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ABSTRACT The HIV-1 genome encodes a small number of proteins with structural, 
enzymatic, regulatory, and accessory functions. These viral proteins interact with a 
number of host factors to promote the early and late stages of HIV-1 infection. During 
the early stages of infection, interactions between the viral proteins and host factors 
enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain 
access to the nucleus, and integrate into the host genome. Similarly, the viral proteins 
recruit another set of host factors during the late stages of infection to orchestrate 
HIV-1 transcription, translation, assembly, and release of progeny virions. Among the 
host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first 
host factor to be packaged within HIV-1 particles. It is now well established that CypA 
promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to 
pinpoint CypA’s role have spanned from an effect in the producer cell to the early steps 
of infection in the target cell. In this review, we will describe our understanding of the 
role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the 
potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.

KEYWORDS cyclophilin A (CypA), human immunodeficiency virus (HIV), capsid, reverse 
transcription nuclear entry, integration

H IV-1 is a retrovirus, and the structure of the virion consists of a host-derived outer 
lipid membrane surrounding a conical capsid (1). The viral membrane contains 

approximately 7–14 envelope (Env) spikes, each composed of three heterodimers of viral 
gp120 and gp41 protein (2–4). The Env spike is the only known viral protein exposed on 
the outer surface of the virus particle (5–9) and serves as the determinant of the target 
cell tropism (10–12). The inner viral capsid shell is made up of ~200–250 hexamers and 
12 pentamers of the capsid (CA/p24) protein (13). The capsid encases a number of viral 
and host factors along with two copies of the viral single stranded (ss) RNA genome 
(14). The HIV-1 genome encodes 15 viral proteins that perform structural, enzymatic, 
regulatory, and accessory functions (15, 16). These viral proteins coordinate interactions 
with a number of host factors to promote HIV-1 infection in a target cell.

HIV-1 replication cycle is broadly divided into early and late events/steps. The early 
steps begin when gp120 binds to the CD4 receptor and one of the HIV-1 co-receptors 
(CCR5 and CXCR4) located on the plasma membrane of a target cell (11, 17). The resulting 
conformational changes in Env induce the fusion of the viral and cellular membranes 
and the subsequent release of the viral core into the cytosol of the target cell (18). 
As the core is trafficked through the cytosol by the cytoskeleton network toward the 
nucleus (19–21), the encased reverse transcription complex (RTC)—containing the viral 
reverse transcriptase (RT) and other viral and host factors, begins to synthesize a double 
stranded (ds) DNA copy from the viral ssRNA genome (20, 22). The newly synthesized 
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viral dsDNA is transported, as part of the RTC and/or preintegration complex (PIC), to 
the host cell nuclear pore complex (NPC). After nuclear entry, the PIC, containing the 
viral dsDNA, the viral integrase (IN) enzyme, and other viral/host factors, carries out 
integration of the viral dsDNA into active gene bodies of the host chromosomes (23). 
Integration of HIV-1 dsDNA completes the early steps of virus replication and establishes 
a provirus that persists for the life of the host cell (23). Thereafter, the late steps of the 
HIV-1 replication begin with the transcription of viral RNAs from the provirus. These viral 
RNAs are then exported from the nucleus to the host cell cytoplasm for viral protein 
production (24). Finally, the viral proteins and the viral ssRNA genome assemble into 
immature virions at the plasma membrane of the host cell, followed by budding, release, 
and maturation steps to produce infectious progeny virions (25, 26).

HIV-1 REPLICATION IS CRITICALLY DEPENDENT ON HOST FACTORS

Being an obligate intracellular parasite, HIV-1 is critically dependent on the host cell 
machinery for infection. Accordingly, after the viral core is released into the target cell 
cytoplasm, the viral proteins (particularly the capsid protein—CA) interact with a number 
of host factors to coordinate and promote early steps of virus replication (27, 28). For 
instance, the host kinesin adapter protein FEZ1 binds to the viral capsid and mediates 
trafficking of the core on microtubules to the NPCs (29, 30). Another capsid-binding 
host protein, Cyclophilin A (CypA) facilitates reverse transcription and nuclear import of 
the virus (31). The capsid also binds to host proteins including Sec24C, Nucleoporins 
(e.g., Nup358 and 153), Transportins (e.g., TNPO1), Bicaudal D2 (BICD2), and cleavage 
and polyadenylation specificity factor 6 (CPSF6) at various stages of the nuclear entry 
step (31–39). Furthermore, PIC-associated viral factors interact with host factors such as 
CPSF6 and the lens epithelium-derived growth factor (LEDGF/p75) during and/or after 
the nuclear entry step of virus replication (40–43) to direct the preferential integration 
of the viral DNA into transcriptionally active regions of the human chromosomes (23, 
44–48). During the late steps of HIV-1 replication, the proviral DNA is transcribed by 
the cellular transcriptional machinery (49) to produce the spliced viral mRNAs and the 
unspliced full-length viral RNA. These viral RNAs are transported to the cytoplasm by the 
host exportin 1 (XPO1)-RanGTP nuclear export pathway (24). Thereafter, the viral mRNAs 
are translated by the host ribosomal machinery into precursor polyproteins (Pr55Gag, 
Pr160GagPol, and gp160), regulatory proteins (Rev and Tat), and accessory proteins 
(Nef, Vif, Vpu, and Vpr) (16). Next, the full-length viral ssRNA genome and the viral 
proteins traffic to the host cell plasma membrane, where the Gag protein coordinates the 
assembly of immature virus particles (25, 26, 50). Release of the non-infectious immature 
HIV-1 particles is coordinated by the p6Gag domain-recruited cellular endosomal sorting 
complexes required for transport (ESCRT) machinery (51). During the virus maturation 
process, the viral PR enzyme, encoded as part of the Pr160GagPol, first matures via 
auto-processing and subsequently cleaves the Pr55Gag into matrix (MA), CA, nucleocap
sid (NC), and p6 and the Pr160GagPol into RT and IN proteins (52). Finally, the cell-free 
mature virion is ready for initiating a new infection cycle (53). Collectively, productive 
HIV-1 infection is critically dependent on interactions between viral and host factors at 
every step of the replication cycle. In this review, we will primarily focus on the tenuous, 
well-established, and emerging roles of the host protein CypA in HIV-1 infection.

CypA IS A UBIQUITOUSLY EXPRESSED CELLULAR PROTEIN

CypA belongs to the family of cyclophilin proteins that are ubiquitously expressed in 
prokaryotic and eukaryotic cells (54, 55). Cyclophilins are structurally and functionally 
highly conserved in both prokaryotes and eukaryotes and are part of the immunophilin 
superfamily. Many cyclophilins possess the peptidyl/prolyl cis-trans isomerase (PPIase) 
activity (56) that catalyzes isomerization of the peptide bond upstream of proline 
residues in proteins (57–59). Mammalian CypA was first identified as a cytosolic protein 
in bovine T cells followed by the discovery of its PPIase activity and the host cell target 
of the immunosuppressive drug cyclosporin A (CsA) (59–61). In humans, the PPIA gene 
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located in chromosome 7 was later identified to encode for the CypA protein (60, 62). 
Although CypA is an abundant cytosolic protein, there is evidence that it can be secreted 
in response to inflammatory stimuli (63, 64).

CypA is an 18 kDa protein with a cyclophilin-like domain (CLD) typical of all the 
members of the cyclophilin family (65). Structurally, CypA is a beta barrel with two 
alpha-helices and a beta sheet (Fig. 1A) (66, 67). Functionally, the PPIase activity of CypA 
is required for protein folding, protein trafficking/molecular chaperoning, cell signaling, 
and T cell activation (55, 57, 68–70). Thus, CypA has been implicated in a number of 
diseases including cardiovascular disease, type 2 diabetes, and viral infections such as 
influenza, hepatitis C virus, coronavirus, and HIV (71–73).

INDIRECT ROLE OF CypA IN HIV-1 REPLICATION

CypA has a high binding affinity to cyclosporin A—a calcineurin inhibitor and an 
immunosuppressant used in organ transplant treatment (59). CsA is a cyclic undecapep
tide produced by Trichoderma polysporum (74, 75). CsA binds to the substrate-binding 
site of CypA (Fig. 1B) and inhibits its PPIase activity (69). Notably, the CsA-CypA complex 
binds to calcineurin and inhibits its phosphatase activity (69, 76). Evidently, inhibition 
of calcineurin but not CypA’s PPIase activity is the molecular basis for CsA’s immunosup
pressive function (68, 77).

CsA played a central role in the discovery of CypA as a host factor in HIV-1 infection. In 
1986, a study by Klatzman et al. was the first to report the antiviral effects of CsA against 
HIV-1 (78). Subsequently, a comprehensive study by Wainberg et al. (79) further clarified 
the inhibitory effects of CsA during acute HIV-1 infection (79). Specifically, HIV-1 infection 
of T cells but not monocytes was inhibited when CsA was added before or during virus 
inoculation. However, addition of CsA after HIV-1 inoculation had minimal inhibitory 
effect on viral replication or viral protein expression. Interestingly, CsA removal after 
HIV-1 inoculation resulted in the restoration of viral protein expression and produc
tion of progeny virions (79). Karpas et al. (80) then demonstrated that CsA treatment 
reduced the production of infectious HIV-1 particles from chronically infected T cells 
(80). These early studies established that CsA inhibited HIV-1 replication and provided 
a scientific basis to test this immunosuppressive drug for HIV/AIDS treatment (81–83). 
Unfortunately, CsA was ineffective in clinical settings and/or was toxic to HIV-1 infec
ted individuals (81–83). Notably, non-immunosuppressive analogs of CsA also inhibited 
HIV-1 with equal or better potency (84, 85), suggesting that the immunosuppressive 
activity of CsA was dispensable for the antiviral activity. Nonetheless, these early studies 
of CsA pointed to a potential role of CypA in HIV-1 biology.

DIRECT ROLE OF CypA IN HIV-1 REPLICATION

In a seminal study, Luban et al. (86) discovered that CypA is a binding partner of the HIV-1 
Gag polyprotein (86). It was subsequently demonstrated that CypA specifically binds to a 
highly conserved proline-rich region located in the N-terminal domain (NTD) of HIV-1 CA 
(Fig. 1B and C) (87, 88). Notably, mutation of the amino acid residue P90 or the preceding 
residue G89 in the proline-rich region of CA-NTD disrupted the interaction of CypA with 
HIV-1 Gag (87–89). Structural studies by Gamble et al. (90) identified that the proline-
rich region of CA-NTD is a protruding loop and consists of the amino acid residues 
of 85Pro-Val-His-Ala-Gly-Pro-Ile-Ala-Pro93 (corresponding Gag locations:217Pro-Val-His-Ala-
Gly-Pro-Ile-Ala-Pro225) (90). They also reported that this loop, also known as the CypA 
binding loop, served as the primary binding interface for CypA (Fig. 1D and E) (90). 
The structure also revealed that the critical amino acid residues G89 and P90 of CA are 
located in the apex of the binding loop and are deeply buried in the CypA active site 
(Fig. 1E) (91, 92). The other seven amino acid residues in the CypA-binding loop of CA 
are involved in a hydrogen bonding network with CypA. Accordingly, it was predicted 
that by binding to these CA residues, CypA could accelerate isomerization of the G89-P90 
peptide bond and regulate Gag conformation (93, 94). Surprisingly, the formation of a 
stable CypA-CA complex was found to be not a consequence of the isomerization of the 
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G89-P90 peptide bond by the PPIase activity of CypA (90). Therefore, it remained unclear 
whether the enzymatic activity of CypA is required for HIV-1 replication. Nevertheless, 
CypA has a higher affinity for multimeric CA relative to monomeric CA and thus has been 
suggested to preferentially bind assembled capsid (90, 95). Recently, a non-canonical 
second binding site for CypA in the viral capsid was reported (96). However, mutational 
analysis that disrupted this non-canonical interaction did not impair the positive effects 
of CypA in HIV-1 replication (97). Thus, the functional relevance of CypA binding to this 
second binding site during HIV-1 replication is unclear. Collectively, it appears that the 
replication-enhancing effects of CypA during HIV-1 infection are a consequence of its 
physical interaction with CA rather than its PPIase activity.

Immediately after the discovery that CypA specifically interacts with HIV-1 CA, the 
functional relevance of this interaction was predicted to be the incorporation of CypA 
from the producer cell into the budding HIV-1 particles (87, 88). This model was 
supported by studies showing that CypA from the producer cell is incorporated into 
HIV-1 particles in a CA-dependent manner (85, 88, 89). Accordingly, CypA incorporation 
into the virions was disrupted by mutations of the G89 or P90 residues of CA or by CsA 
treatment, and this disruption was associated with reduced infectivity (85, 88, 89). Most 
importantly, these studies identified CypA as the first cellular factor to be incorporated 
into budding HIV-1 particles and were instrumental in galvanizing the field to identify 
the exact role of this host factor during the HIV-1 replication cycle.

It is noteworthy that CypA displays distinct preferences for interacting with the CA of 
diverse lentiviruses (98). For instance, CypA interacts with the CA of the feline immuno
deficiency virus (FIV) as well as the CA of simian immunodeficiency virus strains infecting 
chimpanzees (SIVcpz), African green monkeys (SIVagm), greater spot-nosed monkeys 
(SIVgsn), and mandrills (SIVmnd1). However, CypA does not interact with the CA of SIVs 
infecting sooty mangabey monkeys (SIVsmm), macaques (SIVmac), and chimpanzees 
originating from Gabon (SIVcpz-gab). Notably, as has been reported for HIV-1, SIVcpz 
virions have been shown to be able to incorporate CypA (98). Describing the function 
and significance of CypA-CA interactions in these viruses is beyond the scope of this 
review.

CypA AND HIV-1 ENTRY: A CHECKERED HISTORY

CypA was found to be incorporated into HIV-1 particles in a fixed stoichiometry to 
CA, and reduction in CypA incorporation correlated with reduced infectivity (87, 88). 
Therefore, it was hypothesized that CypA enhanced attachment/entry of the virus to the 
target cell and/or promoted post-cellular entry step(s) of HIV-1 replication. For cellular 
entry, the HIV-1 envelope glycoprotein gp120 binds to the CD4 receptor, and one of the 
chemokine receptors, CCR5 or CXCR4, expressed on the plasma membrane of specific 
immune cells (11, 17). A study by Sherry et al. (99) was the first to report a potential 
role of CypA in the cellular entry of HIV-1 (99). This study demonstrated that anti-CypA 
antibodies inhibited HIV-1 infection of the target cell by blocking viral uptake (99). Then, 
Saphire et al. (100) reported that the virion-associated CypA interacted with the heparan 
molecules of the target cell plasma membrane to promote virus attachment (100). These 
authors predicted that the heparan-CypA interaction was required for the initial binding 
of the virions to the target cell. Subsequently, Pushkarsky et al. (101) reported that 
the virion-associated CypA interacted with the target cell transmembrane glycoprotein 
CD147 to promote HIV-1 entry (101). While these studies suggested a potential role 
of CypA in HIV-1 cellular entry, it was unclear why only group M HIV-1 but not HIV-1 
belonging to other groups required CypA for entering the target cell (102). Furthermore, 
this model did not explain why pseudotyping of HIV-1 particles with vesicular stomatitis 
virus g-protein (VSVg) in the place of HIV-1 Env relieved the requirement of CypA for 
cellular entry (103). Finally, it was not obvious how CypA, a cytoplasmic protein with no 
obvious membrane-spanning region, could promote viral entry that involves fusion of 
the viral membrane with the plasma membrane of the target cell. Nevertheless, studies 
from a number of laboratories challenged the notion of the role of producer cell CypA 
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by demonstrating that CypA in the target cell was functionally linked to HIV-1 infection 
(described in the next section). Overall, the role of virion-incorporated CypA during 
HIV-1 replication remains unresolved even after four decades of extensive research. 
Interestingly, a recent study claims that virion-associated CypA facilitates incorporation 
of Tat to stimulate HIV-1 infection (104).

CypA AND POST-CELLULAR ENTRY STEPS OF HIV-1 REPLICATION

There was early evidence that CypA promotes HIV-1 infection by acting at a step 
following target cell entry (Fig. 2). For instance, Steinkasserer et al. (105) reported that 
HIV-1 particles assembled in the presence of a non-immunosuppressive CsA analog (SDZ 
NIM 811) were less infectious (105). They reported that the CsA analog inhibited the 
2-LTR circle formation and proviral DNA integration, which is suggestive of a block in the 
nuclear translocation of HIV-1 PICs in the infected cell (105). Thus, virion-incorporated 
CypA appeared to be playing a role during infection. Then, Braaten et al. (89) system
atically examined the role of HIV-1 particle-associated CypA in viral infection. In their 
study, CypA incorporation into the virions was prevented by both CsA and CA-specific 
mutations G89V and P90A, which disrupt CypA-CA interaction. The resulting CypA-defi-
cient virions were found to assemble, mature, and fuse with the target cells normally 
(89). Structural and biochemical studies by Weiger et al. (106) also illustrated that there 
was no detectable change in the morphology or yield of mature particles lacking CypA. 
Interestingly, the lack of virion-associated CypA led to impaired viral DNA synthesis 
in target cells (89). Additionally, this impairment was not a consequence of reduced 
endogenous reverse transcription activity of CypA-deficient virions. In a follow-up report, 
Braaten et al. (107) also demonstrated that HIV-1 particles produced from CypA-depleted 
cells showed no biochemical abnormalities, yet retained a defect at an early step of 
infection in the target cell. Collectively, these observations suggested that binding of 
target cell CypA to the incoming viral capsid is responsible for its effects on infection. 
Despite this, whether and how virion-associated CypA affect the early steps of HIV-1 
infection are not fully understood.

The role of target cell CypA in HIV-1 infection was further strengthened by Towers et 
al. (116). This study reported that CypA-free virions remained as infectious as CypA-
containing virions, suggesting that functional HIV-1 capsids can be assembled in the 
absence of a CA-CypA interaction (116). Using a clever approach of host restriction to 
viral infection, the authors reported that CypA-CA interaction promoted HIV-1 infection 
in the target cell by shielding the incoming viral capsid from the inhibitory effects of an 
unknown host restriction factor, now identified as TRIM5α. The requirement of CypA-CA 
interaction in the target cell to prevent the incoming HIV-1 from host restriction factor 
recognition was also reported by Berthoux et al. (117). These studies indicated that 
virion-associated CypA was inconsequential for HIV-1 infection of target cells. Accord
ingly, a comprehensive study by Hatziioannou et al. (118) confirmed that CypA-CA 
interaction in the producer cell during virus assembly or release has little or no effect on 
HIV-1 infectivity. They also reported that CsA inhibited HIV-1 infection only when CypA 
was expressed in the target cell. Interestingly, CA mutations A92E and G94D, located in 
the CypA binding loop, rendered the virus resistant to CsA and also dependent on CsA 
for efficient replication. However, these CA mutations did not affect virus production but 
affected the early steps of HIV-1 infection in the target cell (118). Collectively, these 
studies provided compelling evidence that the target cell CypA is important for HIV-1 
replication and played an instrumental role to define the exact role of CypA in post-entry 
step(s) of HIV-1 infection.

There were several reasons why the role of target cell CypA in HIV-1 replication was 
not obvious in the early studies (119). First, CypA function was probed using a number of 
different experimental tools, including; (i) CA mutants with altered CypA affinity/
dependence, (ii) diverse competitive inhibitors of CypA, and (iii) different methods to 
inhibit CypA expression. Second, it was not clear that the functional role of CypA is 
dependent on the cell type used for HIV-1 infection. For example, CypA promotes HIV-1 
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infection of MT4, CEM, 293T, HOS, TE671, Jurkat T cells, and primary human CD4 +T cells 
(89, 102, 118, 120–123) but not in HeLa and H9 T cells (119, 120). Furthermore, HIV-1 
infection of dendritic cells does not require CypA (124). Finally, it was not known then 
that HIV-1 infection is sensitive to CypA levels in the target cell (120, 122).

Role of CypA in HIV-1 reverse transcription

After cellular entry, HIV-1 capsid undergoes the process of uncoating, aka shedding or 
disassembly of the capsid, in the target cell cytoplasm (Fig. 2). Even though the exact 
timing, precise location, and molecular mechanism are not fully understood, uncoating is 
functionally linked to early steps of HIV-1 infection including reverse transcription (125–
127). Notably, HIV-1 uncoating is coordinated by host factors that target two major 
binding interfaces on the viral capsid. CypA binds to one of these interfaces located at 
the CA-NTD known as the CypA-binding loop (Fig. 1) (90–92). A second binding site, 
formed at the interface between the NTD of one CA monomer and the CTD of an 
adjacent CA monomer, is targeted by nucleoporins and other host factors (35). A third 
interface that contributes to capsid stability is the trimeric interhexamer interface, which 
forms a structure that is targeted by the host restriction factor MxB (128, 129).

Braaten et al. (89) reported that point mutations in the CypA binding loop of CA- 
P90A or G89V/A- resulted in a significant reduction in viral DNA synthesis in the target 
cell . Notably, they also confirmed that reduction in viral DNA synthesis quantitatively 
correlated with CypA-CA binding in vitro. Similarly, Ackerson et al. (130) demonstrated 
that viral DNA synthesis was dramatically reduced in cells infected with HIV-1 P90A 
virions. This study was the first to measure the effects of disrupting CypA-CA binding on 
HIV-1 reverse transcription in human primary peripheral blood mononuclear cells 
(PBMCs). Subsequently, Fitzon et al. (131) reported that changing the proline residues of 

FIG 1 Structural representation of CypA complex formation with cyclosporin and HIV-1 Capsid. 

(A) Ribbon representation (shown in green) of Apo form of CypA (PDB ID: 1CWA). (B) The binding mode 

of the CypA with cyclosporin A (shown in light purple sticks; PDB ID: 1CWA). (C) A zoomed-in view (inset) 

of the binding mode, which shows the important active site amino acid residues (green sticks), Trp121, 

Leu122, Arg55, Gln63, and Phe60 of the CypA interacting with CsA. (D) CypA (green ribbons) in complex 

with the HIV-1 capsid (pale yellow ribbons). The structural complex (PDB ID: 5FJB) exhibits a distinct 

CypA-binding pattern in which CypA selectively make a contact with the loop region of HIV-1 capsid. (E) A 

zoomed-in view (inset) of CypA binding loop of HIV-1 capsid (pale yellow) where the important amino 

acid residues (His87, Ala88, Gly89, Pro90, Ile92, and Pro93) are shown in pale yellow sticks interacting with 

CypA key residues (Arg55, Phe60, Gln63, Phe112, Leu122, and Trp121) shown in green sticks.
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CA that are conserved among all HIV-1 clades caused severe defects at different stages of 
viral replication (131). Particularly, mutations in the proline residues in the CypA binding 
loop resulted in reduced levels of reverse transcription (131). In a follow-up study, 
Braaten et al. (107) found that CypA depletion in T cell lines resulted in a marked 
reduction in HIV-1 reverse transcription. Intriguingly, CypA depletion minimally altered 
HIV-2 DNA synthesis, suggesting that CypA’s effect on HIV-1 reverse transcription is 
specific (107). Subsequently, a study by De Laco et al. (31) comprehensively examined 
CypA’s effect on HIV-1 reverse transcription using 27 different human cell lines and 
several HIV-1 CA mutants. They reported that disruption of CypA-CA binding either by 
specific CA mutants, CypA-depletion, or CsA treatment decreased HIV-1 reverse tran
scription in all cell lines studied. Interestingly, CypA was also required for HIV-1 reverse 
transcription in cells in those where infection is not dependent on the CA-CypA interac
tion or where CypA inhibited infection (31). While these studies using immortalized 

FIG 2 Schematic representation of the canonical and emerging models of the early steps in HIV-1 

replication. The HIV-1 envelope spike sequentially binds to the CD4 +receptor and one of the co-recep

tors—CCR5 or CXCR4. This leads to the fusion of the viral and target cell membranes and the release 

of the capsid into the cytosol. The cytosolic CypA binds to the CypA-binding loop of the CA subunits 

that constitute the shell of the capsid. The CypA-bound capsid is trafficked by the cytoskeleton network 

toward the nucleus, and the canonical (A) and two emerging models (B-C) of the subsequent events are 

depicted. (A) En route to the nucleus, the RTC containing the viral RT enzyme reverse transcribes the viral 

ssRNA genome into a dsDNA copy. Concurrently or upon completion of reverse transcription, the intact 

core with the capsid disassembles/uncoats in the cytoplasm (108). The newly synthesized viral dsDNA is 

transported, as part of the PIC, through the NPC. The principal components of cytoplasmic PIC include 

viral dsDNA, viral IN, and CA. After NPC-mediated nuclear entry, the PIC-associated CA and IN interact 

with host factors such as CPSF6 and LEDGF/p75, respectively, thus enabling PIC-mediated integration 

of the viral dsDNA into active gene bodies of the host chromosomes and the canonical (A) and two 

emerging models (B and C) of the subsequent events are depicted. (B) Reverse transcription is completed 

within the intact capsid during its transport to the NPC (109), and nuclear import is facilitated by capsid 

remodeling/partial disassembly at the NPC (27). After nuclear entry, the PIC, still part of the partially 

disassembled capsid lattices, interacts with host factors that direct PIC-mediated targeted integration. 

(C) Reverse transcription is initiated within the intact capsid during its transport to the NPC and is only 

completed after the intact or almost intact capsid is imported into the nucleus (33, 45, 110–115). In the 

nucleus, localized disassembly of the capsid (113, 115) near or at the site of integration (110) enables 

interaction with host factors that direct PIC-mediated targeted integration. The representative symbols 

used in the schematic to depict the viral capsid contents and the host factors are shown on the right.
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human cell lines have provided valuable insights into the role of CypA in HIV-1 reverse 
transcription, the advent of CRISPR-Cas gene-editing strategies finally paved the way to 
probe CypA’s role in physiologically relevant CD4 +T cells and macrophages (132). Taking 
advantage of the CRISPR technology, two recent studies described CypA’s positive effects 
on HIV-1 reverse transcription in human primary cells (133, 134). Kim et al. (133) reported 
that viral DNA synthesis by the CA mutant P90A is significantly lower in primary macro
phages and CD4 +T cells. Similarly, Selyutina et al. (134) found that reverse transcription 
of HIV-1 mutants P90A and G89V is dramatically reduced in primary CD4 +T cells. These 
studies confirmed that CypA promotes HIV-1 reverse transcription and reported that the 
primary role of CypA is to protect HIV-1 from TRIM5α restriction in physiologically 
relevant cells.

A functional role of CypA in HIV-1 reverse transcription is also supported by studies 
of CsA and its analogs. For example, Song and Aiken (121) reported that CsA increased 
reverse transcription of CsA-dependent HIV-1 mutants A92E and G94D. Since CsA did 
not promote fusion of these HIV-1 mutants to target cells, these authors suggested that 
CsA affected HIV-1 reverse transcription (121). Another study by Ptak et al. (135) used 
a non-immunosuppressive CsA analog (Debio025) and probed the effect of this CypA 
inhibitor on HIV-1 reverse transcription. They reported that the CsA analog significantly 
reduced both the early and late HIV-1 reverse transcription products (135).

Collectively, these studies based on alterations in CypA expression, use of HIV-1 
mutants that disrupt CypA-CA interaction, and treatment with CypA inhibitors provided 
strong evidence for a functional link between CypA and HIV-1 reverse transcription. 
The precise mechanism by which CypA promotes HIV-1 reverse transcription is not fully 
understood. However, the positive effects of CypA on HIV-1 infection have been linked 
to its ability to stabilize the viral capsid. For instance, Fitzon et al. (131) reported that 
specific CA mutations in the CypA binding loop alter capsid stability. Studies of CsA 
washout assay and core-destabilizing effects of TRIM5α have also provided evidence that 
CypA stabilizes the viral capsid (136–140). Notably, alterations in HIV-1 capsid stability 
severely impair reverse transcription in target cells (141). Even though capsid stability 
mutants show defects in other post-entry processes, a number of CA mutants were 
defective at reverse transcription, regardless of the type of changes (131, 141–144). 
Therefore, CypA’s effect on HIV-1 reverse transcription is most likely linked to its ability to 
stabilize the incoming capsid (145). Presumably, a stable capsid can provide a favorable 
biochemical microenvironment for optimal HIV-1 reverse transcription. This model is 
supported by several recent studies of purified cores that are subjected to endogenous 
reverse transcription (146, 147). However, future studies are needed to tease out, how 
and whether, CypA’s effect on HIV-1 reverse transcription is influenced by other capsid 
stabilizing host factors (148, 149). Particularly, the negatively charged metabolite Inositol 
hexakisphosphate (IP6), also known as Phytic acid, has emerged as a critical host factor 
for HIV-1 capsid stability (146, 148–151). Therefore, probing a cross-talk between CypA 
and IP6 in regulating HIV-1 capsid stability could provide key insights into a possible link 
between the cell-type dependence of CypA and differences in levels of IP6 in the target 
cell.

Role of CypA in HIV-1 nuclear entry

Nuclear entry of HIV-1 is coordinated and regulated by the viral capsid (Fig. 2) (152, 
153). Specifically, binding of host factors NUP358 (aka RanBP2) and NUP153 to the 
capsid is critical for HIV-1 replication complex to gain access to the target cell nucleus 
(32–35, 154). The filaments of NUP358 form a ring on the cytoplasmic side of the NPC, 
whereas NUP153 forms a basket on the nuclear side (155–159). NUP358 binds to a 
hydrophobic binding pocket (N74) and the CypA binding loop (P90) of the capsid, 
whereas NUP153 preferentially binds to CA hexamers—to a hydrophobic pocket at the 
interface between two adjacent CA monomers. Particularly, NUP153 makes contacts 
with one of the CA monomers at helix 2 (P34, I37, P38, and S41), helix 7 (I135, L136, 
N139, K140, V142, and R143), helix 8 (R173, Q176, and A177), and with the adjacent 

Minireview Journal of Virology

November 2023  Volume 97  Issue 11 10.1128/jvi.00732-23 8

https://doi.org/10.1128/jvi.00732-23


CA monomer at residues P38, Q63, R143, R173, A177, Q176, and R143. NUP358 also 
contains a CypA-homologous domain (34, 160) and possesses PPIase activity like CypA 
(161). Both NUP358 and NUP153 were initially identified as co-factors for HIV-1 infection 
by genome-wide screenings (160, 162). Subsequently, it was established that NUP358 
promotes docking of the HIV-1 replication complex (45, 163), whereas NUP153 promotes 
translocation through the NPC (35, 162–165). TNPO3 was also identified as a host factor 
for HIV-1 nuclear import (160, 162, 166–170). However, TNPO3’s effect on HIV-1 nuclear 
entry seems to be indirect and has been linked to its ability to transport CPSF6 into the 
nucleus (171–173) since the binding of cytoplasmic CPSF6 to the capsid actually inhibits 
HIV-1 nuclear entry. Since CPSF6 and Nup153 share the same CA binding interface, the 
current model is that TNPO3 facilitates binding of Nup153 by preventing premature 
engagement of CPSF6 to promote HIV-1 nuclear entry (35, 168).

There is strong evidence that CypA influences HIV-1 nuclear entry by coordinating 
binding of specific NUPs to the viral capsid (34, 162, 163, 174). Schaller et al. (34) were 
the first to report that CypA promotes nuclear entry of HIV-1 by coordinating with 
NUP358 and subsequently with NUP153. Accordingly, when the CypA-CA interaction 
was disrupted, utilization of these NUPs was altered during HIV-1 nuclear entry (34, 163, 
164, 175, 176). For instance, CA mutations (G89V and P90A) that prevent CypA binding 
were less dependent on NUP358 and NUP153 expression for nuclear entry of the HIV-1 
replication complex (34, 164, 175, 176). There is also evidence that CypA-CA interaction 
regulates the rate at which HIV-1 replication complex docks at the NPC. For instance, 
Dharan et al. (177) reported that the P90A mutation abolishes HIV-1 infection-induced 
cytoplasmic localization of NUP358. Burdick et al. (45) reported that CypA slows down 
nuclear import of HIV-1 replication complexes and that disrupting CypA-CA interaction 
resulted in a faster rate of nuclear import. For instance, compared to the wild-type HIV-1 
particle the rate of nuclear import was increased for virions with a P90A mutation or 
with the treatment of CsA (45). Interestingly, the efficiency of nuclear import remained 
comparable with or without disruption of the CypA-CA interaction (45). Similarly, Zhong 
et al. (178) reported that G89V mutant virus has a higher rate of trafficking to the NPC 
compared to the wild-type virus. These observations supporting a direct role of CypA in 
HIV-1 nuclear import are consistent with the findings by De Laco et al. demonstrating 
that the infectivity defect resulting from the disruption of CypA-CA interaction correlated 
with a nuclear entry block (31). However, it is important to note that CypA’s effect on 
nuclear entry is cell type dependent (31), and CypA (in conjunction with other factors) 
could inhibit nuclear entry of HIV-1 in old world monkey cells (179).

Interestingly, the HIV-1 CA mutant viruses defective for CypA binding (G89V and 
P90A) are also reported to be resistant to Myxovirus resistance B (MxB)-mediated 
inhibition of HIV-1 nuclear entry (180–182). Accordingly, extended passages of HIV-1 
in a MxB-expressing T-cell line led to the isolation of an MxB-resistant escape virus 
harboring a single mutation altering the CA residue A88—a key amino acid required 
for CypA binding (180). Thus, MxB-mediated restriction of HIV-1 appears to require 
capsid binding to CypA (180, 181). Importantly, MxB resistance of certain transmitted 
founder HIV-1 strains mapped prevalently to mutations in the CypA-binding loop of 
CA (183). Remarkably and intriguingly, the addition of the A92E mutation, known to 
recapitulate the CypA binding-mediated effect on the CA to the P90A virus, rendered it 
susceptible to MxB restriction (184). Thus, the MxB restriction appears not to depend on 
CypA binding per se but rather on a specific conformational state of CA that could be 
conferred, for instance, by CypA binding or by a specific CA mutation that recapitulates 
CypA binding-mediated effect. Collectively, these studies provided strong evidence that 
CypA-CA interaction is necessary for the import, docking, and entry of HIV-1 replication 
complex through the NPC into the nucleus of an infected cell.

Role of CypA in post-nuclear entry steps of HIV-1 infection

After HIV-1 enters the nucleus of the target cell, the PIC-associated viral DNA is integrated 
into actively transcribing genes of the host chromosomes (Fig. 2) (23). The enzymatic 
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activity required for inserting the HIV-1 DNA into the host genomic DNA is provided 
by the PIC-associated IN (23). Accordingly, a number of PIC-associated host factors 
have been reported to play key roles in targeting the HIV-1 DNA into specific regions 
of the host chromosomes (185, 186). Interestingly, HIV-1 CA is emerging as another 
target for host factors in post-nuclear entry steps of infection. For instance, CPSF6 is a 
CA-binding host factor that plays critical roles in HIV-1 integration targeting into the 
gene bodies of the host chromosomes (44, 48). Interestingly, there is evidence that the 
CypA-CA interaction also influences HIV-1 integration targeting. For example, Schaller 
et al. (34) found that disrupting CypA-CA interaction altered integration targeting into 
host chromosomes. Surprisingly, disruption of CypA binding to CA increased targeting 
of HIV-1 integration into gene-dense regions (34). This contrasts with depletion of 
other CA-binding host factors such as CPSF6, where integration targeting is generally 
directed away from gene-dense regions (34, 44, 48). Although the mechanism is not 
fully understood, absence of CypA could increase and prolong CPSF6 binding to the 
capsid (178) and slow the rate of CA uncoating resulting in this unusual phenotype 
of integration targeting. Alternatively, disruption of CypA-CA interaction may alter the 
choice of optimal nuclear entry pathway(s) by the virus, thereby leading to integration 
into higher gene-density regions. For instance, increased integration of the P90A and 
G89V viruses into higher gene-density regions has been proposed to result from their 
impaired use of the nuclear pore complex proteins such as NUP358 and NUP153 (34). 
Nevertheless, the functional consequence of CypA’s effect on HIV-1 integration targeting 
remains largely unclear.

A recent study by our group provides strong support for the potential role of CypA 
in HIV-1 integration (187). We reported that CypA expression regulates the integration of 
HIV-1 CA mutant (R264K) that evades the antiviral effects of the cytotoxic T lymphocytes 
(CTLs) (187). We observed that the reduced infectivity of the R264K mutant is linked 
to a defect at the integration step and was not a consequence of a block at reverse 
transcription and/or nuclear entry. Especially, several-fold increase in integration of the 
R264K mutant was detected in the CypA-depleted cells. Importantly, the compensatory 
CA mutation S173A restored the integration and infectivity defect of the R264K mutant. 
Although the mechanism remains unclear, these results strongly support the role of 
CypA in post-nuclear entry steps of HIV-1 infection, particularly in the integration step of 
CTL escape mutants.

The human CypA is a predominantly cytosolic protein; thus. the mechanism by which 
it influences post-nuclear entry steps of HIV-1 infection has been intensely debated 
in the field. While yeast CypA has previously been reported to localize to the nucleus 
of Saccharomyces cerevisiae (188), a recent study reported the pronounced nuclear 
localization of endogenous CypA in human monocyte-derived macrophages (178). 
Interestingly, CypA has also been reported to localize to the nucleus of Jurkat T-cells and 
play a novel role in the completion of cytokinesis (189). More recently, CypA has been 
shown to translocate to the nucleus upon stimulation of cells with stressors and play 
an anti-apoptotic role (190). However, despite the reported ability of CypA to localize 
to the nucleus independent of HIV-1 infection, the effect of CypA on post-nuclear entry 
steps of infection is most likely dependent on CypA’s ability to bind to the HIV-1 capsid. 
Interestingly, a functional link between HIV-1 CA and post-nuclear entry steps of HIV-1 
infection is gaining a great deal of momentum in recent years. Particularly, recent reports 
suggest that intact or near-intact cores can be observed inside nuclear pores and even 
inside the nucleus (108, 110, 191). Additionally, emerging evidence strongly suggests 
that HIV-1 CA regulates viral DNA integration. For instance, early biochemical studies 
detected CA in the viral replication complexes at/near the nuclear pores/envelope (19, 
192) and transmission electron microscopy of HIV-1-infected cells revealed CA shells in 
close proximity to nuclear pores (193). HIV-1 CA mutants show alterations in proviral 
integration, PIC-mediated integration activity, and integration site selection (152, 153, 
194–196). CA-binding host factor CPSF6 also regulates HIV-1 integration targeting (47, 
48). Studies of small molecule inhibitors targeting CA provide further support for the 
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role of CA in the nucleus of HIV-1 infected cells (197–203). For example, the CA-specific 
inhibitor PF74 inhibits HIV-1 replication (35, 204, 205) and affects distribution of viral 
DNA integration into the host genome (206). Furthermore, we have provided evidence 
for a direct link between CA and HIV-1 integration by combining the use of PF74 as 
a pharmacologic probe with the measurement of the integration activity of HIV-1 PICs 
(207). Particularly, we have provided biochemical evidence for a direct role of CA in 
PIC-mediated viral DNA integration in vitro (207). Interestingly, and intriguingly, CypA is 
also necessary for the antiviral effect of PF74. For instance, Shi et al. (204) demonstrated 
that CsA or shRNA-mediated depletion of CypA reduced the antiviral activity of PF74 
(204). Importantly, viruses harboring the CA mutation G89V or P90A were minimally 
affected by PF74. This finding was confirmed by Saito et al. (206) who reported that 
siRNA-mediated depletion of CypA reduced the antiviral activity of PF74 (206). Therefore, 
it is tempting to speculate that CypA could remain engaged with the CA associated 
with the viral replication complex (RTC/PIC) in the nucleus and influence post-nuclear 
entry steps. Accordingly, CypA could affect nuclear CA uncoating, engagement of the PIC 
with the chromatin, and integration of the viral DNA into the host DNA. However, future 
studies are needed to clarify these speculative models to understand CypA’s role in the 
nucleus. Particularly, a combination of biochemical, pharmacological, genetic, structural, 
imaging, and molecular biology approaches is required to address the persistent and 
emerging knowledge gaps in the function of one of the first host factors of HIV-1 
infection.

CONCLUSIONS AND FUTURE PERSPECTIVE

Tremendous progress has been made in understanding the exact role of CypA in HIV-1 
infection. It is clear CypA plays important roles at various steps of HIV-1 replication cycle 
including uncoating, reverse transcription, nuclear import, and integration. However, 
the broader question of whether CypA regulates a singular molecular mechanism that 
drives its diverse roles or whether CypA is capable of modulating distinct partners and/or 
pathways at each step remains unanswered. Therefore, pinpointing the true nature of 
CypA during HIV infection requires a coherent model that is relevant both in laboratory 
models and physiologically relevant systems.
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