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Abstract

Advances in computational behavior analysis via artificial intelligence (AI) promise to improve 

mental healthcare services by providing clinicians with tools to assist diagnosis or measurement 

of treatment outcomes. This potential has spurred an increasing number of studies in which 

automated pipelines predict diagnoses of mental health conditions. However, a fundamental 

question remains unanswered: How do the predictions of the AI algorithms correspond and 

compare with the predictions of humans? This is a critical question if AI technology is to be used 

as an assistive tool, because the utility of an AI algorithm would be negligible if it provides little 

information beyond what clinicians can readily infer. In this paper, we compare the performance 

of 19 human raters (8 autism experts and 11 non-experts) and that of an AI algorithm in terms of 

predicting autism diagnosis from short (3-minute) videos of N = 42 participants in a naturalistic 

conversation. Results show that the AI algorithm achieves an average accuracy of 80.5%, which 

is comparable to that of clinicians with expertise in autism (83.1%) and clinical research staff 

without specialized expertise (78.3%). Critically, diagnoses that were inaccurately predicted by 

most humans (experts and non-experts, alike) were typically correctly predicted by AI. Our 

results highlight the potential of AI as an assistive tool that can augment clinician diagnostic 

decision-making.
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1. Introduction

Modern medical disciplines typically rely on a variety of technological tools to assist in 

diagnosis and monitor treatment progress. From brain imaging technologies to blood and 

genetic tests, instruments that assist medical decision-makers are a cornerstone of modern 

medicine. In the domain of psychiatry and psychology, however, medical decision-making 

relies nearly exclusively on observational or paper-and-pencil instruments. Thus, recent 
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advances in computer vision and artificial intelligence (AI) are poised to rapidly advance 

research and clinical decision-making in psychiatry by introducing reliable and granular 

tools within a new paradigm: computational behavior analysis [1, 2, 3, 4, 5]. Such tools can 

capture and quantify human behavior with extraordinary precision, even from brief video 

recordings.

Autism spectrum disorder (ASD), like nearly all psychiatric conditions, is defined by 

observable behavioral cues—what a person does well or not well, too little or too much. 

Its core traits include observable differences in social communication, social reciprocity, 

nonverbal communication, and relationships, as well as restricted patterns of interests and 

activities [6]. The current reliance on assessment and interpretation of overt behavior 

makes autism an excellent candidate for computational behavior analysis approaches. 

Coupling computationally-derived biomarkers with expert clinician judgment may provide 

an extremely potent approach to autism care, by enhancing the currently limited reliability 

of clinical assessments (e.g., DSM-5 field trials Kappa = 0.69) [7], shortening lengthy 

diagnostic evaluations, and improving sensitivity for capturing change over the course of 

treatment and development.

This potential has spurred a plethora of studies that aim to diagnose autism via AI pipelines 

based on various behavioral modalities and sensors [8]. Notably, to our knowledge, no study 

has directly compared AI algorithms and human raters with respect to overall predictive 

capacity or specific decisions on individual cases. A comparison of this kind is important 

when it comes to using AI as an assistive technology for clinical decision-making, as it 

can determine whether or not AI provides significant incremental utility beyond existing 

tools. AI algorithms can maximize and cooperate synergistically with human assessment by 

complementing and augmenting human decisions. On the other hand, clinicians would have 

little interest in or benefit from incorporating AI algorithms if their decisions –and errors– 

highly overlap with their own. We aim to address this issue by examining whether or not AI 

detects diagnostic indicators that may go unnoticed by human observation.

In this paper, our main contribution is comparing the performance of AI and humans with 

knowledge of autism in accurately classifying autism from a 3-minute get-to-know-you 

conversation with a non-clinician conversation partner. Specifically, we implemented a 

computer vision pipeline for predicting autism using features of facial behavior during 

conversations with a sample of N = 42 adults − 15 individuals with autism spectrum 

disorder (ASD) and 27 neurotypical (NT) individuals. We then recruited a total of 19 

human raters (8 expert clinicians, 11 non-experts with experience with autism) to predict the 

diagnostic status of the same participants. The expert raters were doctoral level clinicians 

with extensive training on autism, while most of the non-experts were BA level researchers 

still learning about autism. Raters watched the same videos of participants’ faces during 

conversations that were fed to the computer vision pipeline, without sound to allow for a 

fairer comparison with the AI algorithm.

Results suggest that the AI pipeline based on participant facial behavior predicts diagnostic 

status with 80.5% accuracy. This accuracy was comparable to the 80.3% overall accuracy 

achieved by human raters (83.1% for experts and 78.3% for non-experts), demonstrating the 
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potential of AI to detect facial behavioral patterns that differentiate adults with autism from 

neurotypical peers in the context of a casual, get-to-know-you conversation. Moreover, we 

show that the prediction errors of AI and humans had little overlap, indicating that the AI 

can provide complementary information that could prompt and assist clinicians with their 

evaluations and decision-making. The fact that all the results of this paper are extracted from 

a brief naturalistic conversation is a significant contribution, as a 3-minute conversation with 

a non-expert is a highly scalable paradigm, and thus a promising option as a screening or 

(preliminary) diagnostic procedure. The results of this paper motivate further research efforts 

to understand the decision mechanisms of AI algorithms, particularly for uncovering subtle 

behavioral patterns in psychiatric conditions.

2. Participants and Procedure

Forty-four adults participated in the present study (ASD: n=17, NT: n=27, all native 

and fluent English speakers). Participant groups did not differ significantly on mean 

chronological age, full-scale IQ estimates (WASI-II) [9], verbal IQ estimates, or sex 

ratio (Table 1). Participant diagnostic status (ASD or NT) was confirmed as part of this 

study using the Clinical Best Estimate process [10], informed by the Autism Diagnostic 

Observation Schedule - 2nd Edition, Module 4 (ADOS-2) [11] and adhering to DSM-V 

criteria for ASD [12]. All aspects of the study were approved by the Institutional Review 

Board The Children’s Hospital of Philadelphia (CHOP). Two participants were excluded 

from analysis due to their lack of consent for this particular set of experiments or their data 

being unavailable for processing, yielding a final sample of 42 participants (ASD: N=15, 

NT: N=27).

Participants underwent a battery of tasks that assessed social communication competence, 

including a slightly modified version of the Contextual Assessment of Social Skills (CASS) 

[13]. The CASS is a semi-structured assessment of conversational ability designed to 

mimic real-life first-time encounters. Participants engaged in two 3-minute face-to-face 

conversations with two different confederates (research staff, blind to participant diagnostic 

status and unaware of the dependent variables of interest). In the first conversation 

(interested condition), the confederate demonstrates social interest by engaging both 

verbally and non-verbally in the conversation. In the second conversation (bored condition), 

the confederate indicates boredom and disengagement both verbally (e.g., one-word 

answers, limited follow-up questions) and physically (e.g., neutral affect, limited eye-contact 

and gestures). All analyses throughout this paper are based on the interested condition only.

During the CASS, participants and confederates were seated facing one another. Audio and 

video of the CASS were recorded using an in-house device comprising two 1080p HD (30 

fps) cameras (Fig. 1), which was placed between the participant and confederate on a floor 

stand. The two cameras of the device point in opposite directions to allow simultaneous 

recording of the participant and the confederate. However, the AI analyses in this paper are 

conducted on the video data of the participant only. In other words, even if the context of the 

conversation is dyadic, our AI-based analysis is not dyadic since it discards the information 

from the confederate and focuses only on the participant. We refer to this type of analysis as 

monadic analysis.
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CASS confederates included 10 undergraduate students or BA-level research assistants (3 

males, 7 females, all native English speakers). Confederates were semi-randomly selected, 

based on availability and clinical judgment. In order to provide opportunities for participants 

to initiate and develop the conversation, confederates were trained to speak for no more 

than 50% of the time and to wait 10s to initiate the conversation. If conversational 

pauses occurred, confederates were trained to wait 5s before re-initiating the conversation. 

Otherwise, confederates were told to simply naturally engage in the conversation. Prior 

to each conversation, study staff provided the following prompt to the participants and 

confederates before leaving the room: “Thank you both so much for coming in today. Right 

now, you will have 3 minutes to talk and get to know each other, and then I will come back 

into the room.”

3. Prediction of Autism Diagnosis

3.1. Human Raters

We recruited a total of 19 human raters to view the videos from the sample of N = 42 

participants. Eight of the raters were autism clinical experts, doctoral level clinicians with 

extensive training at the Center for Autism Research (CAR) of CHOP. The remaining 11 

(non-expert) raters had some familiarity with autism but not specialized training and worked 

at CAR. Most of these non-expert raters were BA-level psychology students learning about 

autism.

The videos that were shown to the human raters were prepared as follows: First, we cropped 

the videos of the participant and their corresponding confederate conversation partner so that 

only the heads and necks were visible. Next, we combined the synchronized videos of the 

heads/faces of the participant and confederate into a single video file per participant such 

that participant and confederate were positioned side by side (Fig. 1, right). The audio was 

removed in order to allow human raters to focus on the facial behavior, as was the case for 

the AI algorithm. The videos for all N = 42 participants were presented to human raters in a 

random order on high resolution monitors.

Raters were instructed to watch each video just once and to make a decision as to whether 

the study participant had autism or not. They were told that all participants were either 

confirmed to have autism through clinical evaluation by a licensed expert, or were recruited 

specifically as neurotypical controls (i.e., clear cases of individuals without autism). Raters 

were not allowed to go back and review earlier videos. They were instructed to watch all 

videos within 1 to 3 viewing sessions, with nearly all being completed in 1 or 2 sessions.

3.2. Computer vision

3.2.1. Quantification of facial behavior—Our goal is to quantify all observable facial 

behavior of a participant, which includes facial expressions and head movements. Also, we 

did not want to limit analysis to emotion-related expressions (e.g., the six basic emotions), 

as other kinds of facial movements (e.g., communicative expressions, speech-related mouth 

movements) are also important for diagnosing autism [14]. Therefore, we quantify behavior 

using a 3D morphable model (3DMM) [15] as 3DMMs contain expression bases (e.g., [16]) 
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that can quantify any facial movement. Moreover, 3DMMs can simultaneously model facial 

identity, pose, and expression. This increases the precision of parsing facial expressions 

and head movements, since the effect of identity (i.e., identity bias [17]) is reduced when 

modeled and thus explained away. Specifically, we use the 3DI method [18], as it can 

learn identity from multiple frames and thus model and remove its effect more accurately. 

Moreover, 3DI can take the parameters of the camera as input, which is critical for 

increasing the accuracy with which facial expressions and pose are decoupled [19].

A 3DMM method produces a dense mesh of P three-dimensional points X ∈ ℝ3×P to 

represent the face in a given video frame I. (P is 23, 660 for the 3DI method). This 3D mesh 

is a function of the facial pose (i.e., a rotation matrix R ∈ ℝ3×3 and a translation vector τ ∈ 
ℝ3×1), the facial identity of the person X and the facial expression variation in the image ΔX 

∈ ℝ3×P :

X = R X + ΔX + T, (1)

where the columns of the matrix T ∈ ℝ3×P are identically τ. The matrices of interest in 

the scope of our study are the matrix of head rotation R and the expression variation, 

ΔX. 3DMMs represent expression variation as a linear sum, ΔX = WƐ, where Ɛ ∈ ℝK×1 

is the vector representing the expression. The expression basis W used by 3DI method 

is constructed via PCA [16], which limits the interpretability as PCA components are not 

localized–we cannot associate any PCA component with a specific facial region. To make 

the results of our study more interpretable, we modified the expression model in a way that 

the resultant expression model, W′, contains 60 localized basis components as shown in Fig. 

2. Using this model, we represent the expression variation in the image with the vector Ɛ′ 

that minimizes the norm ||ΔX − W′Ɛ′||2. We ignore the 7 components that correspond to 

the nose and cheek regions (Fig. 2), and we finally represent the expression variation in a 

video of T frames with a matrix E of size T × 53, obtained by horizontally concatenating 

the expression vectors from all the frames. Finally, using the rotation matrix R estimated at 

each frame, we compute the yaw, pitch and roll angles per frame, and represent head rotation 

throughout the video with a matrix Φ of size 3 × T. The facial movement variation and head 

rotation of a person throughout the video are represented together with a matrix Y of size 56 

× T, obtained as

Y= E
Φ . (2)

Alternatively, one can consider using the Action Units (AUs) of the Facial Action Coding 

System instead of the 3DMM-based expression features that we used above. However, 

our analysis is based on correlation of time series (Section 3.2.2), which requires a 

representation where AU intensity needs to be provided—binary AU labels would be very 

limiting. Since automated AU detection systems (e.g., OpenFace [20]) provide AU intensity 

only for a relatively small number of AUs, we preferred to use the 3DMM-based features 

instead of the AUs. One could also consider to add the AU features to the features Y above, 

but we refrained from doing so, because the number of our correlation features increases 

Sariyanidi et al. Page 5

CEUR Workshop Proc. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exponentially with the number of rows in Y (Section 3.2.2). This also explains why we 

refrained from adding the features from nose and cheek regions, as the potential extra 

information that would be provided by these regions may not justify the exponential increase 

in the dimensionality of the feature space. That said, the utility of all such extra information 

should be explored in future AI pipelines that can be trained with data from larger samples.

3.2.2. Correlation features—An important aspect of social communication is how 

different modalities of communicative behavior are integrated and coordinated. For example, 

the ADOS, the gold standard clinical assessment for autism diagnosis, includes criteria 

that evaluate how an individual combines speech with gestures and eye contact with facial 

expression [14]. Similarly, the coordination of behavior within a communicative modality 

(e.g., movements across different parts of the face) is important; for example, atypical 

aspects of facial expressions can be characteristic of autism [21, 22]. Thus, to capture 

coordination across different types of facial and head movements within a person, we apply 

windowed cross-correlation [23] on the matrix Y. That is, considering the ith and jth row of 

Y as two time series, we compute the cross correlation between the two, over time windows 

of length Tw and a step size of Tw/2 (i.e., consecutive time windows have an overlap 

of 50%). We then compute the average μi,j and standard deviation σi,j of the maximal 

cross-correlation values (w.r.t. lag) per window. To distinguish between the cases where, 

say, a mouth movement was followed with a pose variation from the opposite direction, we 

allow only forward lag on the second time series in the pair, thus (μi,j, σj,i) is in general 

different from (μj,I, σj,i). In sum, since Y has 56 rows, we have 56 × 56 ordered pairs, and 

with 2 features (i.e., mean and standard deviation) per pair, the total number of features that 

represent the behavior of a participant is M = 6272.

3.2.3. Classification—We predict the diagnostic group of participants (ASD vs. NT) 

using a linear SVM classifier by simply using the default C value for SVM (i.e., C = 1). We 

report results based on nested cross-validation, where the only hyper-parameter that is being 

optimized is the time window Tw, and we optimize over values of Tw = 1, 2, 4, 6 seconds. 

The time window length that was selected in most cross validation folds was Tw = 2s.

While more advanced AI models based on deep learning could be used, the sample size 

is insufficient for reliably training deep learning models from scratch. Moreover, to our 

knowledge, there is no publicly available pre-trained deep learning model that is directly 

applicable for our problem, thus taking an existing model and re-training only a part of it 

(e.g., the classification layer) with our data is also not an approach within reach.

4. Results and Discussion

Table 2 shows the prediction accuracy of the human raters and the AI method. The results 

for the AI method are obtained via 10-fold cross validation (repeated 100 times with 

shuffling participant order). The average accuracy of expert clinicians is slightly higher 

than that of non-experts. Of note, the average accuracy of all human raters (expert and 

non-expert) is similar to that of the AI approach. The average positive predictive value, 

negative predictive value, sensitivity and specificity of the AI model are respectively 0.86, 

0.79, 0.55, 0.95.
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We next investigate whether the errors of the human raters coincide with the errors of the 

AI algorithm. Table 3 shows the participants whose diagnoses were inaccurately predicted 

by most human raters (i.e., average prediction accuracy < 50%), along with the correct 

diagnosis and diagnosis predicted by AI. Results show that four out of these five human 

mispredictions were correctly predicted by the AI, including the first participant in the 

list, whose diagnosis was predicted correctly by only 21% of the human raters. In other 

words, participants that were difficult for most human raters to accurately classify were not 

particularly difficult for the AI. This suggests that the decision mechanism of AI is different 

than that of the humans, and the following results further support this point of view.

Fig. 3 plots the average prediction accuracy of human raters against the average accuracy of 

the AI algorithm per participant. The correlation between these quantities is not strong (ρ = 

0.35) and is mostly driven by the participants that are correctly classified by both humans 

and the AI (i.e., the top right points of the plot). For example, if we remove the subjects that 

are correctly classified by at least 95% of the human raters, the correlation drops to ρ = 0.19. 

The lack of points in the lower-left quadrant of the Fig. 3 supports the conclusion that the 

diagnoses that were difficult to predict for humans were not typically difficult for the AI, and 

vice versa.

This outcome further supports that the decision mechanism of the AI is different than that 

of the humans, and is a desirable outcome if AI is to be used as an assistive technology 

for human clinical decision-making, since it implies that human decisions can be augmented 

with the help of AI. For example, in a potential application for autism screening from similar 

short social videos, humans and AI could simultaneously make predictions, and humans 

could re-evaluate their decision if it is inconsistent with the decision of the AI algorithm. 

However, arguably, a scenario of this kind is conceivable only if the AI algorithm produces 

a semantically interpretable output—that is, the algorithm lists the detected behavioral 

patterns that lead to a diagnostic decision of autism vs. NT. Otherwise, without any 

explanation of the prediction, it would be difficult for a clinician to determine to what 

degree the result of the AI algorithm should be taken into account.

In order to shed some light on the decision mechanism of the AI, we analyze the features 

that were dominant in the SVM classifier—the features that had greater weight. Fig. 4 

shows the weights of all the features and Fig. 5a shows the 10 features that had the greatest 

(absolute) weight across cross-validation folds along with their names. While a complete 

analysis of the semantic interpretation of each feature is a difficult task, we can still gain 

some insight into the SVM decisions by inspecting these results. First, note that pose-pose 

features (i.e., features that summarize correlation between two head rotation angles) have 

the greatest weight on average (Fig. 4 top), indicating that head movements are important 

for distinguishing behavioral patterns of autistic vs NT participants. Moreover, correlation 

features combining the pose and eye emerge as important both in Fig. 4 and in Fig. 5a, 

supporting previous literature suggesting that blinking and nodding are important non-verbal 

behaviors in conversations [24], and head and eye movements are indicators of social 

attention [25]. Second, mouth-related features also emerged as important. For example, six 

out of 10 correlation features in Fig. 5a are related to mouth, with three of them being pairs 

of mouth-mouth features.
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We next analyze which, if any, of the four feature categories (eyes, brows, mouth, pose) 

have greater presence among the top k features. Fig. 5b plots the proportion of the eye-, 

brow-, mouth- and pose-related features in the top-10, top-100, top-1000 most important 

features, as well as their proportion in the entire pool of 6272 features. For example, while 

the baseline rate of pose features is only ~5.3% (i.e., ~5.3% of the entire set of 6272 

features are pose-related), we see that the top 10 features contain a pose-related feature at a 

ratio of ~13.3% (see caption of Fig. 5 for the computation pose-related features), indicating 

that the pose features have ~2.5 times more presence in the top-10 features compared to 

their baseline. Similarly, the baseline rate of mouth-related features is ~25.5%, but ~40% 

of the top-10 features are related to the mouth, indicating that mouth features also have 

greater representation in the set of important features compared to their baseline. In sum, 

our analyses suggest that the AI algorithm places high emphasis on pose- and mouth-related 

features when classifying between autism and NT groups. Further analysis to uncover why 

these features are important is beyond the scope of this study, as this would require more 

granular expression models (e.g., 3D versions of localized bases [26]), because the approach 

that we designed from an existing model does not allow us to pinpoint the facial movements 

of interest beyond the level of the partitioned regions in Fig. 2; for example, we cannot 

distinguish between parts of the mouth, such as upper lip or mouth corner. Still, our analyses 

allowed a degree of interpretation that corroborates previous findings on the importance of 

mouth-related movements [2, 4], as well as the central role that head movements have in 

social orienting, attention and backchannel feedback (e.g., nodding) [27, 28, 24, 25, 29].

5. Conclusions and Future Work

In this paper, we studied the prediction of autism from facial movement behavior during 

casual conversations. Specifically, we compared the predictive accuracy of expert and non-

expert human raters with that of an AI algorithm. Results show that, while both humans and 

the AI are capable of distinguishing individuals with autism spectrum disorder (ASD) from 

neurotypical (NT) individuals with high accuracy, their errors do not overlap, suggesting that 

the decision mechanism of an AI algorithm may be different than that of a human. Thus, 

AI technologies have the potential to provide complementary information to a clinician and 

become an assistive tool for decision making. Arguably, the most immediate application 

based on our results is a new, semi-automatic screening technology for autism, where an 

individual is advised for further diagnostic evaluation in the event that a (non-expert) human 

or the AI model predicts that the individual exhibits autism-specific behavior. However, in 

a real life scenario, the problem of interest would be more difficult as a potential patient 

may not be NT but may not have ASD either. Thus, future research is needed to identify 

the performance of humans and AI models in predicting ASD diagnosis from neurodiverse 

samples.

Our results directly motivate further future research in multiple directions. The most 

pressing future direction from the perspective of making AI an effective assistive tool is 

examination of the behaviors that lead to a predicted diagnosis. Having interpretable outputs 

is necessary for using AI technologies in clinics, as clinicians should understand how the 

AI algorithm makes a prediction before taking this prediction into account. Furthermore, 

research on younger participants is needed, given that early diagnosis improves access to 
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effective early interventions and thus can improve developmental outcomes. Another future 

direction is to investigate the benefits of dyadic analysis, where, unlike our monadic analysis 

(Section 2), the behavior of confederate is also taken to account. Finally, user research is 

necessary to test if and to what degree clinician diagnoses can be improved through the use 

of AI assistive tools.
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Figure 1: 
Left: The device used to record the conversation. The device has two cameras, each pointing 

to one party of the conversation. Right: Example of videos shown to the human raters. 

The video contains synchronized videos of the heads/faces of both the participant and the 

confederate as recorded by the device on the left. The video of the participant’s face only 

served as input to the AI pipeline.
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Figure 2: 
We divide the facial mesh of P points into the four groups illustrated in this figure: (1) brows 

and forehead; (2) eyes; (3) nose and cheeks; and (4) mouth and chin. Each of the P mesh 

points is assigned to one of these four groups by first computing the distance of the point to 

all the 51 facial landmarks (iBUG-51 [19]), and then identifying the facial feature (i.e., brow, 

eye, nose or mouth) corresponding to the closest landmark. The expression basis that we use 

has a total of 60 components, distributed as shown in the figure.
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Figure 3: 
The average prediction accuracy of human raters against the average prediction accuracy of 

the AI pipeline, per participant. The average prediction for the AI results in this figure are 

computed by repeating 5-fold cross-validation 1000 times, and averaging over the predicted 

1000 predictions per participant.
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Figure 4: 
Top: Average and standard deviation of correlation features per facial region; e.g., statistics 

for eye-pose show are computed from correlation features that are extracted from these two 

regions (Section 3.2.2). Bottom: Manhattan plot showing all correlation features.
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Figure 5: 
(a) The labels and weights of the top 10 features along with the standard error (across 

cross-validation folds). (b) The ratio of each of the four feature categories (brow, eye, mouth, 

pose) in the top k features (i.e., k features with the highest average SVM weight) against 

k. The graphs are computed on the basis of a feature category appearing on either side of 

a correlation feature. For example, if a correlation feature is extracted from the correlation 

between a mouth and a pose feature, it is considered to be both a mouth and a pose feature. 

The rightmost value of each graph shows the baseline rate for each feature category –the 

ratio of the feature category in the entire set of 6272 features– highlighting the importance 

of the mouth and pose features, since they appear more frequently in the top-10, top-100, 

top-1000 features compared to their baseline rate.
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