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Abstract

Introduction: Growth of machine learning (ML) in healthcare has increased potential for 

observational data to guide clinical practice systematically. This can create self-fulfilling 

prophecies (SFPs), which arise when prediction of an outcome increases the chance that the 

outcome occurs.

Methods: We performed a scoping review, searching PubMed and ArXiv using terms related 

to machine learning, algorithmic fairness and bias. We reviewed results and selected manuscripts 

for inclusion based on expert opinion of well-designed or key studies and review articles. We 

summarized these articles to explore how use of ML can create, perpetuate or compound SFPs, 

and offer recommendations to mitigate these risks.

Results: We identify four key mechanisms through which SFPs may be reproduced or 

compounded by ML. First, imperfect human beliefs and behavior may be encoded as SFPs 

when treatment decisions are not accounted for. Since patient outcomes are influenced by a 

myriad of clinical actions, many of which are not collected in data, this is common. Second, 

human-machine interaction may compound SFPs through a cycle of mutual reinforcement. Third, 

ML may introduce new SFPs stemming from incorrect predictions. Finally, historically correct 

clinical choices may become SFPs in the face of medical progress.

Conclusion: There is a need for broad recognition of SFPs as ML is increasingly applied in 

resuscitation science and across medicine. Acknowledging this challenge is crucial to inform 

research and practice that can transform ML from a tool that risks obfuscating and compounding 

SFPs into one that sheds light on and mitigates SFPs.
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Introduction

Humanity has been preoccupied with causes and consequences of self-fulfilling prophecies 

(SFPs) for millennia.1–3 In medicine, fear of SFPs shapes our approach to prognostication 

and resulting treatment decisions, particularly in settings where life-sustaining therapies may 

be withdrawn or withheld based on perceived poor prognosis.4 SFPs affect the foundation 

on which biomedical knowledge is built – learning through observation of clinical outcomes 

– so can be perpetuated under the veil of evidence-based practice. This risk is exacerbated 

by growth in machine learning (ML), which has rapidly increased available tools that allow 

learning from observational data.

A common goal is to estimate the probability of a future event or outcome (Y) given a 

set of clinical information (X). In reality, the observed outcome Y does not depend on X 

alone. Observed outcomes are also influenced by myriad treatment decisions that in turn 

are affected by providers’ outcome predictions, which may also affect X. In settings where 

shared decision-making occurs, Y may also be influenced by patient or surrogate perception 

of the anticipated outcome. The type of data used for training, flaws in modeling, human-

machine interaction, and changes in medical knowledge may all lead to SFPs. While growth 

in ML has been accompanied by rigorous consideration of many sources of biases,5–7 the 

problem of SFPs has received relatively little attention.

We define a SFP as a self-perpetuating or self-amplifying source of bias through which 

prediction of an outcome increases the chance the outcome will occur.4 It should be noted 

that the perils of SFPs in medicine are not limited to quantitative analysis. Cognitive 

heuristics (i.e., clinical gestalt), implicit biases, and other factors that alter treatment 

decisions also create SFPs. Guarding against these perils requires careful identification 

of the putative mechanism(s) at play, making it imperative to understand how this 

long-standing concern in healthcare interplays with new technologies. We dissect how 

the deployment of ML systems may create, perpetuate or compound SFPs, and offer 

recommendations to mitigate this risk.

Methods

We conducted a scoping review that aimed to identify distinct themes relevant to SFPs and 

ML in medicine and resuscitation science. We searched PubMed and ArXiv for English 

language articles published through January 2021. We used the search terms: (“machine 

learning” OR “artificial intelligence”) AND (“algorithmic fairness” OR “bias” OR “self-

fulfilling prophecies”). For arXiv, we constrained to include (“healthcare” OR “medicine”). 

The authors screened titles and abstracts of the results then reviewed the full text of 

potentially relevant articles. We selected articles for inclusion based on expert opinion. We 

supplemented these articles with several well-known examples of SFPs from the literature. 

We summarized key themes in a narrative review. We performed a series of illustrative 

simulations, the methods for which are described below.
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Search Results

Our search identified 1,327 articles on PubMed and 113 articles on arXiv. We selected 29 

articles for inclusion to which we added 11 articles discussing well-known examples of 

SFPs. We synthesized our results to identify four key mechanisms through which SFPs may 

be reproduced or compounded by ML (Figure 1). First, imperfect prior clinical beliefs and 

behavior may be encoded as SFPs when resulting treatment decisions are not accounted 

for. Since outcomes are influenced by innumerable clinical actions, many of which are 

not measured, this is common. Second, human-machine interaction may compound SFPs 

through a cycle of mutual reinforcement. Third, ML may introduce new SFPs stemming 

from incorrect algorithmic predictions. Finally, historically correct clinical choices and 

resulting outcomes may become SFPs in the face of medical progress.

Human self-fulfilling prophecies encoded in algorithmic predictions

Awareness that clinicians’ beliefs influence outcomes has shaped medical research in 

fundamental ways. A clear example is recognition of the importance of double blinding in 

randomized trials, such that providers’ knowledge of a subject’s treatment allocation cannot 

influence study results.8 Well-blinded, randomized trials are a gold-standard for evidence 

generation but are often infeasible. By contrast, observational data are widely available in 

the digital age and predictive models trained on these data may be comparatively easier 

to develop.9,10 Studies of, and technologies trained using, observational data lack rigorous 

control of contextual factors and confounders.11,12

SFP may result when ML is used to inform clinical decisions if clinicians’ prior beliefs 

and behaviors are encoded into model predictions. Consider a model to predict the outcome 

of comatose patients early after cardiac arrest. Transferring these patients to specialty care 

may improve outcomes.13,14 Providers may be less likely to transfer patients they sincerely 

believe have little chance of favorable recovery. Providers are not omniscient and thus have 

imperfect and potentially systematically biased estimates of recovery potential. Average 

outcomes of non-transferred patients will be worsened based on this treatment decision. 

Models (and providers) trained to predict outcomes based on data available prior to transfer 

may learn erroneous relationships between clinical patterns that predict the decision not to 

transfer and the likelihood of poor outcomes.1 Subtle factors also influence outcomes, such 

as the intensity of nursing care, where optimism, clinical concern, and other intangibles may 

motivate more (or less) attentive care, introducing biases that are pervasive and difficult 

to detect. Using models trained on datasets contaminated by these factors to inform future 

policies can perpetuate SFP, potentially preventing patients for whom outcomes historically 

were predicted to be poor from receiving care that could improve chances of recovery. 

While in the case of transfer, it may be relatively easy to account for this treatment choice, 

outcomes are affected by many clinical decisions that are never recorded.

The risks of ML learning spurious correlations arising from treatment decisions have been 

considered, but the ways this can perpetuate SFPs is under-studied. Existing literature has 

1Technically, the problem can be formalized as there being unobserved mediators, Z, so that the probability of Y depends on both X 
and Z, but the model is unable to control for the treatment effects, Z.
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often focused on examples in which patient factors that drive best medical practices result 

in SFPs that yield better-than-expected patient outcomes. Less attention has been devoted 

to cases in which treatment choices negatively impact outcomes. Crucially, solutions that 

address the former do not necessarily address the latter. Consider a well-known example 

of an ML system designed to predict risk of death from pneumonia.15 Researchers found 

an apparent protective effect of asthma resulting in lower predicted probability of death 

among asthmatics in the training data, an observation that defies clinical intuition. This is 

explained by particularly attentive care asthmatic patients received, which improved their 

outcomes. In short, asthma was a marker of better care, not a biological factor resulting in 

lower risk-adjusted mortality.

As experts have considered this classic example, they have proposed solutions. We highlight 

several commonly applied to address spurious correlations but do not mitigate the risk 

of SFPs that arise from treatment decisions. One potential solution is to use interpretable 

models that are refined by experts to incorporate prior knowledge, e.g. asthma being a 

predictor of high risk.15 Others have argued that outcome estimates biased by treatment 

effects are not necessarily problematic, as long as experts use them to complement their 

judgment and practices.16 These solutions fail when model predictions are mediated by 

poor medical choices (rather than best practice) because models learn to replicate mistakes, 

and experts are not necessarily well-positioned to complement or correct the algorithm. 

Consider the use of risk assessment systems to determine whether a patient’s chance 

of survival is high enough to justify transfer to specialty care after severe acute brain 

injury, when perceived poor neurological prognosis can lead to withdrawal of life-sustaining 

therapies.17,18 If suboptimal medical practices or medical nihilism result in low chances 

of positive outcomes for a subset of patients,19,20 this subset could be estimated to have a 

chance of recovery below a threshold that warrants expensive or invasive treatments, thus 

perpetuating a SFP that prevents these patients from receiving care that could improve their 

recovery odds. In such cases, providing experts with the opportunity to complement the 

algorithm with their knowledge would not suffice, because errors in their own assessments 

would not allow them to identify these as mistaken predictions.

Human-machine interaction and compounding self-fulfilling prophecies

There are many reasons why ML algorithms might be developed and used as decision 

support tools rather than autonomous agents, retaining clinicians as the ultimate decision 

makers.21 How clinicians integrate algorithmic predictions is complex.22–26 Treatment 

recommendations interact with cognitive heuristics, biases such as optimism or nihilism, 

and myriad other factors.27 The results are hard to anticipate. A human-in-the-loop offers 

some advantages, but human-ML collaboration may not just perpetuate but also amplify 
SFPs over time.

Consider a model predicting return of spontaneous circulation (ROSC) after cardiac arrest 

based on duration of cardiopulmonary resuscitation (CPR). This one-dimensional example 

allows us to illustrate what may happen in more complex models, while retaining the 

intuition afforded from a toy example. Not all patients who suffer sudden cardiac arrest 

achieve ROSC. Over time, the probability of ROSC falls despite ongoing CPR and 
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eventually precludes ROSC. Patients without ROSC do not undergo perpetual CPR–instead, 

providers eventually choose termination of resuscitation (TOR). It is likely providers choose 

TOR when they sincerely believe continuing CPR is futile (i.e., the probability of observing 

future ROSC if CPR were continued is believed to be extremely low). For an individual, 

the probability of ROSC drops to zero after TOR. In other words, TOR is deterministic of 

poor outcome. Past observational research suggests <5% of patients who remain pulseless 

after 20 minutes of CPR will achieve ROSC with continued resuscitation, few of whom 

enjoy favorable long-term outcomes.28 Thus, evidence-based treatment guidelines might 

recommend TOR after 20 minutes.29

Now, assume that the authors of these guidelines have access to prospective data and 

annually update the recommended maximum duration of CPR based on new evidence, with 

the reasonable goal of preventing futile resuscitative efforts while accounting for possible 

improvements and changes in emergency medical service (EMS) practices. In simulation, 

we consider how SFPs may be perpetuated or amplified if observational data are used 

iteratively to estimate the CPR duration after which probability of recovery with continued 

CPR drops below 5%.2 We study two scenarios (Supplemental Appendix 1). First, imagine 

EMS providers are perfectly adherent with guideline-recommended TOR, with only trivial 

random variability in actual CPR duration. Second, assume providers may approach CPR 

with unconscious tendencies that result in shorter or less aggressive resuscitative attempts in 

the two minutes preceding guideline-recommended TOR. These tendencies could stem from 

therapeutic nihilism, frustration for what appears to be a failing resuscitative effort, or other 

human factors.

Under both scenarios, thousands of excess deaths would occur annually, a result that 

is drastically amplified if guidelines induce or interact with human decision makers’ 

unconscious attitudes (Figure 2). Excess deaths assuming perfect adherence to guidelines 

stem from the fact that those patients who would achieve ROSC after 20 minutes no longer 

do so. When the algorithm interacts with human biases, updated guidelines progressively 

shorten recommended CPR duration, as illustrated in Figure 2.

Figure 2 illustrates the risks of misestimation associated with learning from observational 

data in dynamic settings in which ML recommendations impact treatment choices. Broadly 

speaking, when models are affected by past decisions, this may not only perpetuate 

SFPs, but may also compound and aggravate SFPs by obscuring the link between past 

treatment choices and the models’ predictions. Because ML may be perceived as an 

advanced approach, its use may provide a veneer of rigor despite persistence of the inherent 

limitations of observational studies.

Mistaken predictions and new self-fulfilling prophecies

Predictive algorithms may create new SFPs when incorrect predictions alter clinical 

decisions and outcomes. Algorithmic errors may stem from analytical issues such as 

poor choice of models, overfitting, or poor data quality, but also from flawed problem 

2In simple notation, we consider outcome (ROSC) to be Y, the treatment decision for TOR to be D, and CPR duration to be X. Thus, 
the model is trained to make a treatment recommendation when P(Y=1|X, D=1) < 0.05.
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formulation, such as choosing to optimize for a proxy that does match the outcome of 

interest. While clinicians are often inconsistent in their mistakes, prediction errors in 

ML are systematic. This consistency means that mistaken algorithmic predictions easily 

give rise to SFPs. Models often seek to learn continually from new information. While 

regular retraining is generally recommended as a best practice to account for drifts in 

data distribution, it allows errors both to result from and be propagated by spurious 

algorithmic recommendations. Consider an algorithm to estimate recovery potential in 

critical illness that initially underestimates the probability of recovery for patients with a 

particular characteristic. If these miscalibrated estimates alter treatment, such as reducing 

the likelihood of prescribing high-cost, invasive therapies because of the anticipation of poor 

prognosis, a new SFP may be introduced and perpetuated as the algorithm learns over time. 

The model performance estimated on observational data will not identify these as mistaken 

predictions and may even misleadingly indicate an improvement of predictive power over 

time.

The risk of introducing new SFPs through use of predictive models should be considered 

in conjunction with the literature on algorithmic bias,6,7 which highlights that prediction 

errors often disproportionately affect historically underserved populations. Consider a study 

showing an algorithm used to identify patients to whom additional healthcare resources 

should be directed systematically underestimated the needs of Black patients.30 The 

observed bias in this case resulted from use of claims-based data as a proxy for need. 

Historically, Black patients have had less access to healthcare than their white counterparts, 

and thus generate fewer insurance claims. If this algorithm were used to inform which 

patients require additional care, the result would be a SFP in which patients who are 

predicted to have fewer needs receive less care. This in turn would be reflected in low health 

care spending and misinterpreted as a confirmation of low health needs. As in the CPR 

example above, if algorithmic predictions are used to inform future practice and retrained 

prospectively, the magnitude of the SFP grows over time.

Stagnant predictions in the face of medical progress

Predictive algorithms exploit patterns in observational data, so assume past associations 

remain relevant in the future. In medicine, the stability of observed associations over 

time is limited by the fact that treatments and outcomes often improve. Breakthroughs 

in available therapeutics or treatment strategies can rapidly change the association of 

presenting illness severity and outcome. For example, outcomes from acute ischemic stroke 

were revolutionized first by widespread adoption of systemic thrombolysis and thereafter 

by endovascular interventions. Ongoing research has open new treatments and redefined 

the therapeutic window from symptom onset to intervention.31−33 A predictive algorithm 

trained on historical data would systematically and falsely predict poor outcomes for patients 

with delayed presentation of a large vessel occlusion and might perpetuate inappropriate 

therapeutic nihilism.

In other cases, secular trends are more subtle. Despite the absence of efficacious new 

evidence-based interventions, mortality after aneurysmal subarachnoid hemorrhage, sepsis 

(and many other conditions) is decreasing steadily over time.34 Unless historical trends are 
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projected into the future (an approach fraught with imprecision), well-performing models 

become inaccurate in the setting of progress. Insofar as algorithmic predictions guide care, 

this can introduce SFPs that may stifle medical progress.

Regularly retraining a model is often proposed as a solution to mitigate this challenge.35 

This, however, will only prevent SFPs when experts have the discretion to deviate from 

algorithmic recommendations, generating new data from which the algorithm can relearn 

associations reflected in novel treatments. At this point, tensions between mitigating this 

and other types of SFPs arise, since as noted above some SFPs may be amplified when 

retraining.

Paths forward

Providing recommendations for best practices in the face of SFPs, Wilkinson argues 

it is “imperative that doctors are honest with themselves and with patients and their 

families about uncertainty and the limits of knowledge.”4 In their current form, many 

ML applications in healthcare aim to leverage all available correlations with the goal of 

providing confident predictions, thereby obfuscating uncertainty. This is not an inherent 

property of statistical prediction, as uncertainty estimation has long been a central focus of 

statistics research. Appreciation of the value of uncertainty could transform ML from a tool 

that obscures it into one that helps clearly communicate it.36,37 This will require research 

aimed at accounting for the effect predictions may have on future outcomes,38 properly 

estimating prediction uncertainty associated with treatment effects,39,40 and effective ways 

of communicating uncertainty to providers.36,41

A 2019 Scientific Statement from the American Heart Association outlines several 

considerations pertinent to SFPs, focusing on post-arrest neurological prognostication and 

subsequent withdrawal of life-sustaining therapies, which are broadly relevant beyond 

this specific task.42 Training models on data accrued in settings with withdrawal of 

life-sustaining therapies is prohibited or strictly protocolized and potential confounders 

are minimized can help prevent providers’ biases, mistaken beliefs and clinical choices 

from becoming encoded in algorithmic predictions. This approach has been used to 

quantify predictive value of several prognostic tests after cardiac arrest,43 but has been 

less consistently used in the ML literature. An unanswered question is the extent to 

which other aspects of care in these cohorts affect transfer of trained models to more 

general settings. A second recommendation is that providers be blinded to predictions or 

test results during prospective evaluation of novel tools. This minimizes the potential for 

human-machine interactions to compound SFPs but is impractical outside of research insofar 

as many predictive algorithms are developed with the specific goal of informing clinical 

decision-making.

Human-interpretable ML also plays an important role.44,45 Such approaches can provide 

information that allows providers to identify when historical treatment choices may 

inappropriately influence a prediction, or when novel treatments may not be accounted 

for. Designing tools that allow experts to actively interrogate ML recommendations is key 

to enabling integration of algorithmic recommendations into clinically justified decisions.26 

Here, a crucial, open question is how to design explanations and contextual settings that 
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mitigate rather than exacerbate overreliance and SFPs. While in some settings explanations 

have been found to increase unwarranted reliance on ML predictions,46−48 explanations that 

encourage productive second guessing could reduce the risks of SFPs.

Other forms of transparency, which require less technical solutions, are also important. 

“Black box” properties of ML are not limited to the way in which an algorithm makes 

inferences, but also include users’ understandings of what information is and is not available 

to the algorithm, what type of data were used to train the algorithm, and what target 

label is being predicted. In current practice, this information is often unavailable, but 

clarity over these questions could help providers complement algorithmic predictions with 

domain knowledge. An line of research on human-computer interaction and organizational 

sciences seeks to understand how humans integrate ML recommendations into decisions, 

what type of cognitive cues reduce algorithm aversion and automation bias, and how 

different types of training impact this.24,25,49 Grounded on this work, there is a need for 

guidelines, frameworks and eventual regulations to clarify (1) what information must be 

clearly communicated by system designers, (2) how should this information be conveyed, 

and (3) what type of instruction and training I sneeded before providers start using a system.

Conclusion

There is an urgent need to recognize the risk of self-fulfilling prophecies as ML is integrated 

into clinical decision making. We have characterized key pathways through which SFPs may 

be replicated, compounded, and introduced by predictive models used for decision support.

Acknowledging the challenge posed by SFPs can open the gate to research and practice that 

transforms ML from a tool that risks obfuscating and compounding SFPs into one that sheds 

light on and mitigates SFPs.
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Figure 1: 
Conceptual diagram of how self-fulfilling prophecies can be created, perpetuated, and 

amplified through machine learning and algorithmic prediction.
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Figure 2: 
Results of data simulations for treatment guidelines that recommend TOR when it is 

estimated that probability of ROSC is below 5%. We assume guidelines are updated 

yearly based on observational data. Full simulation setup and results are available in 
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Supplemental Appendix 1. Panel A: Excess deaths, compared to deaths in the absence 

of a policy recommending TOR. Panel B: Observed probability of ROSC under guidelines 

recommending TOR and presence of tendencies (e.g., nihilism) impacted by the guidelines.
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