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Abstract

Motor imitation is a critical developmental skill area that has been strongly and specifically 

linked to autism spectrum disorder (ASD). However, methodological variability across studies 

has precluded a clear understanding of the extent and impact of imitation differences in 

ASD, underscoring a need for more automated, granular measurement approaches that offer 

greater precision and consistency. In this paper, we investigate the utility of a novel motor 

imitation measurement approach for accurately differentiating between youth with ASD and 

typically developing (TD) youth. Findings indicate that youth with ASD imitate body movements 

significantly differently from TD youth upon repeated administration of a brief, simple task, 

and that a classifier based on body coordination features derived from this task can differentiate 

between autistic and TD youth with 82% accuracy. Our method illustrates that group differences 

are driven not only by interpersonal coordination with the imitated video stimulus, but also 

by intrapersonal coordination. Comparison of 2D and 3D tracking shows that both approaches 

achieve the same classification accuracy of 82%, which is highly promising with regard to 

scalability for larger samples and a range of non-laboratory settings. This work adds to a rapidly 

growing literature highlighting the promise of computational behavior analysis for detecting and 

characterizing motor differences in ASD and identifying potential motor biomarkers.
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1. Introduction

Motor differences in autism spectrum disorder (ASD) are highly prevalent, early-emerging, 

under-identified, and impactful on daily functioning [3,16,22,32]. This has led to recent 

calls for both routine clinical assessment of motor skills in autistic individuals and greater 

attention to the motor domain in autism research [4,18,34]. One barrier to the routine 

integration of motor measurement into clinical and research practices is reliance on 

clinician-administered and parent-report measures that can be resource-intensive and/or too 

broad to identify subtle movement patterns or change over time. Thus, development of 

quantitative tools for more automated and granular measurement of motor behavior across 

settings has the potential to significantly advance both autism research and clinical care [34].

Development of these quantitative tools may be particularly important for improving 

measurement of motor imitation, which has been an area of longstanding interest in ASD 

within the broader motor domain. Imitation plays a critical role in early development 

by facilitating acquisition of a range of cognitive, play, and social communication skills, 

leading to theories that imitation impairment may be foundational to the emergence of 

signature patterns of social differences in ASD (e.g., [25]). Motor imitation impairments 

have been steadily documented in ASD over the past several decades (see [28,31,33] for 

recent reviews), with meta-analysis [11] indicating significant performance gaps between 

individuals with and without ASD irrespective of age, gender, or movement domain (e.g., 

facial imitation, hand/body imitation). Imitation ability has also been significantly associated 

with autism symptom severity but not cognitive ability [11], suggesting that it may relate 

specifically to core ASD symptomatology and therefore offer a valuable target for screening, 

diagnosis, and treatment outcome measurement.

However, imitation studies in ASD have varied vastly in their methodology – in task 

parameters and in specifically how imitation performance is operationalized [28]. This 

variability, combined with heterogeneity within the autism spectrum itself, has precluded 

understanding of the precise nature and extent of imitation differences and their relationships 

to other functional domains [31]. For example, evidence suggests that measuring movement 

properties over the course of an imitated action is more meaningful for identifying 

differences in ASD than simply measuring the end state result [11]; however, capturing 

this level of detail can be difficult with traditional measurement techniques. In addition, 

because imitation taps both social and motor functions, there is a lack of clarity around the 

relative contributions of motor planning and coordination, visual perception and visuomotor 

integration, and social attention and motivation differences to imitation impairment in ASD 

[14]. Progress in addressing these unanswered questions has been hindered by the fact that 

imitation tasks are typically scored through human observational coding, which is both 

inherently subjective and staff- and time-intensive. These gaps in knowledge emphasize 
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the need for novel methods of quantifying imitation that are consistent, fine-grained, and 

scalable for widespread assessment alongside other related skill areas.

For these reasons, imitation in ASD is a ripe application for automated, granular 

computational behavior analysis approaches to motor measurement. Given that psychiatric 

conditions like ASD are defined by overt behavioral symptoms, our progress in detecting, 

treating, and understanding these conditions is dependent upon the accuracy and richness 

with which we can represent behavior. Recent innovations in computer vision and machine 

learning provide an opportunity to directly quantify observable human behavior from video 

with improved precision and consistency. Non-invasive markerless motion tracking through 

computer vision (e.g., [8]) offers the spatial and temporal granularity to digitize a rich 

range of features representing the form and kinematic properties of actions as they unfold 

over time (see [2] for a review in ASD). In tandem, machine learning allows for high 

dimensional analysis of the resulting collection of movement features to uncover patterns 

that best characterize differences among people with and without ASD (see [13,17]). 

These computational approaches are particularly well suited for imitation, as imitated 

motor actions are highly observable and directly quantifiable behaviors that may serve as a 

meaningful index of more underlying social and motor mechanisms.

Herein, we introduce a new and largely automated computational method for measuring 

body imitation during an explicit task in which participants are instructed to imitate a 

sequence of non-meaningful movements in time with a video. The specific contributions of 

this study are related to our comprehensive approach to imitation measurement in several 

novel ways:

• We track body movement across all limb joints over the full time course of the 

imitation task, with both a 2D (RGB) and a 3D (RGBD) camera. This allows us 

to examine whether 2D tracking is sufficient for uncovering group differences in 

how imitated movements unfold in time, or if 3D tracking provides a significant 

benefit.

• We incorporate information on how closely participants coordinate their body 

movements with the imitated video stimulus (interpersonal coordination), as 

well as their coordination among their own joint movements (intrapersonal 

coordination). This is important given pervasive gross motor coordination 

deficits in ASD; difficulties with coordinating one’s own movements may 

influence the ability to coordinate with others [5,12]. This approach also offers 

a richer representation of the form and style with which the movements are 

executed.

• We measure performance across repeated administrations of a novel movement 

task to examine imitative motor learning. This is based on the hypothesized 

importance of motor learning differences in ASD [23] and recent evidence that 

altered imitative learning curves are significantly associated with ASD diagnostic 

status and symptom severity [20].

Our findings indicate that youth with ASD imitate body movements significantly differently 

from typically developing (TD) youth upon repeated administration of a simple 2.5-min. 
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task, and that a classifier that uses only body coordination features derived from this task 

can differentiate between ASD and TD youth with 82% accuracy. Our method illustrates 

that group differences are driven not only by interpersonal coordination with the imitated 

video stimulus, but also by intrapersonal body coordination features. Comparison of 2D vs. 

3D tracking shows that both approaches achieve the same classification accuracy of 82%. 

The fact that a simpler, less resource-intensive method with a 2D (RGB) camera yields the 

same performance as an RGBD camera is highly promising with regard to scalability of data 

collection to large samples and a range of non-laboratory settings.

The remainder of this paper is organized as follows: Section 2 describes our method, 

including the sample and procedures and the calculation of inter- and intra-personal 

features for quantifying imitation performance and machine learning classification. Section 

3 presents the results of our experiments. Section 4 discusses the significance of our results 

within the context of the literature on motor imitation in ASD, and Section 5 concludes the 

paper.

2. Methods

2.1 Sample

Participants included 39 youth (ages 9 – 17 years, 16 females) with ASD (n = 21) or typical 

development (TD; n = 18). All youth with ASD met Diagnostic and Statistical Manual 

of Mental Disorders, 5th Edition (DSM-5; [1]) criteria for ASD, confirmed in-house by 

an expert clinician and informed by administration of the Autism Diagnostic Observation 

Schedule, 2nd Edition (ADOS-2; [19]) and Social Communication Questionnaire, Lifetime 

Form (SCQ; [27]). For TD youth, ASD was ruled out based on the ADOS-2, SCQ, and 

clinician judgement of DSM-5 criteria. Participants in both groups were fluent in English 

and had verbal and nonverbal IQs of at least 70. ASD and TD groups were matched on 

age, sex, handedness, and IQ (full-scale, verbal, and nonverbal). Participant characteristics 

are provided in Table 1. Data collection was performed at the Center for Autism Research 

at Children’s Hospital of Philadelphia as part of a larger research battery examining social-

motor functioning in ASD. The study was approved by the Institutional Review Board at 

Children’s Hospital of Philadelphia and written consent was obtained from legal guardians 

of all participants.

2.2 Imitation Task

The imitation task was developed based on a robust literature suggesting that sequential and 

non-meaningful (i.e., lacking a clear end goal) gestural imitation are particularly disrupted 

in ASD [33]. The task is illustrated in Figure 1a. Participants were instructed to imitate a 

novel sequence of gross body movements in real-time with a 2.5-min. video presented on 

a large TV screen in front of them. The video included six different movements performed 

by an adult male, with each of the six movements repeated four times in fluid succession. 

Some movements engaged the whole body (i.e., both arms and legs), while others only 

required movement of the arms with the legs remaining still. Participants were told to mirror 

the actions in the video stimulus, meaning that if the stimulus moved his right hand the 

participant should move his/her left hand. This was demonstrated with each participant by 
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a research assistant to ensure understanding. Each participant completed the full task twice 

(time-1 and time-2), separated by a brief gait measurement task, to assess the effect of 

imitative learning.

2.3 Body Pose Tracking

A front-facing full-body video of the participant was collected using markerless Kinect 

V2 cameras at a rate of 30 frames per second. Following data collection, videos were 

reviewed by research staff to verify that participants attended to the task and made an effort 

to complete it as directed. Movement at all limb joints was digitally tracked using two 

different approaches: (1) 2D RGB video data and the OpenPose computer vision software 

package [8], and (2) 3D RGBD data and the iPi Motion Capture software package [iPi 

Soft LLC, Moscow, Russia]. As is routinely required for the 3D motion tracking software 

[29], the 3D tracked skeleton was visually reviewed by staff, and the identified errors (e.g., 

misalignments, jitteriness) were manually corrected by refitting the tracked pose to the 

video. These types of tracking errors were very rare for the 2D data; post-processing was 

therefore not conducted in order to preserve the advantages of 2D tracking with respect to 

automaticity and scalability.

Tracking software yielded 13 and 20 joint coordinate sets per frame for 2D (x,y) and 3D 

(x,y,z) data, respectively. From these sets of joint coordinates, we analyzed movement in a 

subset of eight joints, namely the wrists, elbows, knees, and ankles on both the left and right 

sides of the body, as these were most relevant to the imitation task (see Figure 1c). This 

initial feature reduction was necessary for machine learning analysis given the small sample 

size. Each joint’s distance to the body center over time was computed from coordinate data, 

yielding a single value per joint per frame. For each participant, this process resulted in eight 

time series of distance values (one per body joint) each for 2D and 3D data, at both time-1 

and time-2.

2.4 Calculation of Intrapersonal and Interpersonal Joint Coordination

Imitation performance was operationalized through a set of intrapersonal and interpersonal 

coordination features, computed from the time series joint movement data described above. 

Intrapersonal coordination refers to the coordination among a person’s own eight body joints 

in time as they execute a movement. Interpersonal coordination serves as a representation 

of how closely the participant coordinated with the video stimulus, by capturing the 

relationship between the participant’s and the stimulus’s joint locations in time.

Intrapersonal Coordination.—Given any two joints i, j from a participant p and a 

movement m, we computed the participant’s intrapersonal coordination features cpipj
m  using 

windowed time-lagged cross-correlation [6]. This procedure yielded an 8x8 symmetric 

coordination matrix, Cp
m, as illustrated in Figure 2. The same procedure was used for the 

stimulus in the video (v), to compute the stimulus’s intrapersonal coordination matrix Cv
m. 

The stimulus’s matrix can be taken as the ground truth coordination matrix among the joints 

for each movement m. When calculating windowed time-lagged cross-correlations, we tested 

five different values (1s, 2s, 3s, 4s, 5s) for the window size (w), yielding five matrices, as 

the appropriate window size was not known a priori. The best window size was chosen 
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automatically within the cross-validation loop of the machine learning classifier (see Section 

2.6). A lag up to a maximum value of w/4 was allowed in both directions to allow for small 

delays in the coordination between different joints.

Interpersonal Coordination.—Interpersonal coordination features were calculated 

similarly. We computed windowed time-lagged cross-correlations between each joint i of 

a participant p and the same (mirrored) joint of the video stimulus v, cpivi
m . We used the same 

five values for window size (1s, 2s, 3s, 4s, 5s), but allowed lag only in one direction with a 

maximum value of w/2, since the participant could not imitate the move before it was made 

in the video stimulus.

2.5 Quantifying Imitation Performance

To quantify imitation performance, we computed three sets of variables that measured: 

(1) the degree of similarity between the participant’s intrapersonal coordination and the 

stimulus’s (ground truth) intrapersonal coordination for each movement, (2) the degree of 

interpersonal coordination between the participant and the stimulus for each movement 

averaged across all body joints, and (3) the degree of interpersonal coordination between the 

participant and the stimulus for each joint averaged across all movements. These three sets 

of variables were computed separately for 2D and 3D data.

We calculated the first set of variables as αp
m = 1/ Cp

m − Cv
m

*, where    denotes absolute value, 

and   * denotes the nuclear norm of a matrix. This yielded six variables, corresponding to 

the six movements, for each participant. For the second set of variables, we used the formula 

βp
m = 1

8 ∑i = 1
8 cpivi

m , yielding another six variables. Finally, for the third set of variables, we 

computed eight variables, corresponding to each of the eight body joints, as γp
i = 1

6 ∑m = 1
6 cpivi

m . 

Hence, each participant’s imitation performance was quantified by a set of 20 variables, 

capturing various aspects of imitation quality.

We also analyzed the difference in imitation performance across the two repeated 

administrations of the task (time-1 and time-2). We used the Wilcoxon signed-rank test 

to compare the variables described above across the two administrations. The effect size of 

those comparisons was computed using the common language effect size (CLEF; [7]) due to 

non-normality of the variables. CLEF, ranging between 0 and 1, is computed by testing all 

possible pairwise combinations of two datasets to arrive at the probability that a randomly 

selected score from one dataset will be higher than a randomly selected score from the other. 

A CLEF at either extreme of the range (i.e., near 0 or 1) is considered large, while a CLEF 

close to the middle of the range (i.e., near 0.5) is considered small.

2.6 Machine Learning Classification

To determine how well the set of calculated imitation variables captured differences between 

youth with ASD and TD youth, we used a machine learning classifier to predict the 

diagnostic label (ASD vs. TD) within a nested cross-validation loop. We used a support 

vector machine (SVM) with a linear kernel [9] as the classifier. Due to the small sample 

size, we used leave-one-out (LOO) cross-validation. Within each LOO iteration, using 
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only the training sample, the best cross-correlation window size (w) was determined via a 

second (inner) LOO cross-validation. Then, using the same training set, the classifier was 

trained, and a decision was made for the test individual. All variables were normalized 

to the 0–1 range, using the maximum and the minimum values learned from the training 

set, before being fed to the SVM classifier. We chose a linear machine learning model for 

prediction because of its superiority with respect to the interpretability of results, as it yields 

interpretable feature importance maps. We implemented the machine learning pipeline using 

the Scikit-learn library [24] in the Python programming language, with the default settings 

for a linear SVM classifier.

3. Results

The above methods provided four different datasets of 20 variables for each participant, 

across two digital capture technologies (2D and 3D) and two administrations (time-1 and 

time-2). Below, we focus on the results from the 3D dataset at time-2 and make relevant 

comparisons between the four different datasets. Classification performance for all datasets 

is presented in Table 2.

3.1 Intra- and Interpersonal Coordination and Imitation Performance

Figure 2 illustrates intrapersonal coordination matrices for the video stimulus (Cv
m) and two 

participants Cp
m , one with the highest αp

m values (high intrapersonal imitation) and another 

with the lowest αp
m values (low intrapersonal imitation). Participants with high and low 

imitation can be distinguished by the similarity between their matrices and the matrix of the 

video stimulus (αp
m). As seen in Figure 2, different patterns of intrapersonal coordination also 

distinguish between the six different movements that make up the task.

For all movements, there was a significant (p ≤ 0.05) correlation between intrapersonal 

coordination similarity, αp
m, and overall interpersonal coordination, βp

m (move-1: r = 0.32, 

p = 5×10−2; move-2: r = 0.49, p = 2×10−3; move-3: r = −0.34, p = 4×10−2; move-4: r 
= 0.64, p = 1×10−5; move-5: r = 0.73, p = 1×10−7; move-6: r = 0.65, p = 8×10−6). The 

significant yet imperfect correlations suggest that these two variable sets for operationalizing 

imitation performance may provide complementary information regarding how successful a 

participant was in imitating the video stimulus’s movements.

3.2 Machine Learning Classification

The machine learning classifier achieved high cross-validation accuracy in classifying ASD 

vs. TD using the set of 20 variables capturing intrapersonal and interpersonal coordination; 

Classification Accuracy = 0.82, Sensitivity = 0.76, Specificity = 0.89, Positive Predictive 

Value (PPV) = 0.89, Negative Predictive Value (NPV) = 0.76 (see Table 2).

The window size (w) selection for windowed cross-correlation was extremely stable. Within 

every cross-validation fold, w = 3 was selected with no exception. Similarly, feature weights 

were very stable between the folds, suggesting that the classifier was able to learn how ASD 

and TD groups were separated within our sample. Figure 3 illustrates the contribution of 

each feature (i.e., feature weights) in classifying participants. The highest (absolute) weight 
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was assigned to interpersonal coordination during movement 3, followed by intrapersonal 

coordination similarity between video stimulus and participant during movement 1. In terms 

of individual body joints, interpersonal coordination for the right wrist, left wrist, and left 

elbow had the highest (absolute) weights.

3.3 2 D vs. 3D Pose Tracking—We compared classification results based on the 

two different body tracking technologies (3D depth data and 2D RGB data), with notably 

similar results. More specifically, when using OpenPose over 2D images, the classification 

performance at time-2 was comparable to that of using 3D depth data, with Classification 

Accuracy = 0.82, Sensitivity = 0.81, Specificity = 0.83, PPV = 0.85, and NPV = 0.79 (see 

Table 2).

3.4 Learning Effects

Each participant performed the task (all six movements) twice (time-1 and time-2) to 

assess whether the effect of repeated administration (i.e., imitative motor learning) differed 

among the ASD and TD groups. We compared imitation performance across the two 

administrations in terms of the individual variables by univariate testing (Wilcoxon signed-

rank test), as well as multivariate interactions among variables by comparing machine 

learning classification performance. For this purpose, we ran the machine learning classifier 

twice using variables from the two different administrations.

The individual variables (α 
m, β 

m, γ 
i), when analyzed for 3D data across the entire sample, 

did not show any statistically significant differences between administrations 1 and 2. In the 

TD group alone, several variables showed indication of significant improvement (higher 

coordination among participant and video stimulus) at administration 2. Interpersonal 

coordination over all joints (β 
m) for movement 6 showed significant improvement (CLEF 

= 0.67, p = 2×10−3), as did interpersonal coordination across all movements for the right 

wrist (CLEF = 0.68, p = 2×10−3) and the right ankle (CLEF = 0.60, p = 3×10−2). No 

significant improvements between administrations 1 and 2 were found in the ASD group. 

Note that none of those differences would survive a multiple comparison correction for 

statistical significance.

The machine learning classifiers also reflected a differential effect of imitative learning 

across the ASD and TD groups through lower classification accuracy at administration 1 

relative to administration 2 (see Table 2). The classification performance using 3D data 

was significantly lower at the first administration, with Classification Accuracy = 0.62, 

Sensitivity = 0.62, Specificity = 0.61, PPV = 0.65, NPV = 0.58. The same was true for the 

2D data, with Classification Accuracy = 0.51, Sensitivity = 0.62, Specificity = 0.39, PPV 

= 0.54, NPV = 0.47. The stronger differences between time-1 and time-2 reflected through 

the machine learning analyses relative to the univariate analyses may be because classifiers 

(unlike univariate testing) consider multivariate interactions across movements and joints at 

the participant level.
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4. Discussion

Motor imitation is a critical developmental skill area that has been strongly and specifically 

linked to the presence and severity of ASD [11]. In this paper, we present a quantitative 

computational approach for measuring motor imitation that provides a degree of spatial 

and temporal granularity not achievable with traditional observational tools. This granularity 

is particularly important for increasing understanding of imitation in ASD, as evidence 

indicates that a specific difficulty for autistic individuals is imitating the style or form of 

an action as opposed to the endpoint alone [11], and because more granular measurement 

allows for more precise examination of key relationships between imitation and other skill 

areas. Our approach is also novel in its comprehensiveness, in that we quantify imitation 

through a set of both intrapersonal and interpersonal coordination features, across repeated 

task administrations, and across 2D and 3D motion tracking systems.

The results of our machine learning classification analysis are consistent with a large 

existing literature documenting the presence of imitation performance differences between 

autistic and TD youth. A machine learning classifier taking both intrapersonal and 

interpersonal coordination features as input was able to classify between groups with high 

(up to 82%) accuracy. These findings join a small group of previous studies that have 

applied machine learning to motor imitation features in children and adults with similar 

classification accuracies [17,29,30]. Collectively, these studies highlight motor imitation 

as one skill area in which youth with ASD can be clearly distinguished from their 

neurotypical peers, outside of the core ASD symptom domains of social communication and 

interaction and restricted/repetitive behavior. These findings have implications for screening 

and detection, suggesting that performance on a brief, simple imitation task may provide 

useful information for identifying people with ASD from those without. These results are 

also timely in that motor behaviors are currently receiving increased attention for their 

potential as biomarkers, given that they are more directly observable and quantifiable than 

many other psychological constructs (e.g., social cognition).

Classification accuracy between ASD and TD groups was higher for the second 

administration of the imitation task compared to the first, and several individual variables 

showed significant improvement between time-1 and time-2 in the TD group only. This 

suggests that TD youth may benefit more than autistic youth from opportunities for 

imitative learning. That is, it is possible that only the TD group’s performance improved 

significantly with learning, leading to greater gaps between ASD and TD group performance 

at time-2. This was not explicitly tested and should be examined further in future analyses; 

however, it is consistent with work by McAuliffe and colleagues [20] showing that altered 

learning curves over repeated administrations of a gestural imitation task were significantly 

associated with ASD diagnostic status and symptom severity. The authors found that TD 

children plateaued in their learning early, while children with ASD required four repetitions 

to converge with their TD peers’ performance. Thus, it appears important to consider the 

role of imitative learning when interpreting motor imitation and coordination performance in 

ASD [23].

Zampella et al. Page 9

ICMI '21 Companion (2021). Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our classification results are remarkably consistent across datasets from an open source 2D 

tracking software (OpenPose; [8]) and the more established iPi Motion Capture 3D system 

[iPi Soft LLC, Moscow, Russia]. This result is unexpected as 3D body pose tracking is 

considered the gold standard. 3D tracking is also more resource-intensive in that it requires 

specialized cameras, expensive software, and a fair amount of human post-processing. 

Achieving similar results with a freely available, fully automated 2D joint tracking system 

that can be used with standard HD video is highly promising in terms of scalability for 

large samples, repeated assessment, and deployment to a range of non-laboratory settings. 

Providing a direct comparison of our method’s performance across 2D and 3D datasets is 

a considerable strength of this study and expands upon similar previous work that has only 

analyzed 3D joint data [29]. Notably, the largest differences between the 2D and 3D datasets 

were for lower leg joints during imitated actions that did not engage the legs (particularly 

movements 1 and 2), suggesting that OpenPose may generate some systematic but spurious 

correlations when limbs are generally still.

Another strength of our approach is its integration of both individual-level (intrapersonal) 

and dyadic (interpersonal) coordination features in quantifying imitation performance. The 

degree to which motor imitation differences in ASD are driven by pervasive general 

motor coordination differences [12] remains uncertain, but there is evidence to suggest that 

generalized motor impairment explains some, but not all, of the variance in motor imitation 

ability in ASD [31]. While we did not explicitly test this by including a measure of general 

motor skill, our inclusion of intrapersonal coordination features accounts for the role that 

within-person motor coordination may play in the ability to imitate others [5]. Moreover, 

intrapersonal coordination features may capture the collective form of a participant’s body 

movement as it unfolds over time better than interpersonal coordination features. Inspection 

of the feature weights assigned by the machine learning classifier suggests that both 

intrapersonal and interpersonal coordination features are important for group classification, 

and may have differential importance across the six different movements (Figure 3). 

Representing imitation in terms of both how smoothly an individual’s body joints move 

collectively in time, as well as how closely they match a stimulus, may elucidate subtle, 

fine-grained patterns that contribute to observed imitation differences. Of note, regarding 

the feature weights for individual body joints, it is unsurprising that the two wrists were 

assigned the highest weights (Figure 3), as all six movements within the task required lower 

arm movement while only three of the movements engaged the legs.

Specific characteristics of this study’s sample and methods should be kept in mind 

when considering the findings. First, the sample size is small and participants with ASD 

have average to above average language and cognitive ability. All participants were able 

to attend to and participate in the full task. For these reasons, results are not likely 

representative of or generalizable to the autism spectrum as a whole. Second, considering 

how imitation is defined, operationalized, and elicited is critical for situating results of 

individual studies within the larger context of imitation research in ASD [28]. We used a 

non-meaningful, sequential, explicit (i.e., not spontaneous) body imitation task, in which 

successful performance required fidelity to the full form of the movement rather than just an 

end state. Research suggests that distinct types of imitation may be differentially impacted in 

ASD, rely on different underlying mechanisms, and show different developmental patterns 
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[28, 31]. Third, we calculated coordination features based only on joints’ distances from the 

body’s center over time, without respect to directionality. The lack of information regarding 

angles and direction may be contributing to the similarity of results across the 2D and 3D 

datasets, and we might expect 3D to outperform 2D when also deriving angles. Performance 

metrics that take the direction of movements into account should be calculated in a future 

study.

It is also important to note that the focus of this study was on whether our novel 

computational approach could differentiate between imitation performance in autistic and 

TD youth. The method presented herein does not quantify imitation performance in terms of 

an interpretable, continuous score. It also does not directly compare our approach to existing 

human observational or clinician-administered methods. Related work by Tuncgenc and 

colleagues [29] used a similar imitation task to produce a continuous imitation performance 

score, which showed a strong correlation with core ASD symptom severity. These authors 

also compared their measure against human observational coding and found that the 

computational measure better distinguished between ASD and TD groups. Replicating 

their findings with our method is a key future direction, to establish its validity, facilitate 

investigation of relationships between imitation and other functional domains, and allow for 

tracking of imitation skill over time (e.g., as a marker of treatment outcomes). Imitation 

has been found to be a valuable target for intervention in ASD, with improvements seen 

in both imitation skill itself and broader social skills (e.g., [15]). Thus, the availability of 

valid, fine-grained, scalable imitation measures has the potential to be of significant value to 

intervention work in ASD.

5. Conclusions

In this paper, we investigated the utility of a novel quantitative motor imitation measurement 

approach for accurately differentiating between youth with autism spectrum disorder (ASD) 

and typically developing (TD) youth. Our approach rests on computational behavior 

analysis of a brief, simple motor imitation task administered twice. We quantified imitation 

performance through a combination of intrapersonal and interpersonal coordination features, 

computed from both 2D and 3D body joint tracking data. Our results indicate that these 

intra- and interpersonal coordination features can classify between autistic and TD youth 

with up to 82% accuracy. The highest accuracy was achieved on the second administration 

of the task, suggesting group differences in imitative learning. Classification accuracy 

was consistent regardless of whether the classifier used features extracted from 2D or 

3D tracking. This work adds to a rapidly growing literature highlighting the promise of 

computational behavior analysis for detecting and characterizing motor differences and 

identifying potential motor biomarkers in ASD (e.g., see [10]). Direct acquisition and 

fine-grained analysis of movement data from video provides a precise, scalable tool for 

measuring imitation performance, particularly with respect to change over time, individual 

variability, and associations with other skill domains and underlying mechanisms. Important 

directions for future work include: (1) testing the validity of this novel approach by 

comparing it against established imitation metrics, (2) developing a continuous imitation 

score, in order to directly measure change and investigate relationships with other 

constructs, and (3) expanding our computational methods to a range of samples and 
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imitation tasks. An additional exciting future application of this work is expansion to more 

spontaneous and naturalistic imitation contexts, as spontaneous interpersonal coordination 

within social settings is a known area of difficulty for many autistic individuals [21, 26, 35, 

36].
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Figure 1. 
Imitation task and methods (a) The task is comprised of six movements. (b) The body joint 

tracking methods used were 3D tracking with Kinect (top) and 2D tracking with OpenPose 

(bottom). (c) The imitation task in action; participants imitated the movements in the video 

stimulus and we used eight joints (circled) when quantifying imitation.
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Figure 2. 
Intrapersonal coordination matrices among joints (Cp

m) for the video stimulus and two 

participants, presented for each movement and for (a) 3D and (b) 2D body tracking data. 

The first row presents matrices for the stimulus, the second row for the participant with the 

highest similarity to the stimulus, and the third row for the participant with the lowest 

similarity to the stimulus. 3D and 2D data generally resulted in similar intrapersonal 

coordination matrices, though matrices were less similar for movements 1 and 2. Colors 

represent the degree of correlation among joints.

Zampella et al. Page 17

ICMI '21 Companion (2021). Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Weights of individual variables as assigned by the machine learning classifier. The first six 

variables quantify similarity between the intrapersonal coordination of the participant and 

the video stimulus for each movement (αp
m). The second set of six variables quantify the 

interpersonal coordination between the participant and the stimulus across all joints for each 

movement (βp
m). The final eight variables quantify the interpersonal coordination for each 

body joint between the participant and the stimulus across all movements (γp
i). The higher 

the absolute value of a weight, the more the variable contributes to the classifier.
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Table 1.

Participant characteristics

ASD TD t or χ2 p

n 21 18

Sex, Male:Female 12:9 11:7 0.06 .80

Handedness, Right:Left 19:2 16:2 0.03 .87

Age in years, M (SD) 12.5 (2.9) 12.6 (2.3) −0.17 .87

Full Scale IQ, M (SD) 106.2 (17.1) 103.9 (12.0) 0.44 .66

Verbal IQ, M (SD) 105.8 (15.5) 102.1 (12.7) 0.76 .46

Nonverbal IQ, M (SD) 104.2 (18.2) 105.1 (12.6) −0.17 .86

ADOS-2 Calibrated Severity Score, M (SD) 6.9 (2.0) 1.1 (0.4) 10.90 < .001
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Table 2.

Machine learning classification performance for 3D and 2D data at both task administrations. PPV: Positive 

predictive value. NPV: Negative predictive value.

Data Type Administration Accuracy Sensitivity Specificity PPV NPV

3D 1 0.62 0.62 0.61 0.65 0.58

3D 2 0.82 0.76 0.89 0.89 0.76

2D 1 0.51 0.62 0.39 0.54 0.47

2D 2 0.82 0.81 0.83 0.85 0.79
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