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Abstract

Repeated observations have become increasingly common in biomedical research and longitudinal 

studies. For instance, wearable sensor devices are deployed to continuously track physiological 

and biological signals from each individual over multiple days. It remains of great interest 

to appropriately evaluate how the daily distribution of biosignals might differ across disease 

groups and demographics. Hence, these data could be formulated as multivariate complex object 

data, such as probability densities, histograms, and observations on a tree. Traditional statistical 

methods would often fail to apply, as they are sampled from an arbitrary non-Euclidean metric 

space. In this paper we propose novel, nonparametric, graph-based two-sample tests for object 

data with the same structure of repeated measures. We treat the repeatedly measured object data as 

multivariate object data, which requires the same number of repeated observations per individual 

but eliminates any assumptions on the errors of the repeated observations. A set of test statistics 

are proposed to capture various possible alternatives. We derive their asymptotic null distributions 

under the permutation null. These tests exhibit substantial power improvements over the existing 

methods while controlling the type I errors under finite samples as shown through simulation 

studies. The proposed tests are demonstrated to provide additional insights on the location, inter- 

and intra-individual variability of the daily physical activity distributions in a sample of studies for 

mood disorders.
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1. Introduction.

Repeated measures are frequently obtained to capture the within-individual variation and 

enhance the data reproducibility. For example, studies using accelerometers that examine 

physical activities (PA) often observe individuals’ 24-hour activity profiles repeatedly over 

several days or weeks (Burton et al. (2013), Crescenzo et al. (2017), Krane-Gartiser et al. 

(2014)). Within each day the physical accelerations during movement are recorded with 

a high frequency and processed into a time series of activity intensity metrics, such as 

activity counts, vector of magnitude (VM), or Euclidean norm minus one (ENMO) over 

certain epoch lengths (e.g., five, 15 or 60 seconds). Commonly extracted markers from 

accelerometry data include the total amount of PA such as total log activity intensities and 

step counts (Varma et al. (2018)) and time spent in different activity intensity levels. In 

particular, proportion of time spent in sedentary behavior (SB), light (LPA), and moderate-

to-vigorous physical activity (MVPA) have been reported to meaningfully correlate with 

physical and mental functioning and health (Crescenzo et al. (2017), Faurholt-Jepsen et al. 

(2012), Murray et al. (2020)). However, there remain several known limitations in these 

traditional PA endpoints. First, metrics such as time spent in SB, LPA and MVPA reduce the 

continuous activity profiles into a composition of only three discrete categories, resulting in 

a great loss of the rich information captured by the densely measured raw accelerometry 

data. In fact, MVPA might be relatively sparse in a largely sedentary population and 

are less sensitive to meaningful clinical differences within the population. Second, these 

variables are determined with a priori selected cutpoints. Yet there is a lack of consensus 

of cutpoints for data collected across study populations (e.g., children vs. adults, diseased 

vs. healthy individuals), type of devices, and wearing positions (e.g., hip vs. wrist) (Leeger-

Aschmann et al. (2019), Schrack et al. (2016)). It has also been reported that the recording 

frequency, the choice of epoch length, and wear-time algorithms during processing steps 

could significantly vary the endpoints and potentially lead to inconsistent conclusions 

(Banda et al. (2016)). Hence, it remains challenging to compare findings across studies 

with these traditionally derived metrics.

Instead of relying upon a few discrete categories, defined by relatively arbitrary cutpoints, 

recently increasing attentions have been paid to modeling the continuous distribution of 

the raw daily activity intensities (Keadle et al. (2014), Schrack et al. (2016), Yang et al. 

(2020)). In this paper we also take the daily activity histogram for each individual as the 

observed outcome and develop statistical methods that compare density objects between 

groups. As an illustration, we plotted the observed activity data from one individual over 

four days (two weekdays and two weekends) in Figure 1 from the National Institute of 

Mental Health (NIMH) Family Study of Spectrum Disorders (Merikangas et al. (2014, 

2019)). Their time-specific activity intensities at one-minute intervals are shown on the top 

row, and the corresponding histograms of activity intensities in log-transformed scale are 
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shown on the bottom. As Figure 1 shows, despite the overall similarity in the time-specific 

activity patterns across days, the evident shifts in schedules from weekdays to weekends 

might not be of biological interests. Hence, a second advantage of directly modeling the 

daily activity distributions is that it avoids the need for registering time stamps across days 

(Wrobel et al. (2019)).

We consider the problem of testing whether the activity density functions or distributions 

are significantly different between individuals from various clinical groups. As previously 

noted, the conventional representations of time spent in different levels of PA are derived 

from discretized distributions using predetermined cutpoints. To minimize the loss of 

information, we will be working with the entire probability densities of the continuous daily 

activity intensities. Our challenges are twofold. First, probability densities, as characterized 

by the histograms of the daily physical activity intensities, are non-Euclidean, and hence 

many traditional two-sample test statistics are no longer applicable. Second, physical activity 

tracking over multiple days results in repeated probability densities. As far as we know, there 

are few existing methods that could handle within-individual dependency in the complex 

object data.

While two-sample testing for mutivariate objects in Euclidean space or even infinite 

dimensional space has been studied extensively in the statistics’ literature, fewer tools are 

available for two-sample testing when the data are samples of density or distributional 

functions. To deal with a wide range of data types, nonparametric tests are preferable. 

Friedman and Rafsky (1979) proposed the first practical test as an extension of the Wald–

Wolfowitz runs test to multivariate data. This framework has been extended to other graph-

based testing methods. For example, Rosenbaum (2005) used the minimum distance pairing 

(MDP); Schilling (1986) and Henze (1988) adopted the nearest neighbor graph (NNG); 

Chen and Friedman (2017) and Chen, Chen and Su (2018) proposed a generalized edge-

count test and a weighted edge-count test to address the problems under scale alternatives 

and unequal sample sizes, respectively. Recently, an extension of analysis of variance for 

metric space valued data objects was proposed by Dubey and Müller (2019), where Fréchet 

mean and variance are used to construct the test statistic. Yang et al. (2020) proposed 

quantlets as basis functions to approximate the quantile function objects in a regression 

setting.

However, most of these existing tests for object data assume that the observations are 

independent which cannot be directly applied to repeated measures of object data where 

within-individual observations are correlated. One simple way to deal with this issue is to 

apply these tests to the average of the within-individual measures and convert the problem 

into a standard two-sample test for independent object observations (Dawson and Lagakos 

(1993)). However, it is not trivial to define the average of non-Euclidean object data. 

In addition, taking averages oversimplifies the true complexity of data and ignores the 

within-individual variability that could also be clinically relevant when studying individuals’ 

behaviors and mood (Murray et al. (2020)).

We propose a new nonparametric testing framework for density data with repeated 

measures. This framework builds upon graph-based two-sample testing methods that are 

Zhang et al. Page 3

Ann Appl Stat. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



flexible and require few assumptions (Chen, Chen and Su (2018), Chen and Friedman 

(2017)). In particular, to take into account the repeated nature of the data, we consider 

the between-individual and within-individual similarity graphs defined via the Wasserstein 

distances between two density functions. Based on the constructed graph, we define several 

test statistics that are powerful for various possible alternatives, including difference in 

population Fréchet means, Fréchet variances, and Fréchet covariance. A new permutation 

null distribution is considered using the between-individual and within-individual similarity 

graphs. We also derive the asymptotic null distributions of these statistics under the 

permutation null, facilitating their applications to large data sets.

We evaluate the proposed test statistics using simulations and compare the power with 

several competing tests developed for density data. Our approaches are used in an extensive 

analysis to evaluate the effects of age, body mass index, and types of mood disorders on 

daily activities in the NIMH family study population.

2. Nonparametric tests for density functions with repeated measures 

based on a similarity graph.

2.1. A permutation null distribution for density data with repeated measures.

To analyze the repeated measurements of activity data, we treat the observed activity 

densities over l days from each individual as a vector of outcome. We assume that 

individuals are divided into two groups with X1, …, Xn1 representing density objects for n1

individuals from group 1 and Y1, …, Yn2 representing densities for n2 individuals from group 

2. For a given individual u from group 1, we have Xu = Xu1, …, Xul  representing each of the l
days’ activity densities. Similarly, for individual v from group 2, Yv = Y v1, …, Y vl .

We assume that each individual density Xui and Y vj u = 1,2, …, n1; v = 1,2, …, n2; i, j = 1,2, …, l
belongs to space D, where D represents a class of one-dimensional densities such that 

∫Ru2f u du < ∞ for f ∈ D. For any two random densities X, Y ∈ D, we define dW  to be the 

Wasserstein metric as

dW
2 X, Y =

R
T u − u 2X u du,

where T = FY
−1 ∘ FX is the optimal transport, and FX and FY are the distribution functions of X

and Y, respectively.

We further assume that Xui and Xuj have identical distribution function F1 but might be 

correlated; similarly, Y vi and Y vj have the same distribution F2. The vector of l-day densities 

Xu, u = 1, …, n1, however, are independently and identically distributed across individuals 

according to P 1 . Yv, v = 1, …, n2, are i.i.d. according to P 2.

For a random density X ∈ D from group 1, we define the corresponding group-level Fréchet 

mean μF1 and Fréchet variance V F1 as
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μF1 = argmin 
x ∈ D

E dW
2 x, X ,     V F1 = E dW

2 μF1, X .

Similarly, μF2 and V F2 represent the Fréchet mean and Fréchet variance for a random density 

Y from group 2. Given a vector of random densities whose elements are dependent with 

each other, we define their Wasserstein covariance following the framework in Petersen 

and Müller (2019). Specifically, for two random densities Xi and Xj from group 1, the 

Wasserstein covariance is defined as

CovF1, ij = E
0

1
FXi

−1 u − FμF1
−1 u FXj

−1 u − FμF1
−1 u du

where FμF1 denotes the distribution function of μF1. Similarly, CovF2, ij denotes the Wasserstein 

covariance between Yi and Yj from group 2.

We are interested in testing the null hypothesis H0:P 1 = P 2 which implies that the 

N = n1 + n2 samples are from the same distribution. Based on our motivating examples, 

group differences in physical activity distributions could occur in mean μF1 ≠ μF2, between-

individual variability V F1 ≠ V F2, or within-individual variability among repeated observations 

CovF1, ij ≠ CovF2, ij for, at least, one i, j , i ≠ j pair. For a given test, any of such alternatives 

should lead to rejection of the null when the sample sizes are large enough. Instead of 

imposing any parametric assumptions, we propose a set of nonparametric test statistics 

based on a similarity graph constructed using pairwise Wasserstein distance, as detailed 

in Section 2.2 and a permutation procedure to capture these various possible alternatives. 

The permutation procedure treats the repeated measures from the same individual as the 

permutation unit. Specifically, the permutation is done by randomly assigning n1 individuals 

out of the total N individuals to group 1 and the rest to group 2. If an individual is assigned 

to group 1, then the repeated measures of the individual are labeled as observations from 

group 1. Note that we do not require equal correlation or exchangeability within individual 

among repeated observations since our data are observed sequentially over time. However, 

to ensure the exchangeability across individuals under the null H0, we do require that 

the number of repeated observations is the same for all the individuals. In the following, 

when there is no further specification, we use P, E, Var, and Cov to denote probability, 

expectation, variance, and covariance, respectively, under this permutation null distribution. 

An illustration of the data structure and distribution assumptions are presented in Figure 3.

2.2. Graph-based statistics for data with repeated measures.

Our proposed test statistics are constructed from a similarity graph that includes both 

a within-individual graph and a between-individual graph in order to take into account 

repeated measures. To construct the graph based on the Wasserstein distance dW , we pool 

all repeated measures from a total of N = n1 + n2 individuals, and construct a similarity 

graph G as a minimum spanning tree (MST). An MST is a spanning tree that connects 

all observations that minimizes the sum of the total distances of the edges in the tree. In 
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particular, a k-MST is the union of the 1st MST, …, kth MST, where the 1 st MST is the 

MST and the jth j > 1  MST is a spanning tree connecting all observations that minimizes 

the sum of distances across edges under the constraint that this spanning tree does not 

contain any edge from the previous 1st MST, …, and j − 1 th MST. Since the graph-based 

statistics are usually more powerful under a slightly denser graph (Friedman and Rafsky 

(1979)), we choose 9-MST for our similarity graph G in our simulation studies and real 

application, following the recommendation by Chen, Chen and Su (2018). Based on the 

similarity graph G of all the observations, we further divide its edges into two parts. If an 

edge connects two observations from the same individual, it belongs to the within-individual 

similarity graph Gin, otherwise, it belongs to the between-individual similarity graph Gout (see 

Figure 2 for an illustration).

Given a constructed graph G, we let D = Duv N × N be a symmetric matrix, where Duv denotes 

the number of edges between individuals u and v in G and let Du = ∑v ≠ u Duv be the total 

number of edges connecting individual u and others. The total number of edges in G is 

denoted by G . Furthermore, let gi be an indicator function that takes value 1 when node 

i belongs to an individual from group 1, and 2 otherwise. We denote an edge in G by the 

indices of the nodes that are connected by the edge, such as e = u, v . Define

Rout, k = ∑
i, j ∈ Gout

I gi = gj = k ,     Rin, 1 = ∑
i, j ∈ Gin

I gi = gj = 1 .

Here, Rout, k is the number of between-individual edges in Gout that connect observations 

belonging to the same group k, k = 1,2 . Rin,1 is the number of within-individual edges in Gin

from group 1.

To accommodate various alternatives to the null hypothesis, we consider six different test 

statistics presented in Table 1. The six test statistics are defined based on different functions 

of Rout, 1, Rout, 2, and Rin,1 and their expectations and variances calculated under the permutation 

null. These different test statistics are developed for testing the same null H0:P 1 = P 2, but 

their statistical power depends on specific alternatives, as summarized in Figure 3. For each 

of the test statistics, under H0 and a fixed graph G, one could randomly shuffle the group 

assignments for all individuals to estimate their corresponding null distributions.

Specifically, T in builds upon the contrast of within-individual edge counts between group 

1 and group 2, holding the total number of edge counts to be constant. Hence, it captures 

the covariance among the repeatedly observed densities. Rejecting H0, based on T in, implies 

that CovF1 ≠ CovF2, suggesting that the group difference occurs in the amount of day-to-day 

variability in daily activity distributions.

The next three test statistics Zout, w, Tout, d, and Mout κ  are developed to capture the group 

difference in the marginal distribution of individual activity densities F1 and F2. In particular, 

Zout, w evaluates the mean difference between the two groups, and rejecting H0 implies that 

μF1 ≠ μF2. Similarly, Tout, d examines the group difference in between-individual variances 
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and rejects H0 when V F1 ≠ V F2. Finally, Mout κ  combines the comparison in both mean 

and variance by taking the maximum of the two. Note that these statistics are adapted 

from the existing formulations from Zhang and Chen (2022). However, this is not a 

direct application from the previous work due to the existence of repeated observations 

per individual. Our novelty lies in expanding the similarity graph to include both Gout and 

Gin that allow more than one edge connecting between any pair of individuals. Since the 

edges in Gout are correlated with those in Gin, new derivations are needed to obtain the 

asymptotic distributions. The two final statistics SR and M α, κ  combine the previously 

defined statistics in a weighted fashion and flexibly capture differences occurred in both the 

between-individual distributions F1 and F2 as well as the within-individual covariance.

2.3. Analytic expressions of the new statistics.

In the following we first derive the exact analytic expressions for the expectation and 

variance of Rout, 1, Rout, 2, Rin, 1  so that the proposed test statistics in Section 2.2 can be 

computed efficiently. The analytic expressions are provided in the following theorem. The 

detailed proof could be found in the Supplementary Material (Zhang et al. (2022)).

Theorem 2.1. Under the permutation null, the analytic expressions of the expectation of 

Rout, k, Rin, 1
T , k = 1,2 are

E Rout,k = Gout 
nk nk − 1
N N − 1 ,     E Rin,1 = Gin

n1
N .

The analytic expressions of the variances are

Var Rout, k = n1n2 n1 − 1 n2 − 1
N N − 1 N − 2 N − 3 × 1

2 ∑
u ≠ v

Duv
2 + nk − 2

N − nk − 1 ∑
u

Du
2 − 4 Gout

2
N − 2

N N − 1 Gout
2 ,

Var Rin, 1 = n1n2
N N − 1 ∑

u
Duu

2 − Gin
2

N ,

and the analytic expressions of covariance are

Cov Rout,1Rout,2 = n1n2 n1 − 1 n2 − 1
N N − 1 N − 2 N − 3 × 1

2 ∑
u ≠ v

Duv
2 − ∑

u
Du

2 − 4
N Gout 

2 − 2
N N − 1 Gout

2 ,

Cov Rout,kRin, 1 = − 1
k + 1 n1n2 nk − 1

N N − 1 N − 2 ∑
u = 1

N
DuuDu − 2

N Gin Gout .

Using the results of Theorem 2.1, we can check that, under the 

permutation null, E Zout,w = E Zout,d = E Zin = 0, Var Zout,w = Var Zout,d = Var Zin = 1, and 

Cov Zout,w, Zout,d = 0, Cov Zout,w, Zin = 0. In addition,
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Cov Zout,d, Zin =
∑u = 1

N DuuDu − 2
N Gin  Gout

∑u = 1
N Du

2 − 4 Gout
2

N ∑u = 1
N Duu

2 − Gin
2

N

.

It is straightforward to verify that the statistic SR can be rewritten in the following form:

SR = Zout,w, Zout,d, Zin  Ω−1 Zout,w, Zout,d, Zin 
T ,

where Ω = Var Zout, w, Zout, d, Zin 
T . The detailed proof is provided in the Supplementary 

Material.

3. Asymptotic distribution under the permutation null.

The critical values of the test statistics can be determined by performing permutations of 

individual nodes, as stated in Section 2.1. However, such a permutation procedure is often 

time-consuming. To make the tests computationally more efficient, we have derived the 

asymptotic null distributions of the test statistics. In Section 4 we examine how the critical 

values obtained from asymptotic results agree with those obtained through permutations 

directly in finite sample settings.

Before stating the theorem, we need to define a few additional notations for the similarity 

graph G. Denote by Cu the set of repeated measures belonging to individual u. For an edge 

e = i, j ∈ Gout, i ∈ Cu, j ∈ Cv u ≠ v , let Aout, e be the subset of edges that share nodes with e as

Aout,e = e ∪ e′ = k, l ∈ Gout :k ∈ Cu ∪ Cv or l ∈ Cu ∪ Cv ∪ e″ ∈ Gin : e″in individuals u or v .

For an edge e = i, j ∈ Gin , i, j ∈ Cu, let

Ain, e = e′ ∈ Gout :  one endpoint of e′ ∈ Cu ∪ e″ ∈ Gin : e″ in individual u .

Define

Ae = Aout, eI e ∈ Gout + Ain, eI e ∈ Gin ,

Bout, e =
e ∈ Aout, e

Ae,     Bin, e =
e ∈ Ain, e

Ae,

Be = Bout, eI e ∈ Gout + Bin, eI e ∈ Gin .

To derive the asymptotic null distribution of the proposed test statistics, we assume 

n1 = O N , n2 = O N , and l = O 1 . In addition, the following conditions are needed:
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Condition 1: Gout , Gin = O N ;

Condition 2: ∑u Du
2 − 4 Gout

2/N, ∑u Duu
2 − Gin

2/N = O N ;

Condition 3: ∑e ∈ Gout Aout,e Bout,e = o N1.5 .

Here, we use a = O b  to denote that a and b are of the same order and a = o b  to denote that 

a is of a smaller order than b.

Condition 1 requires that the numbers of the edges in Gout and Gin are in the same order as N. 

Condition 2 guarantees that Rout, 1, Rout, 2, Rin, 1
T  does not degenerate asymptotically. Since

∑
u

Du
2 − 4 Gout

2/N = ∑
u

Du − 2 Gout
N

2
,

∑
u

Duu
2 − Gin

2/N = ∑
u

Duu − Gin
N

2
,

if Du − 2 Gout /N = O 1  and Duu − Gin /N = O 1 , then Condition 2 is satisfied. Condition 3 

requires the number of edges from an individual in the graph G such being not too large. 

A similar condition was needed for graph-based statistics for independent observations 

(Chen, Chen and Su (2018), Chen and Friedman (2017)). Conditions 1 and 2 imply 

that ∑u Du
2, ∑u Duu

2 = O N . In addition, note that 2 Gout = ∑u ≠ v Duv ≤ ∑u ≠ v Duv
2 ≤ ∑u Du

2 and 

Gin = ∑u Duu ≤ ∑u DuuDu ≤ ∑u Duu
2 ∑u Du

2. Therefore, we have

∑
u ≠ v

Duv
2 = O N  and ∑

u
DuuDu = O N .

We assume the following limits exist:

lim
N ∞

Gout 
N = b1, lim

N ∞
∑uDu

2

N − 4 Gout 
2

N2 = b2, lim
N ∞

∑u ≠ vDuv
2

N = b3,

lim
N ∞

Gin 
N = b4, lim

N ∞
∑uDuu

2

N − Gin 
2

N2 = b5, lim
N ∞

∑uDuuDu

N = b6 .

The following theorem presents the asymptotic distribution of Zout, w, Zout, d, Zin
T  under the 

permutation null when N ∞.

Theorem 3.1. Under Conditions 1–3 and under the new permutation null distribution, as 

N ∞ , Zout, w, Zout, d, Zin
T  converges to a multivariate Gaussian distribution with mean 0 and 

covariance matrix
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1 0 0
0 1 ρZ

0 ρZ 1
,

where

ρZ = b6 − 2b1b4

b2b5
.

Based on Theorem 3.1, it is easy to obtain the asymptotic cumulative distribution functions 

(CDF) of T in, Zout, w, Tout, d, Mout κ , SR, and M α, κ  under the permutation null. They are given in 

the following Corollary 3.2.

Corollary 3.2. Under Conditions C1–C3, and under the permutation null distribution, as 

N ∞, the asymptotic CDFs for each of the test statistic are:

1. P T in ≤ x 2Φ x − 1;

2. P Zout,w ≤ x Φ x ;

3. P Tout,d ≤ x 2Φ x − 1;

4. P Mout κ ≤ x 1 − 2Φ − x Φ x/κ ;

5. P SR ≤ x χ2 3 ;

6. P M α, κ ≤ x Φ x/ ακ P −x/α ≤ Zout,d ≤ x/α, − x ≤ Zin ≤ x ,

where Φ ⋅  denotes the CDF of a standard normal distribution.

The term P −x/α ≤ Zout, d ≤ x/α, − x ≤ Zin ≤ x  can be calculated from function pmvnorm() 

in the R package mvtnorm, where the correlation between Zout, d and Zin can be estimated 

using finite sample estimate

ρZ, N =
∑u = 1

N DuuDu − 2
N Gin  Gout 

∑u = 1
N Du

2 − 4 Gout 
2

N ∑u = 1
N Duu

2 − Gin 
2

N

.

It is easy to see that limN ∞ρZ, N = ρZ.

4. Simulation studies.

We evaluate the performance of the proposed test statistics T in, Zout, w, Tout, d, Mout κ , SR, and 

M α, κ  under various simulation settings. Under each setting we compare the results with 

the generalized edge-count test S  of Chen and Friedman (2017) and the Fréchet test 

(Fretest) of Dubey and Müller (2019). As far as we know, neither method allows for data 

with repeated measures and would rely on between-individual distance metrics from a single 

observation. Simply applying those tests on the individual observations without accounting 
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for within-subject correlation leads to an inflated type 1 error (results omitted). To ensure 

a fair comparison, we apply these two tests on the subject level based on two definitions 

of distance metrics that respect the hierarchical structure among the repeated observations. 

The first distance is chosen to be the Wasserstein distance calculated from each subject’s 

barycenter (average distance). Alternatively, we use the integrated distance by taking the 

square root of the total sum square distances across all the l observations for any pair of 

individuals. We denote the generalized edge-count test and the Fréchet test, calculated under 

the first distance metric by S1 and Fretest1, and those calculated under the second definition 

as S2 and Fretest2, respectively. More specifically, let Zu = Zu1, …, Zul  and Zv = Zv1, …, Zvl , 

where Zuj, Zvj j = 1, …, l  represent the repeated measures for individuals u and v, the two 

distances are defined as:

1. Average distance: d Zu, Zv = dW Zu, Zv , where Zu and Zv are the barycenters of 

Zu and Zv, respectively, that is,

Zu = arg min
x ∈ Ω

∑
i = 1

l
dW x, Zui ,     Zv = arg min

x ∈ Ω
∑

i = 1

l
dW x, Zvi .

2. Integrated distance: d Zu, Zv = ∑i = 1
l dW

2 Zui, Zvi .

Following the recommendations from Zhang and Chen (2022), when there is no prior 

knowledge about the type of between-individual difference (i.e., location difference or scale 

difference), we choose κ = 1.14 for the statistic Mout κ  and denote it by Mout for simplicity. 

For the statistic M α, κ , the parameter α weights the between-individual difference. Here, we 

let κ = 1.14 and α = 1 and denote the statistic by M for simplicity.

The general setup for the simulation settings is as following. We generate the observed 

physical activity density for individual u on day j to be equal to the density function 

of a p-dimensional multivariate normal distribution with mean θuj and variance ωu
2Ip. That 

is, Zuj = ψp θuj, ωu
2Ip , j = 1, …, l. We further assume that ωu is independent and identically 

distributed from a uniform distribution U vk1, vk2 , with k = 1, 2 corresponding to group label. 

θuj j = 1, …, l  are sampled from another multivariate normal distribution Np aku, σ2Ip  with 

individual-specific mean aku. We further assume an exchangeable correlation between θuj’s, 

which leads to

θu1
T , …, θul

T T ∣ μku Npl μku, σ2ϱk ⊗ Ip ,

where ⊗ denotes the Kronecker product, μku = aku
T , …, aku

T T  and ϱk = ρk1l1l
T + 1 − ρk Il. Here, 

aku u = 1, …, n i.i.dNp βk, ϵk
2Ip . We also consider an exponentially decayed correlation between 

θuj’s with the s, t -element of ϱk being ρk
s − t , s, t = 1, …, l. The results are similar and are given 

in the Supplementary Material.

We simulate unbalanced data with n1 = 50, n2 = 80 individuals for each group and l = 5 days 

for each individual. When applying the proposed statistics, we use the Wasserstein distance 
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to measure the dissimilarity between any two density functions which can be explicitly 

calculated. The similarity graph G is constructed by the procedure outlined in Section 2.2 

with 9-MST.

4.1. Simulations for one-dimensional density, p = 1.

We consider five different parameter settings, as listed on the top rows of Table 2. All the 

test statistics are compared in terms of type 1 error and power. Here, Model (A1) is the null 

model when there is no difference between the two groups, Models (A2)–(A4) represent 

the cases where the two groups differ in within-individual covariance, between-individual 

mean, and between-individual variability, respectively. Model (A5) represents the case that 

differences exist in mean, variance, and also in the within-individual covariance.

Table 3 shows the empirical power of the proposed statistics at α = 0.05 level based on 1000 

replications. Under the null model (A1), all the statistics are able to control the type 1 errors 

at the nominal level.

As for detecting the group differences in the alternative Models (A2–A5), the power of 

S and Fréchet test is uniformly lower than our proposed statistics, except for S2, under 

Model (A2). As expected, the power of different test statistics depends on the alternative 

hypothesis. In Model (A2), when ρ1 is different from ρ2, T in shows its superior performance 

of detecting group differences in covariance among repeated measures within individuals. 

For Model (A3), since the difference only happens in the group mean parameters, all the 

proposed test statistics, except T in and Tout, d, yield high power. Model (A4) is designed to 

examine the power of the tests when the between-individual variability is different between 

the two groups. We observe that, indeed, all the proposed tests, except T in and Zout, w, have 

high power. The results for Model (A5) suggest that Tout, d works well for detecting group 

difference in between-individual variability, and Zout, w is suitable for detecting differences in 

the between-individual mean. Since there is a smaller difference in ρ’s than that under Model 

(A2), T in does not yield high power in this scenario.

4.2. Simulations for moderate-dimensional density, p = 30.

Although we have mostly been concerned with two-sample testing for one-dimensional 

probability densities based on a single morality of measurements, such as physical activity 

intensity, it is worth noting that our proposed tests are directly applicable to density objects 

from multimodal measurements as long as there is a well-defined distance metrics. In fact, 

many wearable devices simultaneously collect multiple markers, such as heart rate and 

respiratory rate in addition to the physical movement, and there is needed to compare the 

joint density distributions of multivariate measures in mobile health research. To illustrate 

their utility for multivariable density objects with repeated measures, we conduct another 

set of simulation studies for p = 30. Our simulation setups are similar to p = 1 case, where 

we simulate an unbalanced sample with n1 = 50, n2 = 80 individuals in each group, and l = 5
repeated measures per individual. All of the statistics are assessed and compared under five 

different scenarios, as listed in Table 2. These five models parallel the Models (A1)–(A5), 

except that we consider density measures for 30-dimensional variables.
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Table 3 shows the estimated empirical power of the proposed statistics at 0.05 significance 

level based on 1000 simulations. Again, we observe that all the statistics control the type 1 

errors at the approximate level. However, the type 1 errors of the Fréchet tests are slightly 

inflated.

For Models (B2)–(B4), the power of the proposed tests remain similar to those under the 

one-dimensional setting in Section 4.1. As a comparison, although tests S1 and S2 can 

detect the between-individual mean and variance differences (B3, B4), they are not effective 

for detecting the within-individual variability difference (B2). Fretest1 and Fretest2, on the 

other hand, work well when only between-individual variance differ, as in Model (B4). The 

results for Model (B5) indicate that the proposed tests SR and M perform well for the overall 

difference and is much better than the competing tests S1, S2, Fretest1, and Fretest2.

Finally, we also perform simulations to examine whether the asymptotic p-values could 

approximate the p-values obtained from 10,000 permutations. The results show that the 

p-values are very close, and the power obtained by the asymptotic p-value is similar to 

that based on the permutation p-value for all the proposed test statistics. As sample size 

increases, the results are almost identical, as expected. We omit the details here and present 

the results in the Supplementary Material, Section C.

5. Comparisons of physical activity distributions in mood disorder 

samples.

We apply each of the six test statistics to the continuous physical activity measures collected 

from a subset of the participants from the National Institute of Mental Health (NIMH) 

Family Study of Spectrum Disorders (Merikangas et al. (2014, 2019), Shou et al. (2017)). In 

this study, 384 individuals were instructed to wear the Philips Actiwatch devices for about 

two weeks. The daily activity data were processed into 1440 minute-level intensity values 

each day. Meanwhile, the 384 individuals were interviewed and assessed into four clinical 

groups based on DSM-IV criteria as: healthy control (HC), major depressive disorders 

(MDD), type-I bipolar disorders (BPI), and type-II bipolar disorders (BPII). Previous 

research studies have consistently reported a lower average daytime motor activities among 

bipolar patients based on summary statistics from physical activity measures (Murray et 

al. (2020), Scott et al. (2017)). Age and body mass index (BMI) are among the other 

factors are known to be associated with the mean activity levels (Schott (2007), Varma 

et al. (2017)). However, although there were a few papers that suggested potential links 

between bipolar disorder and inter-individual and intra-individual variability in activity 

patterns, the evidence was much less robust, and the extracted markers for quantifying 

variability was quite heterogeneous (Indic et al. (2011), Pagani et al. (2016), Robillard et al. 

(2015)), making it even more challenging to understand the complex disease manifestations. 

Hence, we focus on comparing the continuous physical activity profiles and testing whether 

mean and variability of the daily physical activity differ across disease groups or by 

demographic characteristics. To apply our proposed methods, we first estimate the empirical 

daily probability densities using the observed minute-by-minute activity intensities. Let 

Zuj = zuj
1 , …, zuj

1440 T  be the vector of ordered 1440 activity intensities for individual u on day 
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j. Here, zuj
q  represents the empirical qth quantile of the probability distribution of activity 

intensities per day. The Wasserstein distance metric is calculated to quantify the distance 

between two empirical distributions based on any pairs of Zui and Zvj. Since densities are 

empirically estimated from the ordered values, the Wasserstein distance between densities is 

equivalent to the Euclidean distance between the two empirical quantiles, that is,

d Zui, Zvj = ∑
q = 1

1440
zui

q − zvj
q 2

1/2
.

We further construct the similarity graph G following the procedure that is introduced in 

Section 2.2 with 9-MST. As a sensitivity analysis we also apply the tests using 5-MST, 

15-MST, and under the maximum mean discrepancy (Gretton et al. (2012)). The results are 

similar and are provided in the Supplementary Material, Section E.

Considering the potential difference in daily routines and movement between weekdays and 

weekends, we apply the test statistics separately to observations collected on weekdays and 

weekends with l = 7 and l = 3 days, respectively. For each analysis the individuals with 

fewer than the given number of days l are excluded from the analysis. For those with more 

than l days of observations, a random subset of l days are included in generating the test 

statistics. Sensitivity analysis was conducted by repeating the random subsetting 1000 times 

in order to assess the variability in the test results due to choice of days (Supplementary 

Material, Section F). To summarize the results, we take the p-value pj, j = 1,2, …, 1000 from 

each of the 1000 trials, and estimate an overall p-value as

p̂ = 1 − 2
1 + e2θ,

where

θ = 1
1000 ∑

j = 1

1000 1
2log 1 + pj

1 − pj
.

5.1. Comparison of activity densities between healthy individuals and those with mood 
disorders.

We first compare the activity densities among healthy individuals and those with histories 

of mood disorders in the free-living conditions during the weekdays and weekends. Figure 

4 shows the p-values of the pairwise comparisons using the proposed test statistics, the 

generalized edge-count tests S1, S2 , and Fréchet tests (Fretest1, Fretest2) (detailed p-values 

and the sample sizes for different groups are given in Table 5 of the Supplementary 

Material). We first observe that the differences between diagnostic groups are mostly driven 

by activity patterns on weekends, and no significant difference is observed during the 

weekdays. In particular, we observe that the healthy individuals have significantly different 

activity distributions from those with BPI. Among the proposed statistics, Zout, w achieves 
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the most significant results, when comparing healthy with BPI and BPII vs. BPI, while T in

and Tout,d result in nonsignificant large p-values and cannot reject the null hypothesis. These 

results suggest that there exist significant differences in the population-level mean activity 

density between healthy and BPI or between BPI and BPII. This is consistent with findings 

from the existing literature where BPI patients were found to have lower average activity 

levels especially in the later of the day (Scott et al. (2017), Shou et al. (2017)) and less time 

spent in MVPA (Chapman et al. (2017)). But no significant difference is observed in the 

variance of activity densities or in day-to-day variability of the activity density. Since all of 

Mout κ , SR and M α, κ  include a Zout,w in their definitions, they are also effective to capture 

the mean difference of activity densities when Zout, w yields a small p-value.

5.2. Comparison of activity distributions among different age groups.

It is well known that age is associated with the amount of physical activity. For example, 

Schrack et al. (2014) found “a 1.3% decrease per year” in cumulative physical activity 

counts from mid-to-late life among an elderly population. Similar results have been reported 

in several other large cohort studies and age groups, including NHANES and UK Biobank 

(Doherty et al. (2017), Varma et al. (2017), Viciana, Mayorga-Vega and Martínez-Baena 

(2016)). However, few studies have examined how inter- and intra-individual variability in 

physical activity differs by age. We ask whether the proposed test statistics are able to detect 

differences in the daily activity densities over different age categories and inform us where 

the difference lies. To ensure a proper power with an adequate sample size, we take the 

two diagnostic groups with the largest sample sizes, the HC and major depressive disorder 

(MDD), and stratify them into three age groups: young (age ≤ 30), middle age (30 < age 

≤ 60), and older age (age > 60) groups. We also separately test activity densities from 

weekdays and weekends.

The p-values of the proposed test statistics, the generalized edge-count test S1, S2 , and 

Fréchet test (Fretest1, Fretest2) are shown in Figure 5 with detailed p-values given in Table 

6 of the Supplementary Material. Overall, among the healthy individuals, the proposed 

tests find large differences in the distributions of activity intensities among the three 

age groups for both weekdays and weekends. Such differences are especially prominent 

when comparing the young age group or middle age group with the older group during 

the weekdays. In contrast, Fréchet test fails to detect such differences in most of the 

comparisons and is only able to capture marginally significant results when comparing the 

young and older individuals among MDD patients. The tests S1 and S2 also show fewer 

significant results than our proposed tests.

To further demonstrate the possible gain of power, we note that, among the patients 

with MDD, only the proposed Zout,w test shows statistically significant difference between 

young and older groups for both weekend and weekday activities. Fréchet test shows 

some difference in activity distributions between young and older groups but only for the 

weekdays. To confirm the detected differences in the original data, we visualize the density 

data in Figure 6 by projecting them onto lower-dimensional plots, using multidimensional 

scaling (MDS), based on the Wasserstein distances. The figure clearly shows difference in 
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activity densities between young and older groups for both weekdays and weekends among 

MDD patients.

Finally, it is also interesting that T in detects significant difference in day-to-day variability 

between the healthy young group and older group on weekdays. In fact, we obtained 

a negative value for Zin which implies that the younger subjects have larger day-to-day 

variability than the older subjects. Lastly, Tout,d does not yield any significant results in most 

cases, indicating that there is large subject heterogeneity within each age group, yet their 

scales are comparable.

5.3. Comparison of activity distributions among different BMI groups.

A third factor that could potentially affect differential physical activity patterns is the body 

mass index (BMI). We apply our proposed tests to examine difference in daily activity 

density among individuals who are lean with BMI ≤ 25 and obese with BMI > 25 among 

healthy individuals and those with mood disorders (OTHER). To control for the age effect, 

we only consider those individuals with age of 30 years or older.

The results are provided in Figure 7. Among the healthy individuals, little difference is 

observed in their activity distribution patterns between lean and obese individuals during 

the weekdays and weekends. When assessing among patients in the OTHER group, we 

observe some differences in the mean of the activity distributions both during weekdays and 

weekends. We do not see group differences in the within-individual or between-individual 

variability. The generalized edge-count test and Fréchet test achieve nonsignificant large 

p-values and fail to reject the null hypothesis for all the comparisons. This further 

demonstrates that our proposed test statistics can detect difference in activities that could 

be missed by other methods.

6. Discussion.

In this paper, we have extended the graph-based two-sample tests for density data and 

proposed several test statistics to account for repeated measures data by considering both 

the within-individual similarity graph Gin and between-individual similarity graph Gout The 

graph allows for more than one edge between any two individuals which extends the 

existing graph-based testing methods where only one edge between any two individuals 

is allowed. We have proposed a list of six test statistics that capture different alternatives 

that are associated with distributions of density functions, including differences in mean, 

inter- and intra-individual variances. These statistics are constructed based on the similarity 

graph G which is the union of Gin and Gout. Furthermore, we have developed the asymptotic 

null distributions that can be used to obtain p-values under the permutation null. The test 

statistics are easy to calculate, and the testing procedures are computationally efficient. Our 

simulation studies have shown that the proposed test statistics control the desired type 1 

errors and are more powerful than existing distance-based tests that ignore the repeated 

observations.

In our analysis of the physical activity measures with repeated observations, we have 

observed a substantial differences in the day-to-day variability within subject across disease 
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groups and age categories. Such findings have rarely been reported previously. Our proposed 

tests are able to take into account such within-individual dependency and variability. 

Compared to the two versions of Fréchet tests, we observed increased power in detecting the 

differences in activity densities. In addition, by comparing results utilizing various proposed 

test statistics, we are able to further understand the complex data structures and decompose 

the source of differences between various groups.

Our proposed permutation procedure treats the entire vector of repeated observations of 

objects from an individual as the independent unit which requires that we have the same 

number of observations for each individual. Otherwise, the within-individual Wasserstein 

covariance is not well defined. This approach eliminates any assumptions on the errors of 

the repeated measures. For example, we do not require that the repeated measures have the 

same marginal distribution and allow them to be different from day to day. In our analysis 

of the NIMH physical activity data, we noticed that the results are robust to different 

subsets of the observations used in our analysis and reported an average through Fisher’s 

transformation. However, there might be the case when an unequal number of repeated 

observations might be informative, in which case one should interpret the results with care. 

An interesting future research topic is to extend the proposed tests to allow for different 

numbers of repeated observations by making additional assumptions on these repeated 

measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Activity intensities for a randomly chosen individual over four days. Top: Trends of activity 

intensities; bottom: histograms and densities of activity intensities.
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Fig. 2. 
An example of similarity graph G, within-individual gragh Gin, and between-individual graph 

Gout for three individuals with repeated measures.
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Fig. 3. 
An overview of the repeated data structure, the null hypothesis and various alternatives that 

each of the proposed test statistics are most suitable for.
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Fig. 4. 
Comparison of activity distributions among the healthy controls (HC), MDD, BPI, and 

BPII individuals for activities on weekdays and on weekends. For each individual, seven 

weekdays and three weekends of data are used. The −log p − values  are plotted for each 

of the proposed test statistics, the generalized edge-count tests S1, S2  and Fréchet tests 

(Fretest1, Fretest2). The corresponding sample size for each group is presented on the upper 

right corner.
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Fig. 5. 
Comparison of activity distributions in different age groups for young (≤ 30), middle (30 < 

age ≤ 60), and older age (> 60) groups. The −log p − values  of the proposed test statistics, 

the generalized edge-count tests S1, S2 , and Fréchet tests (Fretest1, Fretest2) are presented 

for different comparisons. The corresponding sample size for each group is presented on the 

upper-right corner.
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Fig. 6. 
Multidimensional scaling (MDS) plots based on the Wasserstain distances to visualize the 

distribution of activity densities among MDD patients, across three pairwise comparisons by 

age groups (left, middle, right) and on weekdays (top) and weekends (bottom).
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Fig. 7. 
Comparison of activity distributions by BMI (lean and obese groups). The −log p − values
of the proposed test statistics, the generalized edge-count tests S1, S2 , and Fréchet tests 

(Fretest1, Fretest2) are presented for different comparisons. The corresponding sample size 

for each group is presented on the upper-right corner.
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Table 1

Proposed test statistics for the difference of two population distributions of the density functions

Within-individual test

Wasserstein covariance difference

T in = Zin , Zin = Rin, 1 − E Rin, 1

Var Rin, 1
.

Between-individual test

Mean difference

Zout, w = n2 − 1 Rout, 1 + n1 − 1 Rout, 2 − E n2 − 1 Rout, 1 + n1 − 1 Rout, 2

Var n2 − 1 Rout, 1 + n1 − 1 Rout, 2
.

Variance difference

Tout, d = Zout, d , Zout, d = Rout, 1 − Rout, 2 − E Rout, 1 − Rout, 2

Var Rout, 1 − Rout, 2
.

Overall difference

Mout(κ) = max Tout, d, κZout, w .
Joint between and within-individual test

Sum-type test

SR =
Rout, 1 − E Rout, 1

Rout, 2 − E Rout, 2

Rin, 1 − E Rin, 1

T

Σ−1
Rout, 1 − E Rout, 1

Rout, 2 − E Rout, 2

Rin, 1 − E Rin, 1

,

where Σ = Var Rout, 1, Rout, 2, Rin, 1
T

.

Max-type test

M(α, κ) = max T in, αMout(κ) .
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Table 2

Parameter values for five different simulation settings for comparisons. (A) one-dimensional density functions; 

(B) 30-dimensional density functions

(A)—one-dimensional density functions

A1: null model.

ρ1 = 0.6, β1 = 0, ϵ1 = 1, v11 = 1, v12 = 2;
ρ2 = 0.6, β2 = 0, ϵ2 = 1, v21 = 1, v22 = 2; σ = 1 .
A2: within-individual variability difference in ρ.

ρ1 = 0, β1 = 0, ϵ1 = 1, v11 = 1, v12 = 1.2;
ρ2 = 0.8, β2 = 0, ϵ2 = 1, v21 = 1, v22 = 1.2; σ = 1 .
A3: between-individual mean difference in β and v1 + v ⋅ 2.

ρ1 = 0, β1 = 0, ϵ1 = 1, v11 = 1, v12 = 1.2;
ρ2 = 0, β2 = 0.7, ϵ2 = 1, v21 = 0.96, v22 = 1.16; σ = 1 .
A4: between-individual variability difference in ϵ and v2 − v1.

ρ1 = 0, β1 = 0, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0, β2 = 0, ϵ2 = 1.1, v21 = 0.97, v22 = 1.33; σ = 1 .
A5: within-individual variability difference in ρ, between-individual mean difference in β and ν . 1 + v . 2, variance difference in ϵ and v ⋅ 2 − v1.

ρ1 = 0, β1 = 0, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0.35, β2 = 0.5, ϵ2 = 1.1, ν21 = 0.97, ν22 = 1.36; σ = 1 .

(B)—30-dimensional density functions

B1: null model.

ρ1 = 0.3, β1 = 0p, ϵ1 = 1, v11 = 1, v12 = 2;
ρ2 = 0.3, β2 = 0p, ϵ2 = 1, v21 = 1, v22 = 2; σ = 1 .
B2: within-individual variability difference in ρ.

ρ1 = 0, β1 = 0p, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0.1, β2 = 0p, ϵ2 = 1, v21 = 1, v22 = 1.3; σ = 1 .
B3: between-individual mean difference in β and v · 1 + v · 2.

ρ1 = 0, β1 = 0p, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0, β2 = 0.11p, ϵ2 = 1, v21 = 1.2, v22 = 1.5; σ = 1 .
B4: between-individual variability difference in ϵ and v ⋅ 2 − v ⋅ 1.

ρ1 = 0, β1 = 0p, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0, β2 = 0p, ϵ2 = 1.1, v21 = 0.8, v22 = 1.5; σ = 1 .
B5: within-individual variability difference in ρ, between-individual mean difference in β and v ⋅ 1 + ν ⋅ 2, variance difference in ϵ and 
v ⋅ 2 − v ⋅ 1.

ρ1 = 0, β1 = 0p, ϵ1 = 1, v11 = 1, v12 = 1.3;
ρ2 = 0.09, β2 = 0.11p, ϵ2 = 1.03, ν21 = 1, ν22 = 1.5; σ = 1 .
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Table 3

Empirical power of the proposed test statistics in the first six columns, generalized edge-count test S1, S2  and 

Fréchet test (Fretest1, Fretest2) at 0.05 significance level. The bold fonts indicate for tests with the best power 

and those with power over 95% of the best power for each of the models

T in Zout, w T out, d Mout SR M S1 S2 Fretest1 Fretest2

(A) One-dimensional density

Null model

A1 0.044 0.061 0.047 0.057 0.051 0.052 0.051 0.053 0.057 0.057

Alternative model

A2 0.911 0.038 0.100 0.066 0.719 0.786 0.133 0.950 0.423 0.048

A3 0.048 0.973 0.064 0.962 0.939 0.954 0.645 0.575 0.287 0.276

A4 0.038 0.190 0.911 0.867 0.802 0.830 0.142 0.104 0.321 0.324

A5 0.245 0.664 0.994 0.995 0.992 0.994 0.422 0.616 0.583 0.298

(B) 30-dimensional density

Null model

B1 0.048 0.045 0.049 0.041 0.042 0.045 0.035 0.039 0.078 0.088

Alternative model

B2 0.926 0.055 0.046 0.054 0.840 0.865 0.164 0.051 0.371 0.087

B3 0.054 0.969 0.058 0.939 0.836 0.916 0.766 0.713 0.136 0.201

B4 0.143 0.273 0.893 0.847 0.787 0.809 0.757 0.827 0.864 0.883

B5 0.865 0.387 0.192 0.355 0.853 0.897 0.513 0.223 0.754 0.425
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