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ABSTRACT In contrast to microbial metagenomics, there has still been only limited 
efforts to benchmark performance of virome analysis approaches in terms of faith­
fulness to community structure and of completeness of virome description. While 
natural communities are more readily accessible, synthetic communities assembled 
using well-characterized isolates allow more accurate performance evaluation. Starting 
from authenticated, quality-controlled reference isolates from the DSMZ Plant Virus 
Collection, we have assembled synthetic communities of varying complexity up to a 
highly complex community of 72 viral agents (115 viral molecules) comprising isolates 
from 21 viral families and 61 genera. These communities were then analyzed using two 
approaches frequently used in ecology-oriented plant virus metagenomics: a virion-asso­
ciated nucleic acids (VANA)-based strategy and a highly purified double-stranded RNAs 
(dsRNAs)-based one. The results obtained allowed to compare diagnostic sensitivity of 
these two approaches for groups of viruses and satellites with different genome types 
and confirmed that the dsRNA-based approach provides a more complete representa­
tion of the RNA virome. However, for viromes of low to medium complexity, VANA 
appears a reasonable alternative and would be the preferred choiceif analysis of DNA 
viruses is of importance. They also allowed to identify several important parameters and 
to propose hypotheses to explain differences in performance, in particular, differences in 
the imbalance in the representation of individual viruses using each approach. Remarka­
bly, these analyses highlight a strong direct relationship between the completeness of 
virome description and sample sequencing depth which should prove useful in further 
virome analysis efforts.

IMPORTANCE We report here efforts to benchmark performance of two widespread 
approaches for virome analysis, which target either virion-associated nucleic acids 
(VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using 
synthetic communities of varying complexity levels, up to a highly complex community 
of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 
genera of plant viruses. The results obtained confirm that the dsRNA-based approach 
provides a more complete representation of the RNA virome, in particular, for high 
complexity ones. However, for viromes of low to medium complexity, VANA appears 
a reasonable alternative and would be the preferred choice if analysis of DNA viruses 
is of importance. Several parameters impacting performance were identified as well 
as a direct relationship between the completeness of virome description and sample 
sequencing depth. The strategy, results, and tools used here should prove useful in a 
range of virome analysis efforts.
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S ignificant advances in the development of molecular methods have been made 
in the last decades, including innovative sequencing technologies based on 

DNA/RNA approaches such as targeted reverse-transcription (RT) PCR or non-targeted 
high-throughput sequencing (HTS). HTS, also known as next-generation sequencing, 
enables high-speed, high-throughput sequencing of native DNA/RNA or amplified DNA, 
generating enormous amounts of sequencing data. These developments led to major 
advances in the field of metagenomics, i.e., the sequencing of the entire genetic material 
of a sample, and to a new understanding of microbial diversity (1, 2). Viral metagenomics 
has revealed the immense diversity and ubiquity of viruses in nature and thus revolu­
tionized our vision of these biological agents (1, 3–8). Specifically, these metagenomic 
studies have revealed that virus sequence data available in public databases are biased 
toward human viruses or viruses of anthropological significance, with, e.g., influenza-like 
viruses found in fish and amphibian hosts (9) or more than 75% of the plant virus species 
characterized up to 2006 having been isolated from crops (10). These findings, together 
with reports on viruses associated with hosts different from those known for the vast 
majority of their relatives, such as flavi-like viruses found in plants (11, 12), have raised 
novel questions about virus-hosts co-divergence or host switching.

In plant virology in particular, advances in the development of viral metagenome 
analyses have been of great importance in terms of early detection of known viruses and 
discovery of novel plant viruses (4, 7, 13, 14), as more than half of emerging diseases 
in plants are thought to be caused by viruses (15). HTS has a huge potential in plant 
virus diagnostics because it allows to picture the complete phytosanitary status of a 
plant and to differentiate between virus variants that may contribute differentially to 
disease etiology (14). For example, in a metagenomic analysis of sour cherry showing 
symptoms of Shirofugen stunt disease (SSD), a divergent isolate of little cherry virus 1 
(LChV1) was identified in the absence of any other viral agent, suggesting that LChV1 
could be responsible for the SSD disease (16). However, metagenomic approaches have 
also revealed that plants are often infected by more than one virus (17), complicating the 
unraveling of the etiology of plant viral diseases.

HTS has also renewed the link between classical plant virology and ecology (4, 18). 
Viromes identified from both cultivated and uncultivated plant populations enabled the 
study of ecological processes such as the movement of viruses between different host 
reservoirs, the effects of management practices or of the anthropological simplification 
of ecosystems (19–23).

For the efficient characterization of complex plant-associated viromes, there is 
generally a need to enrich viral sequences and conversely reduce the amount of host 
plant sequences that are generated. Different target nucleic acid populations have 
been used for virome studies but, coupled with the virus enrichment constraint, the 
most widely used approaches have targeted virion-associated nucleic acids (VANA) 
or double-stranded RNAs (dsRNAs) (4, 7). For single plant samples or low-complexity 
samples, the use of total RNA or small interfering RNA (siRNA) sequencing are considered 
the most universal and straightforward options (24, 25), but when the viromes of entire 
plant communities are analyzed from complex plant pools, VANA or dsRNA enrichment 
methods are generally preferred (4, 7, 19, 21, 26). A huge number of bioinformatic tools 
are available for HTS data analysis and have been, together with nucleic acid preparation 
strategies, extensively reviewed (13, 27, 28). The choice of a specific viral enrichment 
method or bioinformatic pipeline depends on the experimental objectives. Even though 
there have been some efforts toward performance comparisons of different virome 
analysis approaches (29, 30), there is a need to better benchmark them and assess their 
respective efficiency at providing a faithful and comprehensive description of complex 
viromes, without introducing biases. In a virus discovery study on single quarantine 
plants, VANA was shown to assemble longer contigs compared to siRNA for a novel DNA 
Mastrevirus (31), while in a study investigating the virome of native plants in Oklahoma, 
more viral operational taxonomy units (OTUs) could be detected with dsRNA compared 
to VANA (26). Ma et al. (32) provided a more comprehensive comparison of these two 
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approaches using the natural viral communities present in complex plant pools from 
managed and unmanaged sites. The authors found significant differences with more 
viral contigs and, on average, longer contigs assembled from libraries prepared from 
dsRNA. With regard to viral richness, more OTUs were detected by the dsRNA approach 
compared to the VANA one. However, most DNA viruses were only detected using VANA.

Standardization is fundamental for the reliable representation of microbiome/virome 
in metagenomic studies and is challenged by the rapid development of sequencing 
platforms, protocols, and bioinformatic pipelines (33). Benchmarking is a powerful 
tool to provide standards that can be used to compare and evaluate the perform­
ance of the different steps required in metagenomic studies, including target nucleic 
acids population extraction, library preparation, sequencing (and sequencing platform), 
and, finally, bioinformatics sequence analysis. In this context, benchmarking studies in 
metagenomics are often based on mock communities that are microbial assemblages of 
known composition which can be used to compare the actual vs the expected perform­
ance of a process. Besides the use of actual empirical phytoviromes (32), the use of 
synthetic communities could therefore provide a more precise and detailed benchmark­
ing of HTS-based virome description strategies. Bacterial and fungal mock communities 
have thus been developed and used to compare the performance of different sequenc­
ing platforms, e.g., short-read Illumina or long-read PacBio SMRT sequencing (34–36). 
In recent years, viral mock communities have also been developed, especially in the 
medical and clinical field, to benchmark protocols in human virome studies. For example, 
the nucleic acid preparation step for the virome analysis of fecal samples was optimized 
using a combination of both viral and bacterial mock communities (37). In another study, 
the bias introduced by viral enrichment or random amplification was assessed using a 
DNA virus mock community (38). Viral synthetic communities have also been used to 
benchmark library preparation approaches in environmental (39) and insect (40) virome 
studies. However, the use of synthetic communities in plant virome studies is lagging 
behind. So far, the only study using a defined mix of plant viruses to assess different 
nucleic acid preparation protocols was performed by Gafaar and Ziebell (30). This study 
revealed a better performance of enriched dsRNAs as compared to ribodepleted total 
RNA or siRNAs for virus detection. However, only low-complexity synthetic communities 
have been used so far, whereas most of the viral metagenomes associated with natural 
plant communities are composed of a complex and diverse mixture of DNA and RNA 
viruses that are studied from pooled plant samples. In the present work, we used 
a total of 22 synthetic plant virus communities of varying degrees of complexity to 
compare the diagnostic performance of VANA- and dsRNA-based approaches for virome 
description and analyzed how this performance is affected by sequencing depth and 
other parameters. In parallel, a first attempt at contrasting the performance of VANA 
and dsRNA approaches with those of RNASeq was conducted, using synthetic data sets 
assembled in silico from single-isolate RNASeq data.

MATERIALS AND METHODS

Mock viral communities design

A list of 61 different viruses (assigned to 59 different genera from 18 different fam­
ilies plus one unassigned virus) was selected among those kept in collection and 
available at the Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell 
Cultures (Braunschweig, Germany), taking into consideration three main criteria: (i) 
maximizing viral diversity by including viruses with all genome types (ssDNA, dsDNA-RT, 
dsRNA, +ssRNA, −ssRNA), (ii) including (with one exception) only a single representa­
tive virus per viral genus, and (iii) selecting viruses/isolates for which a complete or 
near-complete genomic sequence is available. In some cases, these genomic sequences 
had been determined previously, while in other cases, they were developed specifi-
cally in the frame of efforts to further improve the characterization of isolates distrib­
uted by the DSMZ through the European Union-funded EVA-Global initiative (https://
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www.european-virus-archive.com/). Quality-controlled samples were obtained from the 
DSMZ in the form of infected, lyophilized plant material in vacuum-sealed vials. The 
complete list of the isolates used, together with their properties and the propagation 
host in which they were provided, is given in Table 1.

Initial low-complexity pools were generated by assembling 30 mg of virus-infected 
samples into 12 viral communities comprising five viruses each (150 mg of plant material 
each) and containing at least one virus with a genome type different from +ssRNA (Table 
S1). Pea enation mosaic virus was counted as one virus, when it is in fact a co-infection 
of pea enation mosaic virus 1 (Enamovirus) and pea enation mosaic virus 2 (Umbravirus). 
Stepwise combinations of these five-viruses mock communities were then assembled to 
create communities of increasing degrees of complexity (Fig. S1), yielding a total of 22 
communities with complexity ranging from 5 to 60 viruses.

Double-stranded RNA extraction

Double-stranded RNAs were purified from pooled samples according to reference (41) 
with some minor modifications. Briefly, instead of 75 mg, 150 mg dried plant mate­
rial (representing a pool of five plants, Table S1) was used as starting material and 
buffer volumes increased proportionally. Plants were ground in liquid nitrogen until a 
fine powder was obtained which was then mixed with the phenol-extraction buffer. 
Following gentle agitation for 30 min and centrifugation, the supernatant was decanted 
and half of it was directly further processed, while the other half was used for the 
stepwise gradual assembly of pairs of communities used to generate more complex 
viral communities. In this way, six communities of 10 viruses each, then three commun­
ities of 20 viruses, and, finally, a single community of 60 viruses could be assembled. 
Between each step, assembled samples were vortexed for at least 30 s for optimal 
homogenization. A detailed scheme of the pooling strategy to form communities of 
different complexities is shown in Fig. S1. Irrespective of its complexity, a supernatant 
volume corresponding to an initial input of 75 mg of plant sample was thus obtained 
and further processed as per the protocol of Marais et al. (41) which involves two rounds 
of CC41 cellulose (Whatman) chromatography followed by a nuclease treatment (DNase 
RQ1 plus RNaseA under high salt conditions) to remove any remaining host DNA and 
single-stranded RNA. A negative extraction control using only buffer was systematically 
included. Purified dsRNAs were finally converted to cDNA and randomly amplified while 
simultaneously adding MID (multiplex identifier) tags (41, 42).

VANA extraction

VANA extractions were performed on pools of five viruses similarly prepared as for 
dsRNA, using the protocol of François et al. (42) with minor modifications. Briefly, 150 mg 
of lyophilized plant material (representing a pool of five plants, Table S1) was ground 
in Hank’s buffered salt solution (1:10) with four metal beads within a grinding machine 
(Fastprep 24, MP Biomedicals). Following two centrifugation steps (4,000 g for 5 min 
at 4°C and 8,000 g at 4°C for 3 min), the supernatants were split and used in the 
same stepwise assembly of more complex communities as for the dsRNA approach (Fig. 
S1). A negative, buffer-only, extraction control was systematically included. Each of the 
thus generated samples, representing different degrees of community complexity, was 
filtered through a 0.45 µm filter and centrifuged at 148,000 g for 2.5 hours at 4°C to 
concentrate the virus particles. Unprotected nucleic acids were eliminated by DNase 
and RNase treatment at 37°C for 1.5 hours. Viral RNA and DNA were then isolated 
using the NucleoSpin Virus kit (Macherey Nagel, Hoerdt, France), using only 80 µL of 
sample in the first lysis step and omitting the addition of proteinase K. Extracted RNAs 
were transformed to cDNA using Superscript III reverse transcriptase (ThermoFisher 
Scientific/Invitrogen), cDNAs were further purified with the QIAquick PCR purification 
Kit (Qiagen, Courtaboeuf, France), and a complementary strand was synthesized using 
the Klenow fragment of DNA polymerase I. Finally, a random PCR amplification adding 
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barcoded dodeca linkers and corresponding MID primers during reverse transcription 
and PCR, respectively, was performed (42).

Illumina sequencing

PCR products from all communities analyzed using the dsRNA and VANA procedures 
were finally purified using the MinElute PCR purification kit (Qiagen) and equimolar 
quantities of amplification products were sent to Illumina sequencing in multiplexed 
format (2 × 150 bp) on two lanes (one for VANA and one for dsRNA, respectively) on a 
NovaSeq 6000 system at the GetPlaGe platform (GenoToul INRAE Toulouse, France).

Generation of synthetic datasets for viral communities using single-isolate 
RNASeq data

For all but one of the viral isolates used to build the synthetic communities, available 
single-isolate ribodepleted RNASeq data sets (Leibniz-Institute DSMZ) were used to 
reconstruct in silico data sets corresponding to the different communities with read 
number and average reads length paralleling those from the VANA and dsRNA data­
sets. These reconstructed datasets, mimicking the analysis of the various communities 
by RNASeq, were analyzed in parallel to those generated by the VANA and dsRNA 
approaches.

HTS data analysis

Sequencing reads were imported into CLC Genomics Workbench v. 21.0.3. (CLC-GW, 
Qiagen) and adapters were removed from reads followed by trimming on quality and 
length using default settings and a minimum read length of 60 nucleotides (nt). Final 
trimmed reads were on average 111–113 nt long for the various datasets. Datasets were 
normalized by resampling at varying depth as needed, using the random reads sampling 
tool in CLC-GW.

To analyze virus detection performance as a function of contig size, de novo 
assembly was performed with CLC-GW (word size, 50; bubble size, 300) using various 
minimum contig lengths (125, 175, 250, 350, 500, 1000 nt).  In order to identify 
viruses possibly present in the samples used, in addition to the expected reference 
viruses, contigs were annotated by a BlastX analysis (43) against the viral RefSeq 
portion of the non-redundant (nr/nt) National Center for Biotechnology Information 
(NCBI) GenBank database. For the additional viruses thus identified, a genomic 
scaffold was reconstructed and extended by repeated rounds of residual reads 
mapping using CLC-GW, thus yielding near-complete genome sequences that were 
used as reference for the relevant virus (Table 2).  In a few cases, these assemblies 
were considered too incomplete and the closest complete genomic sequence in 
GenBank was selected as reference sequence (Table 2).

In order to determine virus detection performance, unassembled reads or de novo 
assembled contigs were mapped against the reference genome segment(s) for each 
virus (Tables 1 and 2) using very stringent mapping parameters (length fraction 100%, 
minimal similarity fraction 90%) in CLC-GW. In order to take into account inter-sample 
crosstalk due to index hopping (44, 45), a threshold of positive detection was computed 
for each viral molecule by calculating the average plus 3 standard deviations (SD) of 
background virus reads observed in libraries generated from communities that did not 
contain the corresponding virus. Assuming a normal distribution of background reads, 
the use of such a positivity threshold would provide a <1% risk of reporting a false-posi­
tive detection (https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule).

Comparison of parameters (number, average length) for de novo assembled viral 
contigs obtained from VANA and dsRNA data sets normalized at different sequenc­
ing depths was performed with five resampling repeats at each depth. Statistically 
significant differences were identified using a two-sample t-test.
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RESULTS

Viruses or virus-like agents identified from viral communities HTS data

The analysis of reads from both the VANA and dsRNA approaches for all communi­
ties revealed the presence of all expected viruses, although a few viruses were only 
represented by a limited number of reads or were only detected using one of the two 
approaches. Overall, only lettuce ring necrosis virus turned out to be fully absent from 
VANA reads, while banana bunchy top virus was only represented by a single dsRNA 
read. It should also be noted that not all viruses could be detected in all the communities 
of different complexity in which they were expected.

In addition to the expected 61 viruses, evidence for the presence in some commun­
ities of additional viruses or virus-like agents was obtained through the BlastX index­
ing of de novo assembled contigs from the low-complexity, five-viruses communities. 
A total of 11 unexpected agents were thus identified (Table 2). These include three 
linear ssRNA satellites associated with the helper virus isolates included in the commun­
ities (turnip crinkle satellite F, pea enation mosaic satellite RNA, and strawberry latent 
ringspot virus satellite RNA), latent viruses associated with the propagation hosts used 
(Hordeum vulgare endornavirus, maize-associated totivirus, maize-associated totivirus2, 
and Chenopodium quinoa mitovirus 1), as well as viruses in co-infection with some 
of the viral isolates used (poinsettia mosaic virus, tobacco mosaic virus, turnip yellows 
virus, and maize streak Réunion virus) (Table 2). Taken together, these agents represent 
three additional viral families, for a total of 21 viral families (plus satellites) used for the 
assembly of communities. For these additional agents, either a nearly complete genome 
was reconstructed from sequencing reads and used as the mapping reference or the 
closest full genome sequence in GenBank was used for further mapping analyses (Table 
2). For all other viral isolates included in the communities, complete or nearly complete 
genomic sequences were available (Table 1).

While the communities of varying complexities analyzed here will be referred to as 
5-viruses, 10-viruses, 20-viruses, and 60-viruses, it should be kept in mind that the real 
number of viruses present in a given community might be slightly different because of (i) 
the presence of one or more of the additional viruses and (ii) the counting of pea enation 
mosaic virus as one virus when it is in fact a co-infection of pea enation mosaic virus 1 
(Enamovirus) and pea enation mosaic virus 2 (Umbravirus).

Read mapping analysis of VANA and dsRNA datasets for the communities of 
various complexities

To be able to compare results between low- and high-complexity communities, all 
datasets were normalized by randomly subsampling 120K cleaned reads, the depth of 
the five-viruses community with the lowest number of reads. To address the issue of 

TABLE 2 Additional viruses identified by analysis of the HTS data in the samples used to assemble the synthetic mock communities of varying complexity

Family Genus Virus Acronym Genome type
Reference sequence 
accession numbera

Virgaviridae Tobamovirus Tobacco mosaic virus TMV ssRNA(+) OQ953825
Tymoviridae Unassigned Poinsettia mosaic virus PnMV ssRNA(+) OQ953828
Endornaviridae Alphaendornavirus Hordeum vulgare endornavirus HvEV ssRNA(+) OQ953829
Solemoviridae Polerovirus Turnip yellows virus TuYV ssRNA(+) JQ862472
Geminiviridae Mastrevirus Maize streak Réunion virus MSRV ssDNA OQ953826
Totiviridae Unassigned Maize-associated totivirus MATV dsRNA OQ953827
Totiviridae Unassigned Maize-associated totivirus 2 MTV-2 dsRNA MN428829
Mitoviridae Duamitovirus Chenopodium quinoa mitovirus 1 CqMV1 ssRNA(+) MT089917

Small linear ssRNA satellite Turnip crinkle satellite RNA F TCVsatRNA F ssRNA X12749
Small linear ssRNA satellite Pea enation mosaic virus satellite RNA PEMVsatRNA ssRNA OQ953831
Small linear ssRNA satellite Strawberry latent ringspot virus satellite RNA SLRSVsatRNA ssRNA OQ953830

aAccession number of the closest sequence in GenBank that was used as reference for reads mapping.

Full-Length Text Journal of Virology

November 2023  Volume 97  Issue 11 10.1128/jvi.01300-23 8

https://www.ncbi.nlm.nih.gov/nuccore/OQ953825
https://www.ncbi.nlm.nih.gov/nuccore/OQ953828
https://www.ncbi.nlm.nih.gov/nuccore/OQ953829
https://www.ncbi.nlm.nih.gov/nuccore/JQ862472
https://www.ncbi.nlm.nih.gov/nuccore/OQ953826
https://www.ncbi.nlm.nih.gov/nuccore/OQ953827
https://www.ncbi.nlm.nih.gov/nuccore/MN428829
https://www.ncbi.nlm.nih.gov/nuccore/MT089917
https://www.ncbi.nlm.nih.gov/nuccore/X12749
https://www.ncbi.nlm.nih.gov/nuccore/OQ953831
https://www.ncbi.nlm.nih.gov/nuccore/OQ953830
https://doi.org/10.1128/jvi.01300-23


inter-sample crosstalk caused by index jumping (44, 45), a threshold of positive detection 
was computed for each viral molecule by calculating the average + 3 standard deviations 
(SDs) of background reads in libraries generated from communities that did not contain 
the corresponding virus. Assuming a normal distribution of crosstalk read numbers, this 
strategy ensures that the probability of having a mapped read number higher than the 
threshold by chance (false-positive detection) is lower than 1%.

In general, the proportion of viral reads in both VANA and dsRNA datasets was high 
(64%−89%) and was slightly affected by community complexity, with a general trend to 
reach higher values when analyzing more complex communities (Fig. 1A). The propor­
tion of viral reads in the dsRNA datasets was slightly higher than in the corresponding 
VANA datasets, with the strongest differential observed for lower-complexity communi­
ties of 5 and 10 viruses (64%−65% viral reads as compared to 79%−82%, Fig. 1A). In 
contrast, the average proportion of viral reads in RNASeq datasets for individual virus 
isolates following ribodepletion was 19.6% but with a very large standard deviation of 
26.1%.

Using the 12 communities of five viruses and a sequencing depth of 120K reads, 67 
viruses were detected with both VANA and dsRNA approaches (with detection of reads 
for at least one genomic molecule considered as positive detection for a virus with a 
multipartite genome), out of the total of 72 viruses or virus-like agents present in the 
12 communities analyzed (93.1%). However, VANA yielded reads for all six DNA viruses 
used (100%), while dsRNA yielded reads for only three of them (50%). Conversely, VANA 
yielded reads for 61 of the 66 RNA viruses or satellites (92.4%), when dsRNA yielded reads 
for 64 of them (97.0%) (Fig. 1B). As expected, and previously reported, the performance 
of VANA is thus superior for DNA viruses but that of dsRNA is slightly superior for RNA 
viruses. Using the data sets reconstructed from single plant RNASeq data, an overall rate 
of detection of 97.2% of the 71 viruses was obtained (no RNASeq data were available for 
one of the isolates used, which was therefore excluded from all computations).

The impact of increasing community complexity is reflected by the diminishing 
number of viruses detected at an equal sequencing effort of 120K reads. The perform­
ance of VANA gradually deteriorated, with detection decreasing from 61 RNA viruses 
detected to 58 (10-viruses communities) and then to 52 (20-viruses communities) to 
reach only 34 RNA viruses detected (51.5%) in the most complex community (Fig. 1B). 
The same pattern was observed for DNA viruses, with all six DNA viruses detected in the 
10- and 20-viruses communities but only one detected when analyzing the 60-viruses 
community. In the case of the dsRNA approach, performance was marginally reduced for 
the 10- and 20-viruses communities (65 and 63 RNA viruses detected, respectively) and 
less affected than for the VANA approach for the most complex community, with still 
57 of 66 RNA viruses detected (86.4%) (Fig. 1B). Remarkably, performance was the least 

FIG 1 Average proportion of viral reads (DNA and RNA viruses) in VANA (gray) and dsRNA (blue) data sets from viral communities of different complexities 

(A) and number of viruses detected at an even 120K reads depth for communities of different complexities (B). In Fig. 1B, RNA viruses are indicated by solid bars 

while DNA viruses are indicated by dashed bars.
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affected for the RNASeq approach using reconstructed communities data, with still 65 
viruses (91.5%) detected for the most complex community (5/6 DNA viruses and 59/65 
RNA viruses, or 90.7%).

If trying to compensate for community complexity by proportionally increasing the 
sequencing effort for more complex communities, the erosion in performance is less 
important for VANA, with still 57 of 66 RNA viruses detected for the 60-viruses commun­
ity (86.4%) and five of the six DNA viruses (83.3%) at a 1.44 M reads depth (12 × 120K). 
The performance of dsRNA, on the other hand, is no longer impaired, as all 66 RNA 
viruses (100%) were detected for the most complex community (result not shown). 
Similarly, the performance of RNASeq was no longer substantially impacted, with all DNA 
viruses and all but one RNA viruses detected.

The stronger degradation of VANA performance, as community complexity increases, 
correlates with a more uneven distribution of read numbers between viruses and the 
stronger dominance of a few viruses, in particular turnip yellow mosaic virus (TYMV). 
In the 60-viruses community VANA dataset, TYMV represented 67% of the reads while 
the corresponding value for the dsRNA dataset was only 28%. As shown in Fig. 2, even 
if spanning a 5 to 6 logs scale, the percentage of reads for each virus in the total 
datasets tends to be more evenly distributed between viruses in the dsRNA dataset than 
in the VANA data set for the 60-viruses community. By contrast and excluding a single 
sample showing extremely low viral read numbers, the variation in the proportion of viral 
reads in individual viral isolates analyzed by RNASeq showed much less variability as it 
remained within a 3 logs range of variation.

Although allowing to compare the performance of the VANA and dsRNA approaches, 
these analyses based on the mapping of reads against cognate reference genomes do 
not mimic the situation in metagenomic studies, in which a high proportion of viruses 
are expected to be novel and for which therefore no suitable reference genome is 
available. We therefore analyzed the performance of these two approaches following 
the de novo assembly of reads into contigs, which is known to reduce the proportion of 
un-annotated “dark matter” (46).

Impact of minimal contig length on the number of detected viruses

We first evaluated the impact of the minimal contig length on the number of detected 
viruses using the most complex community of 60 viruses and deep data sets normalized 

FIG 2 Distribution of percentage of mapped VANA (gray) and dsRNA (blue) reads for each detected virus in the 60-viruses 

community using a normalized 1.44 million reads sequencing depth. The percentages of mapped reads for each virus are 

shown on a logarithmic scale, from 1,E + 00 (100%) to 1,E − 07 (0.000001%).
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at 10M reads. As expected, and shown in Fig. 3, the number of detected viruses 
decreased as minimal contig length increased. The pattern observed for RNA viruses 
is similarly observed for DNA viruses. The dsRNA approach consistently detected more 
RNA viruses than the VANA one, irrespective of the minimal contig length used, but 
the difference increased as minimal contig length increased. Using the shortest, 125 
nt contig length, VANA identified 54 of the 66 RNA viruses or satellites present in the 
community (81.8%), while dsRNA identified 63 of them (95.5%) (Fig. 3). The correspond­
ing values for DNA viruses are, respectively, 4/6 (66.7%) and 3/6 (50%).

On the other hand, the coverage of the detected viruses (fraction of the target 
molecules represented in contigs) was much less affected by minimal contig length. 
While being relatively stable for the dsRNA approach, for which it varied between 66.5% 
and 74.9% with no clear trend, it showed a tendency to increase with contig length for 
the VANA approach, from 50.2% (>125 nt contigs) to 76.7% (>1,000 nt contigs) (Fig. S2).

For further analyses, an intermediate 250 nt minimal contig length was retained 
as it corresponds to an encoded 83 amino acid sequence that was felt sufficient for 
many conserved protein domain searches which are often used in virome analysis or 
annotation (47).

Effects of community complexity on virome description performance

We evaluated how, for a given sequencing depth, community complexity affects 
virome description performance following contigs assembly. For this, all data sets were 
normalized at a 120K reads depth. Similar to the initial analysis using reads mapping, 
the number of detected viruses was reduced as community complexity increased. Again, 
dsRNA outperformed VANA at all complexity levels, though the difference in perform­
ance remained limited for low to medium community complexities (Fig. S3). VANA 
performance degradation was, however, more drastic at high community complexity, 
dropping from 44 RNA viruses and 4 DNA viruses detected for communities of five 
viruses (66.7% of total viruses) to 11 RNA viruses and 1 DNA virus detected (16.7%) for 
the 60-viruses community. The corresponding values for dsRNA were 53 (80.3%) and 26 
RNA viruses (39.4%), with no DNA virus detected (Fig. S3). Remarkably, RNASeq turned 

FIG 3 Number of detected viruses using VANA (gray) or dsRNA (blue) in the 60-viruses community (over a total of 69 viruses plus three satellites) as a function of 

minimal contig length at a sequencing depth of 10M reads. RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.
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out to be the least affected, with, respectively, 57/71 (80.3%, five-viruses communities) 
and 34/71 viruses (47.9%, 60-viruses community) detected. These results indicate that 
even for limited complexity communities involving only five viruses, read numbers 
significantly higher than 120K are needed by the various techniques to achieve a 100% 
detection performance with a wide range of viruses.

If trying to compensate increased virome complexity by a parallel increase in 
sequencing depth, a negative impact of complexity is still seen but is much less severe. 
For example, for the most complex community of 60 viruses at a 1.44M depth (12 * 
120K reads), VANA detected 23 RNA viruses and 2 DNA viruses (compared to 44 RNA 
viruses and 4 DNA viruses when analyzing individually the 12 pools of five viruses at 
120K reads depth), which corresponds to a reduction in performance of 47.9%. For its 
part, dsRNA detected 42 RNA viruses (no DNA virus), to be compared with 53 viruses 
when individually analyzing the 12 pools of five viruses, corresponding to a reduction 
in performance of 20.7% (Fig. S4). The corresponding value for RNASeq was 55 viruses 
detected, corresponding to a performance equivalent to the analysis of the 12 communi­
ties of five viruses. The loss in performance resulting from high community complexity is 
therefore only significant for the dsRNA and VANA approaches, and strongest in the case 
of VANA.

Impact of sequencing depth on de novo assembly

The 60-viruses community was used to investigate the influence of sequencing depth 
on de novo assembly performance itself. The VANA and dsRNA data sets were there­
fore resampled at different depths (100K, 300K, 1M, 3M, and 10M reads, five random 
resampling at each depth) and assembled, and the obtained contigs mapped against the 
viral reference genomes to determine the average assembly parameters and viral contigs 
parameters. The results are shown in Table S2 and, for viral contigs alone, in Table 3.

As expected, all assembly parameters (number of contigs, average contig length, N50, 
maximal contig length) increased with sequencing depth (Table S2). The same tends 
to be true for viral contigs (number and length, Table 3), while the proportion of viral 
contigs tended to diminish as sequencing depth increased, likely reflecting increased 
probability of assembly of non-viral reads (Table S2). Although at the lowest 100K reads 
sequencing depth, few assembly parameters were found to be statistically different, both 
the total number of assembled contigs and the number of viral contigs were found to 
be highly statistically different, with dsRNA yielding about threefold more contigs and 
threefold more viral contigs than VANA (Table 3 and Table S2). This trend was observed at 
all sequencing depth, with 1.3- to 1.8-fold more viral contigs observed for dsRNA.

At other sequencing depths, differences between the VANA and dsRNA assem­
blies proved systematically highly significant, with dsRNA consistently yielding more 
numerous and longer contigs as well as more numerous and longer viral contigs. On the 

TABLE 3 Comparison of the number and average length of de novo assembled viral contigs obtained for VANA and dsRNA data sets normalized at different 
sequencing depths (100K, 300K, 1M, 3M, and 10M reads, five resampling repeats at each depth)a

VANA average ± SD dsRNA average ± SD Two sample t-test

100K reads nb viral contigs 33.6 ± 1.9 101.8 ± 2.9 9.2E-11
Viral contigs average length 733.4 ± 23.7 747.4 ± 17.1 0.32

300K reads nb viral contigs 70.2 ± 5.4 129.4 ± 8.1 8.0E-07
Viral contigs average length 643.4 ± 27.8 887.8 ± 38.2 2.8E-06

1M reads nb viral contigs 106.2 ± 6.3 159.2 ± 6.6 1.1E-06
Viral contigs average length 694.8 ± 30.3 1019.6 ± 40.9 5.7E-07

3M reads nb viral contigs 129.6 ± 4.8 207.6 ± 3.8 2.5E-09
Viral contigs average length 798.4 ± 15.9 1067.6 ± 11.5 1.4E-09

10M reads nb viral contigs 201.2 ± 4.1 268 ± 2.9 1.8E-09
Viral contigs average length 791.2 ± 11.1 1121.4 ± 10.6 3.9E-11

aThe SDs and the statistical differences (P-values) are also shown.
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other hand, the proportion of viral contigs was found consistently higher in assemblies of 
the VANA data sets (Table S2).

It should be noted that the better assembly performance of dsRNA is independent of 
minimal contig length (Table 4). In particular, using the most complex community and 
10 million reads data sets, the higher performance of dsRNA over VANA was observed 
for all assembly parameters (number of contigs, average length, N50, maximum length) 
and for both viral contigs parameters (number and average length) at all minimal contigs 
length (from 125 to 1,000 nt) with a single exception, the number of viral contigs >125 
nt long (1,852 for VANA vs 1,672 for dsRNA) (Table 4). At all other minimal contig lengths, 
VANA showed from 19.2% (contigs ≥ 175 nt) to 50.7% (>1 kb contigs) fewer viral contigs 
than dsRNA and these contigs were 23%−33% shorter on average than the dsRNA ones 
(Table 4).

As compared to VANA and dsRNA assemblies, RNASeq assemblies generated more 
viral contigs at low sequencing depth (ca. 10%−30% more than dsRNA for depth of 100K 
to 1M reads) but ca. 15% fewer viral contigs at the 10M depth. On the other hand, a 
striking difference in the length of viral contigs was also observed, with RNASeq contigs 
increasing from an average of 1 kb (100K depth, 34% longer than dsRNA contigs on 
average) to 2.1 kb (10M depth, 89% longer than for dsRNA).

Impact of sequencing depth on virus identification performance

We proceeded to evaluate the performance of VANA and dsRNA in identifying the 
expected viruses or viral molecules as affected by sequencing depth. The contigs 
obtained for the various data sets resampled at different depths (five resampling per 
sequencing depth) were mapped on individual reference sequences. This allowed to 
evaluate both the proportion of detected viruses and the coverage of the detected viral 
molecules, together with their standard deviation (Fig. S5). Once again, at all sequencing 
depths and for both parameters, dsRNA outperformed VANA for RNA viruses, while 
VANA outperformed dsRNA for DNA viruses. In all cases, average coverage of detected 
segments of RNA viruses showed a high standard deviation but dsRNA contigs covered 
9% to 22% more of the detected molecules than VANA contigs.

Similarly, and as expected from single reads mapping data, dsRNA outperformed 
VANA for the identification of RNA viruses present in the most complex, 60-viruses 
community. For VANA, performance ranged from 17.7% of RNA viruses identified at the 
100K reads depth to 60.3% at the 10 million reads depth. The corresponding values for 
dsRNA are, respectively, 35.2% and 89.7% and those for RNASeq are, respectively, 46.2% 
and 90.8%. The performance of RNASeq therefore appears to be nearly identical to that 
of dsRNA for RNA viruses, and superior for DNA viruses with 5/6 viruses detected for the 
3M and 10M reads depth.

TABLE 4 Performance parameters of de novo assembly using different minimal contigs length of normalized, 10M reads, VANA, and dsRNA data sets for the 
60-viruses synthetic community

Minimal contig length

125 nt 175 nt 250 nt 350 nt 500 nt 1,000 nt

VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA

nb contigs 1947 2212 416 784 220 437 144 276 86 182 37 88
Average length 235 324 506 607 757 907 985 1243 1355 1662 2191 2696
N25 547 1764 1836 3642 2334 4007 2560 4060 3449 4505 3824 5671
N50 206 352 628 1005 994 1521 1277 1955 1709 2775 2277 3705
N75 156 191 313 352 481 558 618 773 888 1117 1653 1782
Max 6549 13919 6652 13919 6652 13919 6549 13919 6652 13919 6652 13919
nb viral contigs 1852 1672 378 468 204 269 137 181 84 131 37 75
% viral contigs 95% 76% 91% 60% 93% 62% 95% 66% 98% 72% 100% 85%
Viral contigs average length 235 327 525 741 783 1123 1008 1508 1368 1921 2191 2833
Bases in viral contigs 435421 547507 198486 347003 159827 302074 138102 272883 114951 251656 81077 212467
% bases in viral contigs 95.20% 76.40% 94.40% 72.90% 96.00% 76.20% 97.40% 79.50% 98.60% 83.20% 100% 89.50%
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A plot of the observed proportion of detected RNA viruses over a logarithmic 
scale of the sequencing effort is shown in Fig. 4. It shows a remarkable pattern with 
linear regression r² coefficients of 0.97–0.99, suggesting a very strong and monotonous 
relationship between sequencing depth and the proportion of the viruses present in 
the community that are represented by at least one assembled contig. An extension 
of that trend would suggest that a depth of about 30 million reads would be needed 
for the dsRNA approach to recover at least one contig for each of the 66 RNA viruses 
present in the synthetic community, while in excess of 1 billion reads would be needed 
to achieve a comparable performance using VANA. If taking into account also DNA 
viruses to calculate a proportion of detected viruses, similar linear relationships are still 
observed, but the performance of the dsRNA approach is slightly degraded as expected 
from its poor ability to detect DNA viruses (Fig. 4). Analyzed in a similar fashion, the 
RNASeq data showed the same linear relationship, although with a slightly lower r² value 
of 93.7% and a predicted detection of all 71 viruses and satellites with 16–17M reads.

Due to a more limited number of reads available for virus communities up to the 
20-viruses pools, a similar evaluation could not be as extensively performed for these 
lower complexity communities. However, an analysis at three sequencing depths (100K 
reads, 300K reads, 875K reads) of the 20-viruses communities data provided comparable 
results with r² correlation coefficients of 0.95–0.98, suggesting that the linear correlation 
between the percentage of viruses recovered and the log of the sequencing depth is 
independent of the complexity of the analyzed community (result not shown).

An analysis performed at the level of individual viral genomic molecules (115 viral 
molecules) allows to evaluate the performance of the two methods using the most 
complex, 60-viruses pool, for groups of viruses with different genome types. The 
numbers of viral molecules are, however, small for RNA satellites, dsRNA viruses, and 
dsDNA viruses. The results, using a 10 million reads sequencing depth, are summarized in 
Table 5. Considering individual molecules, VANA had at least one contig for only 50% of 
the viral molecules present in the most complex synthetic community, to be compared 
with a 76.5% value for dsRNA. But while the VANA performance was at an intermediate 
level for all virus groups analyzed, dsRNA showed good performance for +ssRNA viruses 

FIG 4 Observed percentages of detected viruses in the 60-viruses community as a function of sequencing depth expressed 

in million reads per sample and plotted on a logarithmic scale. VANA results are in gray, dsRNA results are in blue. Linear 

regression curves are shown for RNA viruses (round dots, thick lines,) as well as considering both RNA and DNA viruses (square 

dots, think lines). Linear r² coefficients are shown only for the RNA virus curves.
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(89.5% of molecules), RNA satellites (100%), and dsRNA viruses (100%). The dsRNA 
performance was, however, poor for DNA viruses, as expected, but also for −ssRNA 
viruses (41.7% of detected molecules only).

DISCUSSION

While synthetic communities have been widely used to benchmark metagenomic 
processes targeting bacteria and fungi, methodological benchmarking approaches in 
virome studies are still limited and largely confined to clinical settings (38, 48, 49) and, 
to some extent, to environmental virome studies (50, 51). Such approaches are today 
largely lacking in plant virology. Here, we used well-authenticated and sequence-charac­
terized plant virus isolates from a public bioresource center (Leibniz-Institute DSMZ) that 
allowed for the simple construction of synthetic viral communities of varying complexity. 
Although some of the viruses were detected by only very low read numbers, no virus was 
fully absent from all generated data sets, validating the approach and the samples used. 
The fact that some viruses were identified only by low read numbers could have a variety 
of reasons, such as low virus titer in some samples, competition with other viruses for 
reads representation in the assembled communities, or difficulties in extracting viral 
nucleic acids from some plant species. In addition, the fact that freeze-dried plant 
material was used in this study may have had a negative impact on results and the 
analysis of fresh plant tissues might have provided superior results. In this respect, it 
should be noted that the two viruses present as infected banana samples, banana streak 
OL virus (BSOLV) and banana bunchy top virus (BBTV), were only detected by very low 
read numbers using both VANA and dsRNA, despite the fact that these techniques have 
successfully been used in the past to analyze banana samples (52, 53). The RNASeq data 
on the same viral isolates shows about 0.9% of viral reads for BSOLV, but BBTV was the 
individual sample with the fewest reads by far in the RNASeq analysis, suggesting a low 
viral concentration in that particular sample.

A total of 11 additional viruses or viral agents were identified in the constructed 
communities. In most cases, these correspond to satellites that had not been specifically 
indexed in the viral isolates used or of viruses latently infecting propagation hosts, 
such as Hordeum vulgare endornavirus, which is present in many barley varieties, or 
Chenopodium quinoa mitovirus.

The communities assembled cover all known plant virus genome types, 21 viral 
families (plus satellites and one virus unassigned in a family), and a total of 61 genera 
(plus four viruses not currently assigned to a genus and three satellites). It is thus, 
probably to date, the largest scale effort to build synthetic viral communities and use 
them for the benchmarking of phytovirome analysis approaches. In some benchmarking 
studies, the nucleic acid proportions of the individual viruses involved in the virus 
community were quantified prior to extraction (36, 39). The fact that no special effort 
was made here to normalize or measure the concentration of the different viruses 
is a limitation for some comparisons. On the other hand, the samples used involved 
different propagation hosts and actual virus titers in those hosts, so that the communi­
ties assembled reflect actual samples from plant virome studies. The results obtained 

TABLE 5 Detection performance of VANA, dsRNA, and RNASeq methods at the level of individual viral genomic molecules (from a total of 115 viral molecules) 
using the most complex, 60-viruses pool, for groups of viruses with different genome types at 10M reads sequencing depth

# viral molecules

VANA dsRNA RNASeq

# detected % detected # detected % detected # detected % detected

+ssRNA viruses 86 50 58.1% 77 89.5% 81 96.,3%
ssRNA viruses 12 1 8.3% 5 41.7% 12 100%
RNA satellites 3 1 33.3% 3 100% 2 66.,6%
dsRNA viruses 2 0 0% 2 100% 0 0,0%
ssDNA viruses 10 4 40.0% 0 0% 4 40.0%
dsDNA viruses 2 1 50.0% 1 50.0% 1 50.0%
Total 115 57 49.6% 88 76.5% 100 87.7%
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indicate that a range of parameters impact the completeness of the virome description 
achieved. Not surprisingly, such parameters include (i) sequencing depth, (ii) community 
complexity, (iii) use of de novo assembled contigs vs use of unassembled reads, and (iv) 
minimal contig length.

The key objective of this work was to compare the performance of the VANA and 
dsRNA approaches, which are the two techniques most widely used in ecology-oriented 
viral metagenomics experiments involving the analysis of complex pools of plants. The 
results provided here for RNASeq following ribodepletion should be considered with 
caution, since they are not fully comparable with the VANA or dsRNA data. Indeed, 
the RNASeq data sets for the various communities were assembled in silico, from 
data obtained by single-isolate sequencing. This means that any interactions between 
plant samples or competition between viruses for representation in the datasets were 
eliminated, contrary to the situation with the VANA and dsRNA experiments. Given that 
RNASeq is considered an unbiased approach (hence its use for transcriptome analysis), 
this should not be a problem but the existence of unforeseen effects affecting the results 
cannot be completely ruled out. As compared to dsRNA and VANA, the results obtained 
for RNASeq using the in silico assembled communities show (i) a much lower imbalance 
in the representation of the various viruses (3 logs variation as opposed to 5–6 logs), 
(ii) on average, significantly longer viral contigs, irrespective of sequencing depth, and 
(iii) an overall excellent performance with 90% of the viruses identified at 10M reads 
depth for the most complex, 60-viruses community. This last result favorably compares 
with the dsRNA performance for all viral categories with the exception of viruses with 
dsRNA genomes (Table 5). This performance comes as a surprise given the absence of 
enrichment (besides ribodepletion) in RNASeq. However, the relatively narrow range of 
variation in the proportion of viral reads for different viruses, possibly implying reduced 
competition for representation between viruses, and the even distribution of RNASeq 
reads along viral genomes, possibly favoring a more efficient genome assembly, could 
have contributed to the RNASeq performance. In any case, these results surprisingly 
suggest that RNASeq could have a very good potential for the analysis of complex viral 
communities and clearly call for direct benchmarking efforts using RNASeq and complex 
synthetic or natural communities in order to unambiguously validate this potential.

As previously reported using natural communities (32), the dsRNA approach provided 
in all comparisons a more complete description of the RNA virome than the VANA 
approach but performed very poorly with DNA viruses. However, the differential with 
VANA is more limited for the less complex communities of 5 or 10 viruses. According 
to our own experience, this level of complexity is most often seen when analyzing 
single plants or pools of 5–20 plants of the same species, with vegetatively propagated 
plants tending to have more complex viromes. Higher complexity levels are usually 
encountered when analyzing larger pools composed of plants belonging to different 
species. The dsRNA approach is therefore recommended whenever analyzing complex 
viromes or when an emphasis on RNA viruses is of importance, in particular since dsRNA 
allows comparable levels of completeness with a lower sequencing effort. On the other 
hand, for viromes of low to medium complexity, the results reported here show VANA 
to be a reasonable alternative. For example, at 480K reads depth, VANA detected 57.4% 
of all viruses for the 20-viruses communities as compared to 61.8% for dsRNA (result not 
shown, see also Fig. S4 for the compared rates of detection of RNA viruses only). VANA 
should of course be the preferred choice if analysis of DNA viruses is of importance. 
The reason for the better performance of the dsRNA approach for high-complexity 
viromes is not fully clear but might result from a lower level of competition between 
viral nucleic acid molecules for representation in complex pools, resulting in a somewhat 
less imbalanced distribution of read numbers between viruses (Fig. 2). Different human 
microbiome studies have shown that different steps of RNA/DNA extraction such as 
homogenization, centrifugation, filtration, and chloroform treatment can have a major 
impact on the quantitative and qualitative composition of identified viral communi­
ties, skewing viral metagenome assemblies (37, 38, 54). Another critical step is library 
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preparation, which often involves a random amplification PCR to increase virus genetic 
material and to add linkers, allowing samples multiplexing during HTS sequencing and 
thus reducing sequencing costs. The amplification step may alter the relative abundance 
of viruses and can lead to uneven coverage if random primers do not anneal randomly 
on viral genomes. Indeed, in the case of faba bean necrotic stunt virus, the relative 
frequencies of the different genome segments determined by qPCR was significantly 
different before and after a rolling circle amplification step used prior to HTS sequencing 
(55). Furthermore, different library preparation techniques have been found to require 
different sequencing depths to achieve the same genome coverage (56). Regardless of 
the experiment, it is advisable to develop an estimate of the sequencing depth needed, 
so as to be able to answer the biological question at hand while avoiding excessive 
sequencing costs. Here, we identified a very robust correlation between the percentage 
of viruses identified in complex communities and the log of the sequencing depth. 
This is an interesting result, since it allows to gauge the sequencing effort needed for 
a particular level of virome description or, conversely, to gauge the extent of virome 
description that can be expected from a particular sequencing depth. Besides metage­
nomic studies, this finding might have practical implications for diagnostics since many 
plants, in particular vegetatively propagated ones, frequently display complex mixed 
infections involving a range of viruses.

Virus detection in metagenomic studies is constrained by the degree of complexity 
of the virus communities analyzed. Our results suggest that the detection efficiency of 
either mapping of unassembled reads or analysis of de novo assembled contigs was 
affected by community complexity with a general trend of detecting a lower proportion 
of viruses in more complex communities. However, the read mapping strategy was 
more efficient at all complexities (Fig. 1B and Fig. S3), confirming results obtained 
through performance testing of sequence analysis strategies (57). This may be due to 
the complexity of de novo assembly of complex communities, linked with insufficient 
coverage or uneven coverage of low abundance viruses within such communities. 
Correspondingly, we observed a lower virus detection rate when using longer minimal 
contig sizes in the de novo assembly, which again might be attributed to difficulties 
in assembling reads from more complex communities, for example, when coexisting 
viruses share highly similar regions in their genomes, leading to higher fragmentation 
and reduced contig sizes (58).

Lastly, it has been reported that the quality and completeness of virome description is 
also affected by the bioinformatic analysis used (58–61). The normalized 10M reads data 
sets generated in the present study with the 60-viruses community, which are available 
at https://doi.org/10.57745/T4UYPC, together with the community composition and the 
complete or near-complete reference genomic sequences used here should prove very 
useful tools to benchmark virome characterization pipelines.
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