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ABSTRACT: Machine learning (ML) models for molecules and
materials commonly rely on a decomposition of the global target
quantity into local, atom-centered contributions. This approach is
convenient from a computational perspective, enabling large-scale ML-
driven simulations with a linear-scaling cost and also allows for the
identification and posthoc interpretation of contributions from
individual chemical environments and motifs to complicated macro-
scopic properties. However, even though practical justifications exist for
the local decomposition, only the global quantity is rigorously defined.
Thus, when the atom-centered contributions are used, their sensitivity
to the training strategy or the model architecture should be carefully
considered. To this end, we introduce a quantitative metric, which we
call the local prediction rigidity (LPR), that allows one to assess how robust the locally decomposed predictions of ML models are.
We investigate the dependence of the LPR on the aspects of model training, particularly the composition of training data set, for a
range of different problems from simple toy models to real chemical systems. We present strategies to systematically enhance the
LPR, which can be used to improve the robustness, interpretability, and transferability of atomistic ML models.

1. INTRODUCTION
Extensive properties of matter, such as the total energy, arise
from the collective interactions between atoms and can be
rigorously defined only as global quantities that depend on the
entire molecule or the condensed-phase structure. Nonethe-
less, the last decades have seen considerable efforts toward the
construction of quantum-chemical methods that exploit the
quantum-mechanical nearsightedness principle1 to perform a
local decomposition of the global quantities.2−7 These methods
either undertake a physically motivated local decomposition in
the calculation of a global quantity8−11 or perform such
decomposition for the purpose of analysis.12−17 Despite the
fact that the local quantities are not physical observables, such
a decomposition allows one to break down the macroscopic
observable for a complex structure into contributions from
much simpler components, typically individual atoms and their
neighbors. Consequently, such methods have led to drastic
improvements in the time and cost scaling of quantum-
mechanical calculations and allowed researchers to gain an
enhanced understanding of the physical and chemical nature of
materials.18−22

The idea of decomposing a global quantity into contribu-
tions associated with local environments has also become a

cornerstone of atomistic machine learning (ML).23−27 ML
models can be trained to predict the contributions of the local
environments to the global quantity of interest, which are then
summed to ultimately yield the global prediction for a target
system. Within the context of ML, this approach has two
distinct advantages, the first of which is scalability. Local
decomposition allows the models to be easily applied to
systems of vastly different length scales (training on small cells
and predicting for much larger ones),23,24 underpinning their
widespread usage. This is especially the case for ML
interatomic potentials,25,28−32 which allow accessing longer
length and time scales in simulations with a linear-scaling cost.
The second advantage is that contributions from a local,

machine-learned decomposition of the global quantity can
offer considerable heuristic power because one can then use
the ML model to describe the complex behavior of chemical
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systems as resolved according to the local contributions from
their constituent building blocks. Having access to such “local
predictions” has enabled the development of ML models for
the prediction of thermal transport in electronic insula-
tors,33−39 where the locally predicted energies are needed in
classical-like expressions of the heat flux40 used in Green−
Kubo theory. In the case of ML models of the electronic
density of states,41−45 a plausible correlation could be found
between different local structural motifs and how they
“contribute” to the total density of states. More recently,
researchers have been actively exploiting these locally
predicted values to interpret the local stability of chemical
environments in complex phases,46−50 guide structural
optimization,51 and even use them as synthetic data for the
pretraining of large neural network (NN) models.52

While the practical benefits of local decomposition for
atomistic ML are clear, one must be mindful of how reliable, or
“robust”, the resulting local predictions are. Since only the
global quantity is rigorously defined, its decomposition into
local contributions can take place in numerous different
ways.53 Then, if the local predictions of an ML model are
sensitive to the smallest changes in model training (e.g.,
subsampling of the same data set), their reliability would be
compromised, along with that of any interpretation that has
been made using these predictions. Also, excessive sensitivity
to model training details often indicates that extrapolative
predictions are unstable, which translates to poor trans-
ferability of the resulting models.54 It is therefore of significant
interest for the atomistic ML practitioners to understand how
reliable and robust the local predictions of their ML model are
and what can be done to improve them.
In the present work, we propose a new metric, which we

refer to as the local prediction rigidity (LPR), that quantifies
the robustness of local predictions made by atomistic ML
models. Through a series of case studies on different models,
we uncover the existence of varying degrees of robustness in
the local predictions, which primarily depend on the
composition of the data set used for model training. We
further demonstrate strategies by which the LPR can be
systematically enhanced for the local environments of interest,
which can ultimately improve the overall robustness,
interpretability, and transferability of atomistic ML models.

2. THEORY
Consider a generic ML model that predicts the global property
Y of a structure A by summing the predictions for individual
atom-centered contributions, ỹ. The task for model training is
to minimize the loss function, , which quantifies the
difference between the reference values YA and the global
ML model predictions
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The set of optimized coefficients wo that minimizes is
obtained by setting the derivative of with respect to w equal
to 0. Close to wo, one can approximate ỹ by a second-order
Taylor expansion
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With this approximation, one can also expand the loss
around wo up to the second order
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is the Hessian of the loss evaluated at wo , with
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i
. Note that no

linear term in (w − wo) appears in eq 5 because of the
optimization condition.
To assess the robustness of local predictions made by an ML

model, one can consider how sensitive the model is to a change
ϵk in a local prediction associated with an arbitrary environ-
ment k. To do so, however, explicit control over the model
prediction is needed. For this purpose, one can consider the
following modified loss function, which incorporates a
Lagrangian term that constrains the model prediction for a
local environment k to be perturbed by ϵk
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where wo is the new array of optimal weights. By enforcing the
local prediction constraint =/ 0, the following ex-
pressions for λ and (wo − wo) can be obtained
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These expressions lead to algebraic simplifications, resulting
in the following expression for the optimized constrained loss,
where the dependence on ϵk is now explicitly enforced
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is the second derivative of the constrained, optimized loss with
respect to the change ϵk in the local prediction and where we
used = =( 0)

o
k

o. Note that in cases where regulariza-
tion of the weights is performed, the derived expressions will
differ only by the inclusion of an additional regularization term
in the loss and in Ho.
Ultimately, ∂2

o
/∂ϵk2 describes how sensitive the model is to

perturbations in a given local prediction, via the changes in w
caused by these perturbations. A large value of ∂2

o
/∂ϵk2

indicates that the corresponding local prediction has been
robustly made as its perturbation steeply increases the loss and
severely penalizes the model. Conversely, small ∂2

o
/∂ϵk2

indicates that the corresponding local predictions are less
robust. Since ∂2

o
/∂ϵk2 essentially captures how “rigid” a given

local prediction is, it is hereon referred to as local prediction
rigidity or LPR for short.
Having derived the LPR for a generic ML model, one can

make further substitutions to obtain the expression for a
specific type of model. For a linear model
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where xk is a row vector containing the features of environment
k. The Hessian reads
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where C = XTX is the covariance of the feature matrix X of the
training set, whose rows [ ] =X xA A A jj

are the feature

vectors of each structure. Note, also, that the second term on
the right-hand side of eq 6 vanishes since the predictions are
linear in the weights. Therefore, for the linear model

=
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As already mentioned, when an L2 regularization with
regularizer strength μ is added to the loss, it is sufficient to set

+C C .
For a sparse kernel model with L2 regularization, the

following expressions are obtained from direct substitution
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where we adopt the notations from ref 55 in which N indicates
the training set and M indicates the active set. This means that,
for the sparse kernel model, the LPR of the local environment
k is

=
+k K K K k
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1
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In both models, the LPR depends solely on the composition
of the training set and not on the actual loss or target
quantities. Such an exclusive dependence on the makeup of the
training set hints at the crucial importance of judiciously

composing the training structures to improve the level of
robustness in the local predictions.
Here, one should recognize that this property is also shared,

in the context of Gaussian process regression (GPR), by
estimators of the uncertainty of a prediction. For instance, in
the subset of regressor (SR) approximation,56 one can express
the uncertainty as

=y( )
LPRk

k

2
SR

(17)

where, again, μ is the regularizer strength. Similar relations
follow for other uncertainty estimates.1 It is interesting to see
that in all cases, the LPR-containing term exclusively captures
the dependence of Δ2ỹk on the composition of the training set,
as seen through the lens of the features, or the kernel, used by
the model.
So far, we have constructed all of the main theoretical

elements to quantitatively describe the robustness of a
prediction for a given local environment, which in itself is
not a physical observable. Here, we briefly note that in the
limiting case of a structure consisting of a single type of local
environment (e.g., crystalline structures in which a single
Wyckoff position is occupied), the local prediction has a well-
defined target of ỹk = YA/NA and should therefore exhibit a
maximal LPR value: any change to it would result in a change
in the prediction of the global quantity of the entire structure,
with a direct increase in that is consequential. On the
contrary, in disordered structures or structures containing
atoms of different species, the local predictions would generally
be far less robust and exhibit much lower LPR values due to
the degeneracy in the ways in which the global quantity can be
partitioned. In the following sections, we demonstrate how the
LPR becomes defined for the general case and also propose
strategies that can systematically improve the LPR and the
robustness of local predictions made by atomistic ML models.

3. PROOF-OF-CONCEPT USING TOY MODELS
To establish and demonstrate the concepts associated with the
LPR, we first constructed and examined a toy model. This
model is devised to make local predictions, ỹ ≡ ỹ(x),
depending solely on a scalar input x (local features), but is
trained using global targets Y that are the sum of contributions
from multiple xk values, i.e., Y =∑ ỹk. This formulation directly
corresponds to atomistic ML models, where the model
predictions are made for local environments in a structure,
yet regression is performed on global quantities that
correspond to the entire structure. A pseudo-data set of four
data points Y1,···,4 is constructed for training. The toy model for
ỹ(x) is assumed to be an eighth-order polynomial in x and to
include an L2 regularization term (Figure S1).
As a concrete demonstration of the idea behind the LPR, we

train a series of toy models where, for a chosen xk, ỹk is
incrementally constrained away from the original prediction by
an amount ϵk (right-hand side of Figure 1). These
perturbations inevitably affect the overall optimized loss

o

of the model. What ultimately results is a parabolic profile of
o
around the original prediction of ỹk, the curvature of which

is then quantified and interpreted as the LPR. By comparing
the two cases presented in the figure, one can observe the
different outcomes for different choices of xk: the model is far
more sensitive to changes in (b) than in (a). Such a higher
sensitivity captures the model tendency to retain the original

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00704
J. Chem. Theory Comput. 2023, 19, 8020−8031

8022

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00704/suppl_file/ct3c00704_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


local prediction and corresponds to a larger LPR. Conversely,
lower sensitivity is a sign of arbitrariness in the corresponding
local prediction, which is associated with a smaller LPR.
Since the input value x of the toy model can be continuously

varied, the LPR can be computed over the entire range of
interest and not only for points that are part of the training set.
As shown by the gray line in Figure 2, this reveals the existence
of peaks in the LPR profile at which the local predictions are
more robust than elsewhere. The positions of these peaks do
not necessarily correspond to any particular xk found in the
training set nor to the average of the group XA = [xA d1

, xA d2
,···] of

local features associated with a global quantity YA. Instead, as
we will demonstrate later, they have a delicate dependence on
the degrees of freedom associated with the decomposition of
the global quantity into local contributions. It is worth noting
that the regularization strength μ affects the overall range of
LPR and the width of the peaks that appear (Figure S2). While
regularization can therefore offer some control over the
robustness of local predictions, one must keep in mind that
overregularization can easily compromise the model accuracy:
stable local predictions are not useful unless they lead to
accurate global quantity predictions.
The analyses up to this point establish that local predictions

of atomistic ML models would exhibit varying degrees of
rigidity, which can be quantitatively described by using the
LPR. A subsequent question arises: what is the range of
possible values for the LPR? Here, we note that the lower limit
of LPR can be deduced from the expected behavior of a linear
model in the data-poor, overparametrized regime in the
absence of regularization. In such a model,

o
would always be

0 for any value of ϵk, for any xk in the training set.
2 This is

because the overparameterized model would be capable of
counteracting the perturbative changes in other local
predictions and always retain the correct predictions for the
set of global quantities. As such, LPRk would also be 0,
signifying complete arbitrariness in these local predictions.
To approach the opposite case where the LPR would instead

be extremely high, we start by introducing a special class of XA
made of a single input xA replicated NA times, i.e., xA d1

= xAd2
= ...

= xA. For such XA, the local prediction ỹk is directly linked to
the global quantity since it must target YA/NA. In the context of
atomistic ML, XA corresponds to what we later refer to as a
“single-environment” structure, where all of the local environ-
ments appearing in the structure are described by the same set
of features. For such cases, the change in

o
with a

perturbation in the local prediction ỹ(xA) will be dramatic
since it directly affects the prediction of the global quantity YA.
In fact, as shown by the black line in Figure 2, the addition to
the training set of (XA, YA) with XA = [NA xA] creates a large
peak in the LPR profile, which sits on top of xA. We remark
that LPR ≈ 1 observed at the peak is not a “hard” limit as there
could easily be cases where inclusion of multiple X groups with
similar xk values or strong regularization of the model leads to
LPR values that surpass 1.
We now discuss two examples that illustrate the behavior of

the LPR in more complicated scenarios. In the first example,
we assume the existence of two distinct “phases” in the training
set. This is realized by imposing a separation between two
groups of local feature values, each associated with small
fluctuations around one distinct value. For each X in the
training set, the same number of local features is sampled from
the two phases. A new model is then trained, and its LPR
profile is computed. The profile reveals a single peak between
the two phases, which is much larger than the LPR of the
actual phases (Figure 3a). Subsequently, another X exclusively
composed of local features belonging to a single phase is added
to the data set. The LPR profile of the retrained model shows
two main peaks corresponding to the two phases, as well as an
overall increase in LPR.
These differences in the LPR profile are explained by how

the degrees of freedom in the target quantity decomposition
change. Initially, partitioning the global quantity into
contributions from the two phases is completely arbitrary.

Figure 1. Graphical demonstration of the LPR using a numerical toy
model. The left panels show, in different colors, how the model ỹ(x)
changes when the prediction ỹk is changed by ϵk. The prediction of
the original, unconstrained model is colored gray, and the results for
the constrained models are colored different colors that depend on ϵk.
Predictions Ỹ for the total target quantity are shown by crosses and
normalized by the number N of elements of each group X of local
features. The right panels show the resulting profile of

o
as

dependent on ϵk, the curvature of which corresponds to the LPR. (a)
and (b) report the same analysis repeated for two distinct local
features. When the ϵk-dependent changes in Ỹ are small, the model
readapts without affecting

o
much and LPRk are low, as shown in

(a). On the contrary, if substantial changes in the total predictions Ỹ
occur,

o
is severely affected by ϵk and LPRk is large, as presented in

(b).

Figure 2. LPR profiles of a numerical toy model over the entire range
of interest for local feature x. Values of xk that appear in the training
set are plotted with circles on the bottom, color-coded according to
the group to which they contribute. Stars mark X/N of each global
data point in the training set, which corresponds to how the global
quantity would be predicted. The LPR profiles are shown for the
model before (gray) and after (black) inclusion of a group of local
features XA = [NA xA] that consists of one local feature xA replicated
multiple times, shown in yellow.
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That is, the local prediction for either of the two phases can be
freely made as the prediction for the remaining phase can be
adjusted to accurately recover the global quantity. The
addition of a single-phase X to the data set, however, fixes
the local prediction for the corresponding phase and,
indirectly, also constrains the prediction for the remaining
phase. In other words, the degeneracy in the partitioning of the
global quantity into contributions from the two phases gets
lifted. A similar mechanism is also at play in a second example
in which we consider multicomponent systems, represented
using a toy model with two distinct types of local features, each
associated with a separate prediction function. Results in
Figure 3b show that the effects of the previous example persist
here as well, even though the predictions are made for xk values
that are completely disconnected in the feature space.
Note that in both examples there also exist further splittings

of peaks in the LPR profile beyond what has been explained in
terms of the phases or types. This suggests that similar effects
must be taking place within each phase or type, where the
remaining degrees of freedom in decomposing the global
quantity are further resolved. All in all, one can expect the LPR
of real atomistic ML models to be determined on similar
grounds, although the way in which multiple degrees of
freedom are combined together and then resolved for
structures of diverse atomic compositions would easily become
quite complex.

4. CASE STUDIES ON DEMONSTRATIVE CHEMICAL
DATA SETS

Having clarified the construction and the interpretation of the
LPR using a toy model, we now illustrate how it can be used
for actual atomistic ML models trained on chemical data sets.
For this purpose, we consider three systems: amorphous
silicon (a-Si), amorphous carbon (a-C), and gallium arsenide
(GaAs). In all cases, we train sparse kernel models using the
total energies of the structures as the target. The predictions
are made by summing the contributions from all atomic
environments in a given structure. The data sets are judiciously
constructed to elucidate various trends that underlie the
behavior of the LPR. The atomic environments are described
using the smooth overlap of atomic positions (SOAP)
descriptor and kernel.57 For demonstrative purposes, we
choose hyperparameters that enhance the variation of the
LPR seen in the different test cases while retaining sufficient
model accuracy. As we shall see in Section 5, similar trends are
also observed when hyperparameters are used that are
optimized only for the model performance. Full details of
the data set construction and ML model training are provided
in the Supporting Information.
In elemental silicon under ambient conditions, each atom

normally bonds with four of its neighbors to form a tetrahedral
coordination environment. While most environments in the a-
Si data set are close to this ideal geometry, some are
“defective”, being either under-coordinated or overcoordinated
(as detected by a bond cutoff distance of 2.7 Å3). We study the
effect of including defect-containing structures in the training
set on the resulting LPR of the model. To analyze results,
kernel principal component analysis (KPCA) is performed to
plot the local environments in a low-dimensional representa-
tion of the feature space and then color-coded by the LPR to
study the trends. Figure 4 shows that the LPR of under-/
overcoordinated environments in the test set is comparatively
low for an ML model trained on 500 defect-free, 64-atom
structures. When 10% of the training set is replaced by the
defect-containing structures, the LPR of the defect environ-
ments is enhanced by several orders of magnitude. The
variance of local energy predictions across a committee of
models (herein referred to as Δ2ỹk without any subscripts)
significantly decreases for the defective environments, in line
with the link between the LPR and GPR uncertainty. This is
further corroborated by the change in y( )k

2
SR from eq 17,

which is reduced by up to 112 meV (compared to 3−6 meV
root-mean-square error (RMSE) per atom for a test set of
defect-containing structures).
The a-C data set is composed of 500 structures containing

64 atoms that are a mixture of “sp2” and “sp3” carbons (defined
by counting bonded neighbors up to a cutoff distance of 1.82
Å4). This effectively introduces a degree of freedom in the
decomposition of the total energy into the contributions from
the two distinct types of carbon environments. In fact, when
the model is trained on a data set exclusively composed of
structures with a 1:1 ratio between sp2 and sp3 carbons, the
energy partitioning between the two carbon types is performed
rather arbitrarily, as evident from the LPR (Figure 5b).
Drawing on what was previously observed for the toy model on
an artificial two-phase system (Figure 3a), we introduce
structures that exhibit a different ratio between the two carbon
types into the training set to lift the apparent degeneracy.
Indeed, Figure 5c shows that when 10% of the training set is

Figure 3. Effect of heterogeneity in the training data on the LPR,
demonstrated using the toy model. (a) LPR profile of a model trained
on a data set containing local feature groups X with a fixed
composition between two phases (dotted line), which hints at the
degeneracy in the local predictions for the two phases. Inclusion of a
single-phase X (yellow) lifts the degeneracy and enhances the LPR for
both phases (solid line). (b) LPR profile of a composite model trained
on a data set of groups X containing two distinct local feature types, α
and β. A data set with a fixed α/β compositional ratio results in very
low LPR for both α and β (dotted line). With the addition of X only
composed of α (yellow), the degeneracy becomes resolved, and the
LPR is enhanced for both (solid line).
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replaced by structures with a different ratio between sp2 and
sp3 carbons, the LPR increases for both. The increased
robustness in local energy predictions is confirmed by a
notable decrease in Δ2ỹk (Figure S3).
Another effect that can be demonstrated with the a-C data

set is the enhancement of LPR from the inclusion of high
symmetry, “single-environment” structures. Both sp2 and sp3
carbons have crystalline analogues, graphite and diamond,
where the local energy target is unequivocally defined as all of
the atoms in the structure are described with the same set of
local features due to symmetry. In Figure 5d, it is shown that
the LPR improves significantly when a single crystalline
diamond structure is included in the training set, especially for
the sp3 environments that are close to diamond on the kernel
PCA map. Inclusion of the diamond structure is also capable of
resolving the energy decomposition degeneracy between the
sp2 and sp3 carbon atoms, and hence improvement in the LPR
is observed for the sp2 environments as well. Once again, this
can be equivalently seen as the decrease of Δ2ỹk for both sp2
and sp3 environments (Figure S4). These results emphasize the
importance of recognizing and resolving degeneracies
associated with distinct phases or atomic types in a data set,
which could be as simple as including a small number of single-
environment structures associated with each phase/type.
Finally, we explore effects in the LPR associated with the

presence of multiple atomic species in the structures using a
GaAs data set, a physical analogue of the toy model presented
in Figure 3b. For a model trained exclusively on 400 structures
of varying numbers of atoms (176 to 384) with 1:1
stoichiometric composition (Figure 6a), the LPR remains
consistently low for both Ga and As and does not even show
significant variations in the values within. This signifies close-
to-complete arbitrariness in the energy decomposition between

the two species. Note that this would have serious implications
in terms of transferability: if this model was used to extrapolate
on pure Ga or As structures or even on structures with a Ga or
As vacancy, the predictions are likely to be nonsensical. Figure
6b−d shows the results when 10% of the training set is
replaced by structures with a different Ga/As ratio, pure Ga
structures, or pure As structures, respectively. In all cases, the
degeneracy in the local energy decomposition is resolved, the
LPR of both Ga and As is notably enhanced, and Δ2ỹk becomes
significantly smaller (Figures S5−S7).
These case studies demonstrate that similar to what was

previously observed for the toy model, robustness in the local
predictions can drastically vary even for atomistic ML models
trained on real chemical systems, and the degree of robustness
quantified by the LPR depends on the composition of the
training set. To improve the LPR and hence the robustness of
the local predictions, one must first ensure a sufficient
representation of all local environments of interest in the
training set structures. In the case of chemical systems with
distinct phases/local environments or species, the training set
should be carefully composed so that the degeneracy in the
energy decomposition could be resolved as much as possible.
We note in closing that these effects are not specific to the
sparse kernel model, as similar trends are consistently observed
when the analyses are repeated for linear ridge regression
models (Supporting Information).

5. REALISTIC APPLICATIONS
The demonstrative case studies of Section 6 elucidate the
existence of varying degrees of robustness in the local
predictions made by atomistic ML models, as quantified by
the LPR, and how it depends on the composition of the

Figure 4. LPR and local energy predictions of models trained on the amorphous silicon (a-Si) data set before and after the inclusion of structures
containing under-/overcoordinated defect environments in the training set. (a) Kernel principal component analysis (KPCA) map with the points
color-coded by coordination numbers of the atomic environments. For each cluster of points, a corresponding schematic environment is shown as
insets. (b) KPCA map color-coded by the LPR value from each model. (c) Ratio of the variance of the committee-predicted local energies (Δ2ỹk)
vs ratio of the LPR, before and after inclusion of the defect-containing structures in the training set. (d) Parity plots of the local energies predicted
by a committee of 10 models vs the committee average prediction, where the points are color-coded by the corresponding LPR values. Energy
values are reported with respect to the atomic energy of crystalline silicon.
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training set. In this section, we further expand upon our
findings to devise strategies to systematically enhance the LPR
and the robustness of local predictions. In the general case, the
degeneracy in the local decomposition is expected to be far
more complex than those seen in the previous case studies.
One failsafe strategy to guarantee high LPR would be to
judiciously compose the training set, from scratch, in a manner
that resolves the degeneracy for as many local environments of
interest as possible. In most cases, however, such an approach
would be hindered by data availability and the computational
cost associated with generating the necessary new data.
Here, we instead propose the generation and inclusion of

single-environment structures into the training set as a simple
yet effective strategy in which the LPR can be systemically
enhanced. As previously discussed, single-environment struc-
tures are those composed of one local environment replicated
multiple times, such as the case of single-species crystalline
structures with a single Wyckoff position, which leads to an
unequivocal definition of the local prediction target. This
results in a maximal LPR value for the corresponding local
environment and increased LPR for sufficiently similar
environments around it (Figures 2 and 5d). Then, by
introducing single-environment structures that closely resem-
ble the local environments of interest to the training set, one
can improve the robustness of the model predictions, as
evidenced by an enhancement in the LPR. One should also

note that due to their high symmetry (i.e., small and simple
unit cells), generating such structures and obtaining their
reference properties is considerably cheaper than constructing
the rest of the data set.
To demonstrate this strategy, we present a realistic case

study where the inclusion of single-environment structures in
the model training enhances the LPR for the local environ-
ments of interest in the target system. For this, we direct our
attention to the studies of a-C films conducted by Caro et
al.58,60 Benefiting from the scalability of atomistic ML models,
the authors carried out large-scale simulations to uncover the
growth mechanism of a-C films when they are grown by the
deposition of highly energetic ions onto a substrate. They also
computed the GPR-based error estimates to ensure that the
uncertainty in the model predictions remains reasonably low
throughout their simulations. Here, we further expand on this
by showing that it is possible to systematically enhance the
LPR for particular local environments of interest and reduce
the uncertainty in the model predictions.
The a-C films from ref 58 significantly vary in their mass

densities, depending on the energies of incident atoms for
deposition. The films hence exhibit different similarities in
their local environments to graphite (lower density) or
diamond (higher density), which are both crystalline, single-
environment structures. As such, we train and analyze carbon
ML models before and after the inclusion of single-environ-
ment structures obtained as high-symmetry distortions of
diamond or graphite. First, we train a SOAP-based sparse
kernel model with the identical set of hyperparameters used in
the reference study,30 on 1000 randomly chosen a-C structures
from the authors’ published data set. The model is
subsequently retrained under the same conditions, but with
10 structures in the training set replaced with diamond and/or
graphite and derivative structures. The derivative single-
environment structures are generated by distorting the unit
cell vectors while occupying the original, single Wyckoff
position (Figure S16). This procedure ensures that while the
local environment changes, all atoms in the unit cell are still
described equivalently. Full details of the model training and

Figure 5. KPCA maps for an ensemble of amorphous carbon
environments colored by the hybridization of the atoms, shown in (a)
and then by the LPR of the models trained on differently composed
training sets. The top and bottom clusters of points correspond to the
sp2 and sp3 environments, respectively, and the corresponding
schematic environments are shown as insets. (b) Results obtained
when the model is trained on an initial data set exclusively composed
of structures that retain a 1:1 ratio between sp2 and sp3 carbons. (c)
10% of the initial data set is replaced with structures exhibiting a
different sp2 to sp3 ratio. (d) Single structure in the initial data set is
replaced with the crystalline diamond structure, for which the location
in the KPCA map is marked with a cross.

Figure 6. KPCA maps for a GaAs data set. Separate maps are shown
for Ga (top row) and As (bottom row) atomic environments, and the
points are color-coded by the corresponding LPR values. Results are
shown for a series of models trained on data sets with different
compositions: (a) exclusively composed of structures with a Ga/As
ratio of 1:1; (b) with 10% of the data set replaced with structures
exhibiting a different Ga/As ratio; and (c,d) with 10% of the data set
replaced with pure Ga or pure As structures, respectively.
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derivative single-environment structure generation are pro-
vided in the Supporting Information.
Figure 7 shows the enhancement in the LPR with the

inclusion of single-environment structures for the representa-
tive low- and high-density a-C films. When 10 diamond-like
single-environment structures are included, the LPR enhance-
ment is mostly observed for the local environments in the high-
density a-C film (Figure 7a, stronger green color). Conversely,
when 10 graphite-like single-environment structures are
included, the LPR enhancement takes place primarily for the
environments in the low-density film (Figure 7b). For 100
local environments across both films that are the most similar
to the newly added single-environment structures, we observe
an average LPR enhancement of 31% for the diamond-like
environments and 54% for the graphite-like environments.
Interestingly, when both types of single-environment structures
are incorporated into the training set, i.e., five diamond-like
and five graphite-like single-environment structures, enhance-
ment of the LPR is observed throughout both low- and high-
density a-C films (Figure 7c), with an average enhancement of
36% for the 200 previously selected local environments. In
terms of y( )k

2
SR , inclusion of the single-environment

structures reduces the uncertainty by up to 87%. Such
improvements take place while the accuracy of the models
remains largely the same, where the % RMSE on the test set
changes from 12 to 14% at most.
These results prove that generation and inclusion of single-

environment structures similar to the local environments of
interest is a highly effective strategy to systematically enhance
the LPR and improve the robustness in the local predictions of
the ML model. It is striking to see that notable enhancement is
already induced by replacing only 1% of the data set with
single-environment structures. While only diamond- and
graphite-like single-environment structures are considered
here, the discovery and inclusion of other single-environment
samples, diverse in their structures yet similar to the local
environments of interest, would likely induce further enhance-
ments in the LPR.

The case studies up to this point clearly demonstrate how
the robustness in the local predictions can be estimated using
the LPR. To provide a practical example in which an increase
in the LPR is also associated with improved model trans-
ferability, we consider another case study on a-C, assessing the
transferability of ML models trained on bulk, high-density a-C
structures to the surface-containing a-C structures from
Deringer et al.61 For a model trained exclusively on 1000
high-density (2.9−3.6 g/cm3) a-C structures, low LPR is
observed for the surface atoms of the surface-containing
structures (see Figure S17). For models that are modified by
training on data sets where 1% is replaced with either graphite-
like single-environment structures or low-density (<2.1 g/cm3)
a-C structures, significant enhancement in the LPR for the
surface atoms is observed. These two models show much
higher accuracy in the predictions for the out-of-sample
surface-containing structures (Figure S18). The RMSE on the
total energy per atom decreases from 722 meV of the original
model to 446 meV (introduction of single-environment
structures) and 167 meV (introduction of low-density
structures). This illustrates how striving for higher LPR and
more robust local predictions can also lead to improved
stability and transferability of the model in terms of global
predictions. Further details of this case study can be found in
the Supporting Information.

6. EXTENSION TO NN MODELS
Thus, far, we have applied the LPR analysis only to linear and
kernel models, which are associated with a convex loss function
that can be minimized analytically. We now extend our study
to the case of NN models. NNs are a large class of regression
methods in atomistic ML.23,25−27,62−65 They are generally
regarded to be far more “flexible” than their linear counter-
parts, given the significantly larger number of weight
parameters involved in training the model. One peculiarity of
NN models is that they cannot be optimized in an analytical,
deterministic way: model training is often carried out with
recursive numerical methods and does not exactly reach the

Figure 7. Enhancement in the LPR for low-density (left) and high-density (right) carbon films taken from ref 58 with the inclusion of single-
environment structures in the training set. Results are shown for SOAP-based sparse kernel models of elemental carbon, as described in the text. In
all cases, the enhancement is computed with respect to a baseline model trained on 1000 amorphous carbon structures. (a) LPR enhancement
when 10 training set structures are replaced with diamond-like single-environment structures, which constitutes only 1% of the training set. The
enhancement is mostly observed for the local environments of the high-density film. (b) LPR enhancement when 10 structures are replaced with
graphite-like single-environment structures. The enhancement takes place for the environments found in the low-density film. (c) LPR
enhancement when five diamond-like and five graphite-like structures are incorporated into the training set. The enhancement is consistently
observed for the local environments of both films. Structures were visualized using OVITO.59 Axis labels and scale bar shown in the bottom left
corner correspond to all of the panels.
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actual minimum, which is an assumption underlying the
formulation of the LPR. Here, we assume that the NN models
trained for our analysis are close enough to the minimum for
the LPR formulations to still be applicable. Another point to
note is that the second-order derivative A

o of eq 4 does not
vanish in general for NN models. Nevertheless, as is customary
in the context of nonlinear optimization,66 we assume a
negligible statistical correlation between (YA − ỸA) and A

o

over the training set and drop the second term on the right-
hand side of eq 6. In practice, we obtain Ho by computing and
accumulating i

o for the local environments in the training set
by using the automatic differentiation framework in PyTorch.67

We train a simple multilayer perceptron model with 2
hidden layers, each composed of 16 nodes with a nonlinear
sigmoid activation function. The model is trained on the same
carbon data set as in the previous section with the SOAP
power-spectrum vectors as the input layer and their local
energies predicted at the output layer. We adopt the Behler−
Parrinello approach of summing the local NN predictions
outside of the NN model to regress global quantities.23 We
also perform explicit L2 regularization of the NN model
weights rather than the conventional early stopping with
respect to a validation set to retain the loss function used in
deriving the LPR and ensure comparability with the previous
linear models.68 Full details of NN model training and LPR
calculation are provided in the Supporting Information. The
test set % RMSE for the resulting NN model is 12%.
For the analysis, the LPR and Δ2ỹk of the low-density carbon

film from the previous section are calculated for the sparse
kernel model and the NN model. In Figure 8a, both models
exhibit a clear inverse proportionality between the LPR and

Δ2ỹk for the local predictions across a committee of models.
This corroborates the relationship between the LPR and the
uncertainty in the local predictions and how it also extends to
nonlinear NN models. Additionally, in Figure 8b, the
difference in the local energy predictions of the two models
diminishes when the LPR increases. This provides a clear
example of how the LPR can be used to quantify the stability
of local predictions to the choice of ML architecture,
legitimizing to an extent the use of atom-centered contribu-
tions for posthoc interpretations.
An interesting difference to be noted here is the correlation

between the LPR (or Δ2ỹk) and the local environment
similarity to diamond. In the sparse kernel model, Δ2ỹk
decreases with increasing similarity to diamond, which stems
from the abundance of diamond-like environments in the
training set (Figure S19). For the NN model, such a
correlation is absent, and the lowest values of Δ2ỹk are also
observed for the environments that differ substantially from
diamond. This suggests that the heuristic observations of the
direct dependence of the LPR on the data set composition,
which we have seen for linear and kernel models, apply only
partially to the NN model, which can be, in part, attributed to
its nonlinearity (see Figure S20). Here, we note that the
nonconvex nature of the NN optimization process, and the fact
that the LPR is defined as a local response of the loss around a
single local minimum, makes it difficult to compare the LPR
between models that are independently trained on different
data sets and to verify how much of the previously observed
trends with respect to data set modifications apply to the NN
models.

7. CONCLUSIONS
While the local decomposition approach commonly adopted
by atomistic ML models has proven to be very successful, it
inevitably introduces a degree of arbitrariness into the model
predictions, which are made locally and without a well-defined
target. While it is not possible to rigorously justify these atom-
centered decompositions, one should still make them as robust
as possible to the model training details, such as the model
architecture and the training data set makeup. To this end, we
have devised LPR, which allows one to quantify the robustness
of the local predictions made by atomistic ML models. For a
range of models and data sets, we have demonstrated that the
LPR can vary drastically between different local environments.
Local predictions of atomistic ML models should therefore be
interpreted cautiously, and the LPR should be taken into
consideration alongside the model predictions.
Our analyses have also shown that the process in which the

LPR becomes determined for an ML model prediction is
largely dependent on the degeneracies associated with the local
decomposition of the target global quantities. To systematically
improve the LPR, the data set for model training should be
judiciously constructed to eliminate as much of the degeneracy
as possible. For this, all local environments of interest should
be sufficiently well-represented in the data set for model
training. In cases where multiple atomic types or species are
present, many different chemical and structural compositions
must be probed by the data set to eliminate the degeneracy
between the types or species. One can also generate and
include single-environment structures to systematically en-
hance the LPR of a model for the local environments of
particular interest. Last, the LPR can even be utilized as a

Figure 8. Extension of the LPR analysis to the NN model. (a) Δ2ỹk
for a committee of 10 models vs the LPR, calculated for the low-
density carbon film using the sparse kernel model (left) and NN
model (right). (b) Difference in the local energy predictions vs
minimum LPR between the sparse kernel model and the NN model.
In all cases, data points are colored by the SOAP kernel similarity of
the local environments to that of pristine diamond.
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metric of uncertainty across different types of atomistic ML
models.
The clear connection between the LPR and uncertainty

suggests that measures of error in the local predictions, which
are readily available in several widely used models, can be used
to compute a substitute for the LPR. This makes it possible for
one to easily expand on the insights found in our study for a
wider range of atomistic ML models. As the derivation of LPR
is not limited to the atomic decomposition primarily dealt with
in this study, it can be extended to other decomposition
schemes: multiple body-order decomposition, short-range
versus long-range decomposition, and so forth. This allows
one to precisely identify where the ML model lacks robustness
in the predictions and to identify effective ways to improve it.
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■ ADDITIONAL NOTES
1In the projected process approximation, a further term arises,
k A A k K k( , ) ( )k k Mk MM Mk

T 1 , which vanishes in the SR
approximation due to the Nyström approximation for the
covariance function. See Chapter 8 of ref 56
2Here we note that there is an exception to this, which is when
xk is the feature of group XA in the training set where XA = [NA
xA]. In real chemical systems, this corresponds to the case of
single-environment structures discussed later on.
3The value of 2.7 Å is smaller than the commonly used value
of 2.85 Å for silicon bond detection. This value was
heuristically chosen to prevent the neighboring silicon atoms
from being present in the distance range of the smooth cutoff
function of the SOAP descriptor.
4Similar to silicon, the smaller value of 1.82 Å as opposed to
1.85 Å was heuristically chosen to prevent the neighboring
carbon atoms from being present in the distance range of the
smooth cutoff function of the SOAP descriptor.
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