.73 (0.08) 0.41 (0.1) 0.62 (0.1) 0.8 (0.12) 0.29 (0.09)
Ratio=10

LGBM 0.75 (0.09) 0.32 (0.09) 0.74 (0.13) 0.64 (0.2) 0.23 (0.07)

LR 0.73 (0.1) 0.29 (0.08) 0.68 (0.13) 0.66 (0.11) 0.19 (0.07)

RF 0.75 (0.08) 0.29 (0.07) 0.69 (0.12) 0.69 (0.13) 0.19 (0.05)

XGB 0.75 (0.07) 0.32 (0.06) 0.72 (0.12) 0.66 (0.13) 0.22 (0.08)
Ratio=20

LGBM 0.72 (0.07) 0.18 (0.07) 0.68 (0.13) 0.67 (0.13) 0.11 (0.05)

LR 0.73 (0.06) 0.2 (0.06) 0.72 (0.14) 0.65 (0.2) 0.13 (0.06)

RF 0.72 (0.06) 0.18 (0.04) 0.72 (0.09) 0.63 (0.12) 0.11 (0.03)

XGB 0.74 (0.06) 0.17 (0.03) 0.67 (0.13) 0.69 (0.15) 0.1 (0.02)

aAUC: area under the receiver operating characteristic curve.

bLGBM: light gradient boosting machine.

cLR: logistic regression.

dRF: random forest.

eXGB: extreme gradient boosting.