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Abstract. Rapid advancements in high-throughput
biological techniques have facilitated the generation of high-
dimensional omics datasets, which have provided a solid
foundation for precision medicine and prognosis prediction.
Nonetheless, the problem of missing heritability persists. To
solve this problem, it is essential to explain the genetic
structure of disease incidence risk and prognosis by
incorporating interactions. The development of the Bayesian
theory has provided new approaches for developing models
for interaction identification and estimation. Several Bayesian
models have been developed to improve the accuracy of
model and identify the main effect, gene-environment (GXE)
and gene-gene (GxG) interactions. Studies based on single-
nucleotide polymorphisms (SNPs) are significant for the
exploration of rare and common variants. Models based on
the effect heredity principle and group-based models are
relatively flexible and do not require strict constraints when
dealing with the hierarchical structure between the main
effect and interactions (M-I). These models have a good
interpretability of biological mechanisms. Machine learning-
based Bayesian approaches are highly competitive in
improving prediction accuracy. These models provide insights
into the mechanisms underlying the occurrence and
progression of complex diseases, identify more reliable
biomarkers, and develop higher predictive accuracy. In this
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paper, we provide a comprehensive review of these Bayesian
approaches.

Complex diseases, such as cancer, are critical non-
communicable chronic diseases that seriously endanger the
health and quality of life of people. They consistently rank
among the leading causes of death, contributing significantly
to the global burden of disease (1). In 2020, the World Health
Organization reported an estimated 19.29 million new cancer
cases worldwide and 9.89 million cancer-related deaths (2). In
clinical practice, surgical treatment, radiotherapy, and
chemotherapy are the most common treatments used for
malignant tumors. In recent years, targeted therapies, such as
epidermal growth factor receptor (EGFR) inhibitors and
immunotherapies (including PD-1 and PD-L1 inhibitors), have
opened new frontiers in precision therapy, providing better
treatment outcomes for specific patients (3, 4). However, the
survival of patients with cancer has not improved significantly.
This can be attributed to several critical potential targets that
may not have been detected or fully understood, immune
escape and drug resistance (5).

Accordingly, there is an urgent need to identify the
important factors associated with the progression and
prognosis of cancer to guide the prevention and treatment of
highly heterogeneous cancer types and facilitate prognostic
assessment. However, models based on traditional clinical
factors, such as treatment, stage, age, and sex often perform
poorly (6). Fortunately, the rapid development of genome
sequencing technology has led to the generation of high-
dimensional omics data encompassing various types,
including  single-nucleotide  polymorphisms (SNPs),
methylation, microRNA, mRNA, IncRNA, and proteomics
data (7). Notably, previous research has shown that
biomarkers screened from different omics data using
appropriate biostatistical methods can reliably predict the
occurrence and prognosis of various diseases (8-10).

In recent years, the development of diagnostic and
prognostic interaction models for complex diseases has
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become a popular research topic (11). Studies have shown
that diagnostic and prognostic models that only include the
main effects cannot significantly improve model
performance (12). The interactions are critical for the
diagnosis and prognosis of complex diseases beyond the role
of the main effects of genetic or environmental factors (13).
In incidence risk studies, models that integrate gene-
environment (GXE) and gene-gene (GxG) interactions may
provide additional genetic evidence for a high incidence of
cancer in specific exposure groups (14, 15). These
interactions should not be ignored in prognostic studies.
Integrating GxG and GxE interactions into prognostic
models is important to improve model performance. For
example, Marley et al. showed that the interactions between
citrus intake and genes may influence melanoma risk (16).
Other studies found that two-way and three-way interactions
between DNA methylation and smoking significantly
affected the prognosis of lung cancer, which is expected to
be a methylation-specific drug target (14, 17, 18).

Models developed in the Bayesian framework that integrate
interactions can utilize the qualities of Bayesian theory to
provide new ideas for studying interactions (19-21). Firstly,
this class of models can adaptively incorporate prior
information (22, 23). Secondly, Bayesian methods can flexibly
incorporate the principle of effect heredity between the main
terms and interactions, and the developed models can be used
to obtain good interpretability of biological mechanisms (22).
Thirdly, Bayesian approaches can be combined with machine
learning (ML) methods, such as neural networks and
factorization machines (FMs), to develop novel approaches
with higher predictive accuracy (24, 25). However, Bayesian
approaches that incorporate interactions involve many
challenges, such as the high dimensionality of the data and its
resulting computational cost, the incorporation of dependence
on the main effect and interaction (M-I), and the complexity
of the posterior inference (26).

In the past years, the analysis of interactions under the
Bayesian framework has been developed to allow for two-
order and higher-order models (27, 28), linear and nonlinear
(29), binary and count (30), with continuous traits and
censored survival outcomes (22, 31). Although several
Bayesian methods have been proposed for the estimation and
identification of interactions, relevant comprehensive reviews
are lacking. In this study, we review Bayesian approaches that
involve interactions. The purpose of this review is to provide
a survey of approaches that can be used within the Bayesian
framework to detect GxG and GxE interactions related to the
occurrence or prognosis of complex diseases.

Bayesian Approaches in Interaction Studies

We summarize four classes of approaches (SNP-based, effect
heredity-based, group-based, and ML-based) within the

Bayesian framework for detecting interactions associated with
the occurrence and development of complex diseases. Although
we focused on the Bayesian approaches used in human
genetics, we also incorporated Bayesian approaches used in
animal and plant genetics (32), which are closely related to
human genetics. In addition, some ML-based Bayesian
methods are not particularly developed for medical research;
however, they are generally similar in terms of data dimensions
and research strategies to the methods used in human genetics
data. Therefore, they are also included in this study.

SNP-based approaches. SNP-based studies are characterized
by certain unique challenges. First, SNP-based studies usually
incorporate genotype SNPs with strong linkage disequilibrium
(LD); hence, strong correlations may not only exist between
the main terms and interactions but also among the main terms
(33). Secondly, SNP data typically include a higher number of
genotypes with lower frequencies, which generate predictors
of near-zero variation (34). Over the past few years, a series
of SNP-based Bayesian interaction analysis approaches have
been developed to explore the key roles of rare haplogroups
and GxG and GxE interactions on the occurrence of complex
diseases. Their relevant characteristics in this study are
summarized in Table I.

Moss et al. extended the Bayes model averaging (BMA)
approach and proposed a BMA 2DF approach (35). The
method used the multivariate Wald test with 2DF to test the
GxE interaction and the main effects of genes. Kerin et al.
proposed a Bayesian whole genome regression model to
jointly model the main genetic effects and GxE interactions
in a large-scale dataset (36). It built a linear environment
mixed model analysis for the assumption that the main effects
and the GxE interaction effects follow two separate mixtures
of Gaussian priors and estimated the environmental scores
(ES). The ES can be used to both estimate the proportion of
phenotypic variance attributable to GXE effects and to test for
GxE effects at genetic variants across the genome (36). In
addition, stratification by minor allele frequency and LD can
be analyzed to better explore the genetic structure of the
disease. Zhang et al. proposed a Bayesian epistasis
association mapping (BEAM) algorithm to identify the
critical main terms, low-order and high-order interactions in
genome-wide case-control studies (37). The BEAM algorithm
has two components: a Bayesian epistasis inference tool that
is implemented with Markov Chain Monte Carlo (MCMC)
and a test B statistic that can be adapted to the correlation
structure of candidate markers to assess statistical
significance. In addition, they extended the BEAM algorithm
in 2011 and developed the block-based BEAM?2 algorithm,
dividing SNPs into LD-blocks and selecting the main effects
and interactions within the blocks associated with the disease
(38). Wang et al. developed a Bayesian method for genome-
wide association studies (GWAS) that allows for a Bayesian
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Table 1. Summary of SNP-based Bayesian approaches for GxG and GXE interactions.

Author, year (Ref) Variables Application Model Algorithm Model Code
performance
Zhang et al., 2007 (37) Two-way or Age-related Logistic MCMC Power http://www.fas.
three-way macular regression harvard.edu/
interactions degeneration ~junli/BEAM/
Zhang et al., 2011 (38) GxG Diabetes LD-block Gibbs and Power NR
partition Metropolis-
model Hastings (MH)
Yi et al., 2011 (30) GxG and GXE Colorectal Logistic, EM Deviance, Akaike R package qtlbim,
Cancer Probit information criterion, https://github.com/
regression Areas under the fboehm/qtlbim
ROC curve (AUC)
Wang et al., 2015 (28) High-order Soybean GWAS MCMC Power https://github.com/
GxG guoxiliu/BHIT
Zhang et al., 2017 (41) GxE Lung cancer Logistic MCMC Type I errors, https://github.com/
regression Power cran/LBLGXE
Moss et al., 2019 (35) GxE Asthma BMA Not reported Type I errors, R package bma.gxe,
(NR) power https://github.com/
LilithMoss/bma.gxe.git
Kerin et al., 2020 (36) GxE BMI, pulse GWAS EM Type I errors, https://jmarchini.org/
pressure power lemma/

model on both continuous and discrete data. This method is
suitable for detecting higher-order interactions associated with
phenotypes (28). The above methods are mostly applicable to
genome-wide association studies in large-scale cohorts.
Several Bayesian regression models have been proposed to
detect variants and interactions. Biswas and the team
developed a series of Logistic Bayesian LASSO (LBL)
approaches, including LBL-GxE-I, LBL-GXE-D, LBL-GXxE,
LBLc-GxE, and LBLc-GXE-GxS to detect phenotype-related
interactions in case-control studies (39-43). The three
methods, LBL-GXE-I, LBL-GXE-D, and LBL-GXE, were
differentiated based on whether the assumption of G-E
independence was made. LBL-GxE-I assumed G-E
independence in the control population (39). LBL-GXE-D
allowed for G-E dependence by modeling haplotype
frequencies as a function of covariates using a multinomial
logistic regression model (41). LBL-GxE allowed for
uncertainty in the assumption of G-E independence by
allowing Markov chains to move between LBL-GxE-I and
LBL-GxE-D via the reversible jump MCMC (41). LBLc-
GxE and LBLc-GXE-GxS were developed to accommodate
complex sampling designs (43). LBLc-GxE incorporated
stratified variables as covariates with their main effects in the
model, whereas LBLc-GxE-GxS incorporated the interaction
between stratified variables and haplotypes in the model (43).

Effect heredity-based approaches. The effect heredity is
widely used in studying interaction identification. It
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incorporates the main terms and interaction dependencies into
the analysis (27). Strong heredity indicates that the interaction
can only be active if all its main effects are active, whereas
weak heredity indicates that the interaction can be active if
one of the two main effects is active (27). Models that follow
the hereditary principle are generally easier to interpret (44).
These models allow us to reliably estimate the main and
interaction effects, which increase the power for detecting
real signals (30). In contrast, models that violate the
hereditary principle are unreliable and perform poorly (31,
45). To address the problem of variable selection in
interaction studies, two priors dominate the Bayesian
literature: spike-and-slab (also referred to as stochastic search
variable selection, SSVS) and shrinkage priors (46-49). The
spike-and-slab prior is a mixture of two discrete distributions
that can be assigned to the model parameters using an
indicator variable with different distributions (spike or slab
prior distributions) to fit different effects (46). The shrinkage
prior allows the regression coefficients to be constrained by
imposing a continuous prior distribution (47). The relevant
characteristics of these studies are summarized in Table II.

Spike-and-slab prior. Chipman developed priors for
interaction identification based on the spike-and-slab prior
and two alternative priors, and followed the effect heredity
principle (27, 50, 51). This approach has been extended and
applied to case-control studies. Wakefield et al. established
a special case of the Bayesian mixture model of GXE (46).
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Table II. Summary of effect heredity-based Bayesian approaches for GxG and GXE interactions.

Author, year (Ref) Variables Application Model Prior Algorithm Model Code
performance
Chipman, 1996 (27) Two-way, NR Linear SSVS Gibbs NR NR
polynomial terms regression sampler
Wakefield et al., GxG, GxE Lung cancer Logistic Spike-and- MCMC Type I errors, WinBUGS,
2010 (46) regression slab prior type II errors, Publication
Mean squared supplementary
error (MSE) materials
Liu et al., 2015 (52) GxG, GXE Lung cancer, Logistic Spike-and- MCMC Prediction errors WinBUGS,
cutaneous regression slab prior (PE), sensitivity, code is NR
melanoma specificity
Griffin et al., Interactions Blood glucose, Linear Shrinkage Adaptive Root mean NR
2017 (47) Ozone, Boston regression prior MH squared error
housing (RMSE)
Lin, 2021 (56) Interaction, SPDS designs (83), Linear SSVS MCMC, Power, False WinBUGS,
quadratic BDS designs regression Gibbs discovery rate Publication
terms data (84) sampling (FDR) supplementary
materials
Im et al., 2023 (53) GxE Lung squamous Linear Spike-and- MCMC True positive https:/github.com/
cell cancer regression slab prior rate (TPR), shuanggema/
False positive BHAhdInt
rate (FPR)
Qin et al., 2021 (31) GxG Melanoma and Linear Spike-and- Variational True positive R package
lung cancer regression slab prior ~ Bayesian EM (TP), False JNNI, https://
positive (FP), github.com/
Root of the mengyunwu
sum ofsquared 2020/JNNI
error (RSSE),
Prediction mean
squared error
Zhao et al., 2022 (55) GxG Cognitive Logistic, Spike-and- MCMC AUC, R? NR
ability linear slab prior
regression
Qin et al., 2022 (22) GxG, Melanoma and AFT Spike-and- Variational TP, FP, https:/github.com/
pathwayx lung slab prior Bayesian RSSE, C-index mengyunwu
pathway adenocarcinoma expectation 2020/survInter
maximization
Ren et al., 2022 (54) GxE Type 2 diabetes, Linear Spike-and- Gibbs TP, FP, PE R package roben,
cutaneous regression slab prior sampler https://github.com/
melanoma jrhub/roben

NR, Not reported.

Their study included a small number of statistically
significant environmental variables. Therefore, it was
assumed that the main effect of environmental variables was
activated, and only the dependence between the main effect
of the genes and the interaction effects needed to be
considered (46). Liu et al. proposed a Bayesian hierarchical
mixture model that incorporates the effect heredity principle
to enhance the study of genetic and environmental main
effects as well as GXE and GxG interactions (52).
Researchers have conducted numerous innovative studies
to explore the main interaction effects associated with
continuous response variables. Im er al. developed a
Bayesian approach for a finite mixture regression based on
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environmental factors, imaging features, and imaging x
environment interactions, following the effect heredity
principle (53). In addition, another study expanded the
method to the least absolute deviation regression to construct
a robust Bayesian variable selection approach that can
effectively account for heavy-tailed errors and outliers in the
response variable while following the heredity of M-I effects
(54). Zhao et al. proposed a Bayesian interaction selection
model, which worked not only for continuous response but
also for qualitative response variables. Furthermore, the
model could accurately identify the primary effect features
and interactions under hereditary conditions (55). Prior
distribution can accommodate correlations between brain
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topological information and modalities to improve biological
plausibility. Qin et al. developed a structured Bayesian
approach using a linear model that considered both low- and
high-level interactions (31). They integrated the “main
effects/interactions-network™ information by constructing an
adjacency matrix.

They further developed a two-level Bayesian interaction
analysis method based on a log-normal accelerated failure
time model (AFT) (22). This method allowed the analysis of
both low-level gene-gene interactions and high-level
pathway-pathway interactions in the model. To improve the
interpretability of the results, the effect heredity principle
was followed not only between M-I but also between low-
level gene-gene interactions and high-level pathway-pathway
interactions. Thus, high-level pathway-pathway interactions
could only be selected if at least, one low-level gene-gene
interaction was selected.

The effect heredity-based approach utilizing spike-and-slab
prior had been extended in other fields. For example, a
Bayesian model that allowed variable selection and followed
the principle of effect heredity was proposed by Lin et al. This
model can be used for any split-plot and blocked screening
design (56). In addition to the main effects, two-way
interaction effects and quadratic effects were included in the
model. Particularly, Lin et al. developed strong effect heredity
models and two types of weak effect heredity models: the
strict weak and relaxed weak effect heredity models.

Shrinkage prior. Griffin et al. developed a simple method to
constrain the hierarchical relationship between M-I using
strong and weak effect heredity (47). They incorporated the
local shrinkage parameters of the two main effects into the
local shrinkage parameters of the interaction. In the case of
strong heredity, the local shrinkage parameters of the
interaction term tended to be large when the local shrinkage
parameters of the two main effects were large. In the case of
weak heredity, the local shrinkage parameter of the
interaction term tends to be large when one of the local
shrinkage parameters of the two main effects is large. This
study also incorporated these hierarchical priors into a
generalized additive model. Yi et al. developed Bayesian
models based on logistic and Probit regression, using
different shrinkage parameters of Student-t prior distributions
for the main and interaction effects, in order to follow the
relationship between the main and interaction effects, and
implemented a fast and stable expectation-maximization
(EM) algorithm for fitting models (30).

Group-based approaches. An alternative analysis strategy
commonly used to identify interactions is a group-based
approach. Group-based Bayesian approaches employ two
types of analysis strategies. The first is that once a group is
selected, all variables in that group are included in the final
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model. Gu et al. proposed a Bayesian two-step Lasso
approach to select the main terms and interactions for
censored survival outcomes (57). In the first step, the Bayesian
group Lasso was used to select the important marker groups,
and in the second step, Bayesian adaptive Lasso was used to
identify individual biomarkers. Groups were selected when
both the main terms and interactions were statistically
significant. The Bayesian group Lasso not only serves as an
initial screening step to reduce the parameter space but also
has a similar role to the strong effect heredity principle for
variable selection, as proposed by Chipman (27, 57).

The other analysis strategy is that whether the group is
activated or not is solely determined by a few variables
within the group. In other words, for an active group, not all
variables within that group are active. For example, Chen et
al. developed a Bayesian sparse group selection approach
that used two nested binary indicator variables to indicate
whether the group and variables were active or not (58).
When none of the variables within the group were active, the
group was not activated. However, when a variable within
the group was active, the group was activated. Although the
analysis strategy was not specifically developed for detecting
interactions, it can incorporate the interaction and its two
main effects within each group. Similarly, other group-based
Bayesian variable selection approaches can be used as
alternatives to the Bayesian group Lasso and Bayesian sparse
group selection approach (59). Several studies employing
systematic reviews have been conducted for group-based
Bayesian variable selection approaches (55).

ML-based approaches. Neural networks, decision tree
models, regression tree models, linear kernel functions,
nonlinear kernel functions, and FMs are commonly used ML
techniques (60, 61). Generally, models based on ML
techniques have a higher prediction accuracy. Novel methods
constructed by combining the Bayesian framework with
these methods are highly competitive in detecting low- and
high-order linear or non-linear interactions. The relevant
characteristics of these studies are summarized in Table III.
A neural network is a powerful predictive method in ML,
and has the potential to identify interactions (62). Cui et al.
developed a Bayesian neural network based on neural
networks and Hessian to estimate global interactions by
aggregating local interactions from trained Bayesian neural
networks, thereby improving the estimation accuracy of the
interaction effects (25).

Du et al. developed a Bayesian decision tree method to
detect low-order interactions (63). It solved the general
problem of detecting spurious interactions by introducing
Dirichlet process forests. The Bayesian additive regression
tree (BART) is a nonparametric ensemble ML model that can
reliably estimate regression relationships and has good
prediction accuracy when non-linear relationships and
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Table III. Summary of ML-based Bayesian approaches for GxG and GXE interactions.

Author, year (Ref) Variables Application Model Algorithm Model Code
performance
Bobb et al., 2015 (69) Two-way and Neuro- Kernel MCMC The posterior NR
three-way development, a machine SD, Posterior
interactions toxicology study regression inclusion
probabilities
Cui et al., 2019 (25) Pairwise California Neural Variational AUC, FPR, https://github.com/
interaction housing prices, network inference False negative aalto-ml4h/
Bike sharing, rate InteractionDetection
and Energy
efficiency
datasets
Agrawal et al., 2019 (70) Pairwise, Cars miles per The kernel MCMC MSE, FDR Stan, code is NR
higher-order gallon dataset interaction
interactions trick
Zeldow et al., 2019 (66) Interactions Human immuno- BART MCMC Bias, credible https://github.com/
deficiency virus/ interval coverage, zeldow/semibart
hepatitis C Empirical
coinfection standard deviation
Du et al., 2019 (63) Low-order Housing dataset Decision Gibbs FP, False NR
interactions tree sampling negative, RMSE
Madhukar et al., Interactions Microtubule- ML Voting algorithm NR
2019 (72) targeting compounds Area Under
the Receiver
Operating Curve
Spanbauer et al., 2021 (65) Interactions Diabetes, Acquired BART Gibbs and MH RMSE, 95% https://github.com/
Immune deficiency Coverage rsparapa/bnptools
syndrome probability
Chen et al., 2022 (24) Higher-order Six art-related FMs Variational Hit rate, Average NR
interactions datasets inference reciprocal

hit rank, AUC

NR, Not reported.

interactions are present (29, 64). Spanbauer et al. developed
a mixed BART model to achieve the goal of precision
medicine by extending the BART with a generalized random
effect matrix (65). Zeldow et al. developed a new Bayesian
semi-parametric model based on BART (semi-BART) to
obtain an interpretable coefficient (66).

In previous statistical genomics studies, kernel machine
regression (KMR) was mainly used to test the overall effect of
a genetic pathway or to study the role of a gene in the presence
of possible interactions (67, 68). Bobb et al. developed a
hierarchical variable selection method in the Bayesian KMR
that can efficiently handle highly correlated predictors (69).
Agrawal et al. developed a kernel interaction trick that
computes the exact posterior of the main effects and the
interactions between selected main effects with reduced
runtime by orders of magnitude over MCMC applications (70).
Furthermore, the interaction could handle not only pairwise
interactions but also higher-order multi-way interactions.

FMs are generic-supervised learning methods widely used
in ML to efficiently model feature interactions (71). Chen et
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al. proposed a Bayesian feature interaction selection method
based on FMs. This method effectively reduced the number
of interactions and extended the model to detect higher-order
interactions in higher-order decomposers (24). Significantly,
the method incorporates the principle of effect heredity into
a second-order interaction study.

Madhukar et al. developed an efficient and accurate
platform, BANDIT, based on a Bayesian ML approach to
identify drug interaction targets, accelerate drug discovery,
and guide clinical application (72). The researchers tested
BANDIT and showed that it achieved a high accuracy in
identifying shared target interactions and discovering novel
potential targets for cancer therapies.

Discussion

As can be observed, several Bayesian approaches are
available to detect GXE or/and GxG interactions using omics
data. By summarizing the existing literature, the current
study is particularly useful for researchers performing
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interaction studies. SNP data is a special kind of omics data
with a strong LD between SNPs, and usually includes a
higher number of genotypes with lower frequencies (73, 74).
Therefore, we first summarized the Bayesian interaction
approaches that specifically handle SNPs. Although
statistical approaches, such as LBL, are well developed and
demonstrate good performance, two core problems remain
that are not solved in the existing Bayesian approaches. First,
many exposures change over time (e.g., environmental
tobacco smoke and pharmaceutical drugs) (75) and the
nature of exposure could be related to the GxE interaction.
Thus, the GXE interaction may be dynamically changing,
and to the best of our knowledge, present Bayesian
approaches do not incorporate them. Second, millions of
SNPs exist in humans. When only second-order interactions
are considered and higher-order interactions are exempted, it
can pose a huge computational challenge owing to the
existence of hundreds of millions of GxG SNPs (76).

We further summarize other Bayesian approaches for
detecting interactions, including effect heredity-based and
group-based approaches. Previous studies improved the
spike-and-slab and shrinkage priors, and the strong and weak
effect heredity of the main terms and interactions were
incorporated into the effect heredity-based approaches.
However, certain challenges persist. Reasonable values of
the hyperparameters in spike-and-slab priors are crucial for
identifying and estimating variables. The “semi-automatic”
procedure for hyperparameter selection has been proposed;
however, in the case of high-dimensional and highly
correlated predictors, it needs to be discussed extensively
(19, 50, 77). When using the shrinkage prior with correlated
predictors, the multimodality of the posterior may lead to
sampling difficulties, particularly slow convergence of the
MCMC (78). Furthermore, some existing studies on effect
heredity require further studies because they have only
incorporated the dependence between the main effects and
two-way interactions and did not involve the dependence
between terms and three-way interactions. Some group-based
approaches perform similarly to strong effect heredity-based
approaches (57, 79). While the details of these approaches
are different, in many cases, there are close conceptual links
between them. However, group-based approaches may
involve a more complex structure. To summarize, the group-
based and effect heredity-based approaches have improved
the interpretability of results and have accurately detected
interactions of biological significance that affect complex
diseases. However, they may perform poorly in terms of
prediction accuracy compared with the ML-based
approaches.

Finally, we summarized the Bayesian approaches for
interaction detection based on ML. ML-based approaches
mainly emphasize improving the predictive accuracy of the
models (80); hence, the interpretability of the results is poor.
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Only the Bayesian feature interaction selection method based
on FMs incorporates the heredity of the main effects and
two-way interactions (24). In addition, the prediction
accuracy of ML methods is influenced by the tuning
parameters, which may require professional skills and is time
consuming (81). Moreover, the application of methods such
as neural networks in the detection of complex disease
interactions is limited because they are generally processed
as black-boxes (82). In the future, new Bayesian ML-based
approaches in which interactions are learned using white-box
ML models could be considered.

Conclusion

In conclusion, novel biostatistical methods are expected to
eliminate the above limitations for future Bayesian approaches
to GXG and GxE interactions. Methods based on a Bayesian
framework may provide more accurate results, drive ongoing
advances in interaction detection, and explain missed
heritability during the development of complex diseases. More
importantly, they can provide a novel approach for theoretical
studies in areas such as precision medicine. Unfortunately,
Bayesian approaches are relatively rare to detect the
interactions of censored survival outcomes. This is because the
complex survival time distribution and hazard function make
it difficult to infer the posterior distribution via the conjugate
distribution. Unlike the classical estimation methods, Bayesian
approaches based on the Cox proportional hazards model are
unable to eliminate the baseline hazard, and the posterior
sampling and convergence are more challenging. Therefore,
future exploration is required.
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