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ABSTRACT CD4-mimetic compounds (CD4mcs) bind the human immunodeficiency 
virus (HIV-1) gp120 exterior envelope glycoprotein (Env) and compete for binding to 
CD4, the host receptor. CD4mcs prematurely trigger conformational changes in Env 
similar to those induced by CD4, leading to transient activation of infectivity followed 
by irreversible virus inactivation. Natural HIV-1 variants exhibit a wide range of suscepti
bilities to CD4mc inhibition, only a small fraction of which can be explained by variation 
in the gp120 Phe-43 cavity/vestibule where CD4mcs bind. Here, we study Envs from the 
resistant HIV-1BG505 and the more sensitive HIV-1191955_A4 clade A strains. The major 
determinant of the relative sensitivity of the HIV-1191955_A4 Env to CD4mcs mapped to 
a single residue change (F317Y) in the tip of the gp120 V3 variable loop. In the Envs of 
several HIV-1 strains, replacement of the more prevalent Phe 317 with a tyrosine residue 
increased virus sensitivity to multiple CD4mcs. Tryptophan substitutions at residues 317 
and 316 resulted in increases and decreases, respectively, in sensitivity to CD4mcs. Some 
of the gp120 V3 changes increased virus sensitivity to inactivation by both CD4mc 
and cold exposure, phenotypes indicative of increased Env triggerability. Infection of 
CD4-negative cells expressing the CCR5 coreceptor by these Env variants was triggered 
more efficiently by CD4mcs. For the panel of studied HIV-1 Envs, resistance to the 
CD4mcs was associated with decreased ability to support virus entry. These studies 
illustrate how variation in gp120 outside the CD4mc binding site can influence the 
sensitivity of natural HIV-1 strains to inhibition by these compounds.

IMPORTANCE CD4-mimetic compounds (CD4mcs) are small-molecule inhibitors of 
human immunodeficiency virus (HIV-1) entry into host cells. CD4mcs target a pocket 
on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor, 
CD4, and is highly conserved among HIV-1 strains. Nonetheless, naturally occurring HIV-1 
strains exhibit a wide range of sensitivities to CD4mcs. Our study identifies changes 
distant from the binding pocket that can influence the susceptibility of natural HIV-1 
strains to the antiviral effects of multiple CD4mcs. We relate the antiviral potency of 
the CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate 
entry-related changes in Env conformation prematurely. These findings will guide efforts 
to improve the potency and breadth of CD4mcs against natural HIV-1 variants.

KEYWORDS virus, envelope, entry inhibitor, Env, CD4-mimetic compound, resistance, 
gp120, variable region, V3 loop, strain variation

T he binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein 
(Env) to host cell receptors, CD4 and CCR5/CXCR4, triggers virus entry into the 

cell (1–11). The Env trimer consists of three gp120 exterior Envs and three gp41 
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transmembrane Envs. Prior to receptor engagement, the HIV-1 Env trimer on virions 
mainly exists in a pretriggered “closed” conformation (State 1) but also samples more 
“open” conformations (States 2 and 3) (12–15). CD4 binding drives Env from State 1 to 
State 2 and then into State 3, the prehairpin intermediate (12–18). In the prehairpin 
intermediate, the heptad repeat (HR1) region of gp41 forms an exposed coiled coil (16–
19). Binding of the State 3 Env to the CCR5 or CXCR4 coreceptor is thought to induce the 
formation of a highly stable gp41 six-helix bundle, which promotes the fusion of the viral 
and cell membranes (20–25).

The closed nature of the State-1 conformation, significant strain variability, and 
heavy glycosylation of the HIV-1 Env trimer contribute to the avoidance of potentially 
neutralizing antibodies (26–29). Amidst conformational and sequence variation, HIV-1 
must conserve the gp120 binding sites for its receptors. The binding site for CD4 on 
gp120 consists of a conserved surface that is conformationally altered by CD4 bind
ing. CD4 binding creates an internal pocket in gp120 called the Phe-43 cavity that is 
bounded by highly conserved residues from gp120 and a single phenylalanine residue 
(Phe-43) from CD4 (30). The ~150 Å3 Phe-43 cavity and the surrounding “vestibule” on 
the gp120 surface comprise the binding sites for two classes of small-molecule HIV-1 
entry inhibitors, the CD4-mimetic compounds (CD4mcs) and conformational blockers 
like BMS-806 and BMS-529 (temsavir) (30–40).

CD4mcs disrupt HIV-1 entry by binding to gp120 in the Phe-43 cavity, directly 
competing with CD4 but also prematurely triggering Env (31, 40–42). CD4mcs drive 
the State-1 Env trimer into downstream conformations (States 2 and 3) that, in proximity 
to a coreceptor-expressing target cell, can mediate HIV-1 infection (42). These CD4mc-
induced Env intermediates are short-lived and, in the absence of a coreceptor-expressing 
target cell, irreversibly decay into inactive, dead-end conformations (41, 42). At CD4mc 
concentrations that do not completely inhibit HIV-1 infection, the induction of more 
open Env conformations sensitizes HIV-1 viruses to neutralization and HIV-1-infected 
cells to antibody-dependent cellular cytotoxicity by otherwise ineffectual antibodies (43–
52).

Early CD4mcs discovered using a gp120-CD4 screen exhibited weak antiviral potency 
against a limited range of HIV-1 isolates (31, 40). Iterative cycles of design, guided by 
CD4mc-gp120 structures and empirical testing, led to the development of analogs with 
improved potency (36–38, 53–56). Progressive increases in CD4mc potency have been 
accompanied by an increase in the breadth of activity against a wider range of HIV-1 
strains (37, 38, 57). BNM-III-170, a well-studied CD4mc analog with an indane scaffold, 
inhibits approximately 70% of a global panel of multi-clade HIV-1 variants (37). Recently 
developed CD4mcs based on an indoline scaffold exhibit 10- to 20-fold increases in 
anti-HIV-1 potency compared with BNM-III-170 (57). With the exception of CRF01_AE 
recombinant HIV-1 (see below), indoline CD4mcs inhibit the entry of every HIV-1 strain 
tested (57).

Despite significant improvements in the potency and coverage of the lead indoline 
CD4mcs, primary HIV-1 strains exhibit a 1,000-fold range of sensitivities to their antiviral 
effect (57). The rank order of sensitivities of lentivirus vectors pseudotyped by diverse 
HIV-1 Envs is highly correlated among different CD4mcs, suggesting that an intrinsic 
property of Env determines CD4mc susceptibility (57). With respect to HIV-1 phylogeny, 
only the CRF01_AE recombinants, in which the imidazole ring of His 375 occupies the 
Phe-43 cavity, are resistant to the CD4mcs (58–60). In the other phylogenetic clades, 
HIV-1 strains exhibit the entire range of sensitivities to the CD4mc (57). The susceptibility 
of most primary HIV-1 strains to CD4mcs is not obviously explained by local variation 
in the known binding site of these compounds (36–38, 57, 59–61). For example, the 
Phe-43 cavity of 96% of these HIV-1 strains is bounded by Ser or Thr 375 residues that are 
compatible with efficient CD4mc binding (58–61).

Pathways to CD4mc resistance preferred by HIV-1 in the absence of immune selection 
have been studied by passaging HIV-1 in the presence of BNM-III-170 (62). In addition 
to two changes near the gp120 Phe-43 cavity, a third change in the gp120 inner 
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domain outside the BNM-III-170 binding site contributed to resistance. Studies with 
closely matched Env mutants have provided insight into one mechanism whereby Env 
changes distant from the CD4mc binding site can influence virus sensitivity to these 
compounds (26, 63–66). To bind and inhibit HIV-1, CD4mcs must induce transitions from 
State 1 to downstream conformations (26, 31, 35–37, 41, 42, 46, 47, 53–55, 67). Viruses 
with Envs that have more stable State-1 conformations and, therefore, are less prone to 
make transitions from State 1 exhibit greater resistance to CD4mcs (26, 63–66). Thus, Env 
“triggerability” or intrinsic reactivity, a property that is inversely related to the height of 
the activation barrier separating State 1 and State 2 (13, 26, 27), can significantly affect 
the susceptibility of HIV-1 Env mutants to inhibition by CD4mcs.

Little is known about the basis for the 1,000-fold range of sensitivities of natural 
non-CRF01_AE HIV-1 strains to the lead indane and indoline CD4mcs. CD4mcs make 
backbone contacts or interact with the side chains of highly conserved gp120 residues 
(37, 55, 57). Thus, an alternative explanation of primary HIV-1 susceptibility involving 
differences in Env triggerability, which need not be specified by changes near the CD4mc 
binding site, is appealing. Here, we investigate the basis for the different sensitivity 
of two clade A primary viruses, HIV-1191955_A4 and HIV-1BG505, to BNM-III-170 and 
potent lead indoline CD4mcs. We map the Env determinant of this difference in CD4mc 
sensitivity to a single amino acid residue (Tyr/Phe 317) in the tip of the gp120 V3 loop. 
We explore the effect of changes in this and adjacent V3 residues on the sensitivity 
of viruses to CD4mcs and cold exposure, two phenotypes known to be influenced by 
alterations in Env triggerability (63–66, 68). We evaluate the impact of Env resistance 
to CD4mcs on the ability to mediate infection of cells expressing CD4 and CCR5. We 
also examine the ability of the Env variants to be activated by CD4mcs to mediate 
virus infection of CD4-negative, CCR5-expressing cells. These results provide insights into 
mechanisms whereby Env changes outside the CD4mc binding site can influence the 
sensitivity of natural HIV-1 strains to inhibition by this class of entry inhibitors.

RESULTS

Determinants of the different sensitivities of the 191955_A4 and BG505 Envs 
to CD4mcs

HIV-1191955_A4, hereafter referred to as HIV-1A4, and HIV-1BG505 are primary clade 
A viruses (69–71) that exhibit differences in sensitivity to several CD4mcs (Fig. 1A). 
Compared with HIV-1BG505, HIV-1A4 is relatively sensitive to the indane CD4mc BNM-
III-170 (37) and to the indoline CD4mcs, CJF-III-192 and CJF-III-288 (57). As expected 
(57), the indoline CD4mcs inhibited both HIV-1A4 and HIV-1BG505 more potently than 
BNM-III-170. As there are more than 120 amino acid residue differences between the A4 
and BG505 Env ectodomains, we first attempted to localize the determinants of CD4mc 
sensitivity to the gp120 or gp41 subunit. The gp120Bgp41A chimera, which comprises 
the BG505 gp120 and A4 gp41, exhibited a level of resistance to the CD4mcs at least as 
great as that of the BG505 parent virus (Fig. 1A). Conversely, the gp120Agp41B chimera 
was as sensitive to inhibition by the CD4mcs as the A4 parent virus. These results indicate 
that the main determinants of the differences in CD4mc susceptibility between the A4 
and BG505 viruses are located in the gp120 subunit.

The testing of additional A4-BG505 chimeras involving different regions of gp120 
allowed us to narrow the number of potential candidates for the CD4mc susceptibility 
determinants further. The results with one such chimeric Env, B(V1/V2+gp41)A, indicated 
that the V1/V2 region of BG505 gp120 does not determine the resistant phenotype 
(Fig. 1A). By contrast, the results with the B(V3+gp41)A chimera clearly indicate that the 
BG505 gp120 V3 region is required for the relative resistance of the BG505 Env to the 
CD4mcs (Fig. 1A). The Env chimeras, A(N-gp120)B and A(C-gp120)B, which share BG505 
Env sequences only in the gp120 V3 region, were both resistant to the CD4mcs (Fig. 
1A). The CD4mc sensitivity of the B(V3+gp41)A virus and the CD4mc resistance of the 
A(N-gp120)B and A(C-gp120)B viruses exceeded those of the A4 and BG505 parental 
viruses from which the respective V3 sequences were derived. These results implicate 
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the gp120 V3 region in determining sensitivity to the CD4mcs and suggest that other 
gp120 sequences can influence the degree of the observed phenotypes. The parental A4 
and BG505 viruses and the viruses with chimeric Envs were comparably inhibited by the 
conformational blocker, BMS-806 (Fig. 1A). Thus, even though CD4mcs and BMS-806 bind 
to similar gp120 regions (30–40), sensitivity to these entry inhibitors differs among these 
Env variants.

FIG 1 Determinants of the different sensitivities of the BG505 and 191955_A4 Envs to CD4mcs. (A) A schematic representation is shown of the gp120 and gp41 

subunits of the BG505 and 191955_A4 (designated A4) Envs and chimeras. The gp120 V1/V2, V3, V4, and V5 variable regions are designated. HEK 293T cells 

were transfected with plasmids encoding the indicated Envs, HIV-1 packaging proteins, and a luciferase-expressing HIV-1 vector. Pseudoviruses were incubated 

with different concentrations of the inhibitors for 1 hour at 37°C and then added to Cf2Th-CD4/CCR5 cells. After 2 days of culture, the cells were lysed, the 

luciferase activity was measured, and the IC50 was calculated. The IC50 values for inhibition of viruses pseudotyped with the indicated Envs by BNM-III-170, 

CJF-III-192, CJF-III-288, and BMS-806 are reported as means and standard deviations derived from at least three independent experiments. The intensity of 

shading is proportionate to the level of CD4mc resistance. (B) The infectivity of viruses with the indicated Envs was measured on Cf2Th-CD4/CCR5 cells. 

Recombinant luciferase-expressing viruses pseudotyped with the indicated Envs were produced as described above. Forty-eight hours later, cell supernatants 

containing the pseudotyped viruses were cleared and added in equal volumes to Cf2Th-CD4/CCR5 cells. Two days later, the cells were lysed, and the luciferase 

activity was measured. Means and standard deviations from at least two independent experiments are reported. (C) The expression level, processing, and virion 

incorporation of the A4 and BG505 Envs and indicated chimeras are shown. HEK 293T cells were transfected with the packaging plasmids and constructs 

expressing the Env variants. Cell lysates and virus-like particles (VLPs) were harvested 48 hours later, and equivalent volumes were processed and analyzed 

by Western blotting for the indicated proteins. A minor form of gp41 resulting from cleavage of the cytoplasmic tail is designated by an asterisk. The results 

shown are representative of those obtained in three or more independent experiments. However, the relatively high level of gp41 in the VLPs containing the 

gp120Agp41B chimera was not reproduced in other experiments.
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The A4-BG505 chimeric Envs exhibited different levels of efficiency with which they 
supported virus infection of CD4+CCR5+ cells (Fig. 1B). These differences were not related 
to variation in the level of Env expression or incorporation into virus particles (Fig. 1C). 
The relationship between CD4mc resistance and infectivity will be explored for these and 
other Env variants below.

The gp120 V3 loop as a determinant of CD4mc susceptibility

The above results indicate that A4- and BG505-specific sequences in the gp120 V3 region 
determine the respective sensitivity and resistance of the parental viruses to the CD4mcs. 
We, therefore, tested whether particular BG505 V3 amino acid residues are essential 
for maintaining the resistant phenotype. Comparison of the A4 and BG505 gp120 V3 
sequences identified six amino acid differences (Fig. 2A). Our attention was drawn to the 
four differences at residues 307/308 and 317/318, which are symmetrically positioned 
at the tip of the V3 loop (72). While polymorphisms in three of these V3 residues are 
common in HIV-1 strains, Tyr 317 in the A4 Env is unusual (59, 60). Approximately 79% 
of HIV-1 strains have a phenylalanine residue at this position; in the remaining strains, 
Leu and Trp are common substitutions, Met is less common, and Tyr is only occasionally 
seen. We evaluated the effect of introducing the F317Y change in the BG505 Env. Viruses 
with the B(307+317)A and B(317)A Envs were more sensitive to the CD4mcs than the 
BG505 virus, with sensitivities similar to or even greater than those of the A4 virus (Fig. 2A 
and B). Thus, the Tyr 317 substitution in V3 is sufficient to explain the increased CD4mc 
sensitivity of the A4 virus relative to that of the BG505 virus.

We evaluated whether the BG505 V3 sequences were sufficient to render the A4 virus 
resistant to the CD4mcs. The A(307+308+317+318)B, A(307+317)B, and A(317)B viruses 
were as resistant to the CD4mcs as the BG505 virus (Fig. 2A and B). The A(307)B virus 
exhibited an intermediate level of resistance to the CD4mcs. The expression and ability 
to support infection of these Envs are shown in Fig. 2C and D. The level of gp120 
shedding from the virus particles induced by CJF-III-288 roughly corresponded to the 
sensitivity of the viruses to inhibition by CJF-III-288 (Fig. 3A through C). Our results 
suggest that variation in the gp120 V3 tip is both necessary and sufficient to account for 
the different susceptibilities of the A4 and BG505 viruses to CD4mcs.

Effect of V3 changes on CD4mc sensitivity in other HIV-1 strains

We asked whether the alteration of Phe 317 to the less-common tyrosine residue would 
alter CD4mc sensitivity in other HIV-1 strains. We introduced the F317Y change into 
the Envs of HIV-1191084, another clade A virus, and HIV-1CRF02_AG253.11, a tier-3 clade 
AG recombinant virus (69, 74–76). In both HIV-1 strains, the F317Y change resulted in 
increased sensitivity to the CD4mcs (Fig. 4A). Thus, the effect of substitution of a tyrosine 
residue at Phe 317 on CD4mc sensitivity applies to multiple HIV-1 strains. The expression 
and ability to support infection of these Envs are shown in Fig. 4B and C. We note that 
the wild-type AG253.11 Env was less efficient in supporting virus infection than the other 
Envs studied, despite a comparable level of Env expression and incorporation into virus 
particles.

Hydrophobic aromatic or aliphatic amino acids are found at residue 317 in most HIV-1 
strains (59, 60). We asked if a hydrophobic Trp residue at 317 or the adjacent 316 position 
would influence HIV-1 susceptibility to inhibition by CD4mcs. The A316W change has 
been used to decrease the exposure of the V3 loop on soluble gp140 SOSIP.664 trimers 
(77, 78). Although the BG505 (F317W) virus was inhibited by CD4mcs comparably to 
the wild-type BG505 virus, the Y317W change in the A4 Env and the F317W change 
in the AD8 Env rendered the viruses more sensitive to the CD4mcs (Fig. 5A and B). By 
contrast, viruses with the A316W change were slightly or moderately more resistant to 
CD4mcs. These results indicate that changes in the tip of the gp120 V3 loop can affect 
the susceptibility of viruses from multiple HIV-1 strains to inhibition by CD4mcs. The 
expression and ability to support infection of these Envs are shown in Fig. 5C and D.
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FIG 2 Analysis of the gp120 V3 loop as a determinant of CD4mc susceptibility. (A) The sequences of the A4 and BG505 gp120 V3 loops are aligned beneath 

the schematic representation of the HIV-1 Env. Amino acid residues that differ between the A4 and BG505 Envs are in bold. The amino acid residues changed 

in each Env variant are shown in bold beneath the parental Env. Standard HIV-1 Env amino acid numbering is used here and throughout the manuscript (73). 

The IC50 values for inhibition of pseudovirus infection by the CD4mcs were calculated as described in the Fig. 1A legend and are reported as means and 

standard deviations derived from at least three independent experiments. The intensity of shading is proportionate to the level of CD4mc resistance. (B) The 

CD4mc dose-inhibition curves for recombinant viruses pseudotyped by the indicated Envs are shown. The relative infectivity represents the level of infection 

of Cf2Th-CD4/CCR5 target cells observed in the presence of the indicated concentration of CD4mc compared to the level of infection in the absence of the 

CD4mc. The means and standard deviations derived from triplicate measurements within a typical experiment are reported. (C) The infectivity of viruses with 

the indicated Envs is shown. The infectivity was measured on Cf2Th-CD4/CCR5 cells as described in the legend to Fig. 1B. Means and standard deviations 

derived from two independent experiments are reported. (D) The expression level, processing, and virion incorporation of the indicated Envs were evaluated as 

described in the Fig. 1C legend.
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CD4 activation of mutant virus infection

CD4mcs induce short lived, activated Env intermediates that irreversibly decay into 
dead-end conformations (31, 41, 42). To investigate whether V3 loop changes affect this 
process, we examined the ability of the viruses with wild-type and mutant Envs to infect 
CD4-negative, CCR5-expressing cells in the presence of increasing concentrations of the 
CD4mcs. The activating effects of BNM-III-170 and CJF-III-288 were similar (Fig. 6A and 
B). Compared with the wild-type BG505, AD8, 191084, and AG253.11 viruses, the viruses 
with Tyr or Trp substitutions at residue 317 were generally activated more efficiently 
by the CD4mcs. Conversely, the Y317F change in the A(317)B mutant decreased CD4mc 
activation relative to that of the wild-type A4 virus. Compared with the wild-type AD8 
virus, viruses with the A316W Env were less efficiently activated by CD4mcs.

We evaluated the relationships among the viral phenotypes of the Env variants in this 
study. The sensitivities of the virus variants to inhibition by BNM-III-170 and CJF-III-288 
were highly correlated (Fig. 7A); therefore, we used virus sensitivity to CJF-III-288 
inhibition to evaluate potential relationships with other viral phenotypes. For viruses 
with V3 loop Env variants, there is a strong correlation between sensitivity to CJF-III-288 
inhibition and activation by the CD4mcs (Fig. 7B).

FIG 3 Relationship between susceptibility of HIV-1 Env variants to CD4mc-induced gp120 shedding and virus sensitivity to CD4mc inhibition of infection. 

(A) CJF-III-288-induced shedding of gp120 from virions with the indicated Envs was measured. Virions were produced transiently from HEK 293T cells transfected 

with pNL4-3 proviral constructs containing the A4, A(307)B, A(317)B, BG505, B(317)A, and B(307+317)A env genes. Viruses were harvested, clarified by low-speed 

centrifugation, filtered (0.45 µm), and pelleted at 14,000  ×  g for 1.5 hours at 4°C. The virus pellet was resuspended in 1× phosphate-buffered saline (PBS) and 

incubated with the indicated concentrations of CJF-III-288 for 2.5 hours at 37°C. The viruses were then pelleted; the virus pellet was lysed, and the supernatant 

containing shed gp120 was incubated with Galanthus nivalis lectin beads. The viral lysates and the proteins captured on the GNL beads were Western blotted 

to detect the indicated HIV-1 proteins. (B) For each Env variant, the shed gp120 bands in the Western blot in A were measured and plotted against the 

concentration of CJF-III-288 incubated with the viruses. (C) The areas under the curves (AUCs) were measured from the plot shown in B. The correlation between 

the AUCs and the IC50 values of CJF-III-288 for inhibition of the corresponding pseudoviruses is shown. rS = Spearman rank-order correlation coefficient.
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Cold sensitivity of mutant viruses

One of the phenotypes associated with alterations in the stability of the State-1 
conformation of the HIV-1AD8 Env is a change in the sensitivity of the functional viral 
spike to inactivation by exposure to 0°C (63, 64, 79, 80). We evaluated the infectious 
half-life following incubation on ice for recombinant viruses pseudotyped by Env variants 
selected from the studies above. The infectivity of the viruses with the primary HIV-1 
Envs exhibited a range of sensitivity to cold (Fig. 6C). Compared with the wild-type A4, 
AD8, 191084, and AG253.11 viruses, the viruses with Tyr or Trp substitutions at residue 
317 were inactivated more rapidly at 0°C. By contrast, the A4 and AD8 viruses with the 
A316W change were more resistant to cold inactivation. For viruses pseudotyped with 
this panel of Env variants, there is a good correlation between sensitivity to CJF-III-288 
inhibition and cold inactivation (Fig. 7C).

Relationship between virus sensitivity to CD4mcs and infectivity

The relationship between the susceptibility to inhibition by CJF-III-288 and infectivity for 
the panel of HIV-1 Env variants used in this study is shown in Fig. 7D. Virus infectivity 
varied inversely with resistance to the CD4mc.

FIG 4 Effect of changes in V3 residue 317 on CD4mc sensitivity in other HIV-1 strains. (A) Sequences of the V3 loops of the 191084 and AG253.11 Envs and F317Y 

mutants are shown beneath the schematic of the HIV-1 Env. The IC50 values for inhibition of infection by the CD4mcs were calculated as described in the Fig. 1A 

legend and are reported as means and standard deviations derived from at least three independent experiments. The intensity of shading is proportionate to the 

level of CD4mc resistance. (B) The infectivity of viruses with the indicated Envs is shown. The infectivity was measured on Cf2Th-CD4/CCR5 cells as described in 

the legend to Fig. 1B. (C) The expression level, processing, and virion incorporation of the indicated Envs were evaluated as described in the legend to Fig. 1C.
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FIG 5 Effect of hydrophobic changes in the gp120 V3 loop. (A) Sequences of the gp120 V3 region of the BG505, A4, and AD8 Envs are shown, along with 

the hydrophobic Trp substitutions made in the V3 loop mutants, beneath the HIV-1 Env schematic. The IC50 values for inhibition of infection by the CD4mcs 

were calculated as described in the Fig. 1A legend and are reported as means and standard deviations derived from at least three independent experiments. 

The intensity of shading is proportionate to the level of CD4mc resistance. (B) The CD4mc dose-inhibition curves for recombinant viruses pseudotyped by the 

indicated Envs are shown. The relative infectivity on Cf2Th-CD4/CCR5 target cells following incubation of the viruses with the indicated concentration of CD4mcs 

was measured as described in the Fig. 2B legend. The means and standard deviations derived from triplicate measurements within a typical experiment are 

reported. (C) The infectivity of viruses with the indicated Envs is shown. The infectivity was measured on Cf2Th-CD4/CCR5 cells as described in the legend to Fig. 

1B. (D) The expression level, processing, and virion incorporation of the indicated Envs were evaluated as described in the legend to Fig. 1C.
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DISCUSSION

Even when the highly resistant CRF01_AE recombinant HIV-1 strains are excluded, 
primary HIV-1 strains exhibit a 1,000-fold range of IC50 values with respect to inhibition 
by CD4mcs (37, 57). The rank orders of sensitivities of HIV-1 Envs to different CD4mcs are 
highly correlated, indicating that Env sequences determine virus sensitivity to multiple 
CD4mcs (57). For the panel of Env variants used in this study, sensitivity to BNM-III-170 
and CJF-III-288 correlated. A substantial fraction of the variation in primary HIV-1 
sensitivity to CD4mcs is apparently determined by changes in Env elements outside of 
the known CD4mc binding sites (53–57). Changes in Env triggerability, which is governed 
by the activation energy barrier between State 1 and downstream Env conformations, 

FIG 6 Activation of HIV-1 infection by CD4mcs and sensitivity to cold inactivation. Activation of infection of CD4-negative, CCR5-expressing cells by BNM-III-170 

(A) and CJF-III-288 (B) was evaluated for HIV-1 variants with wild-type and mutant A4, BG505, AD8, 191084, and AG253.11 Envs. HEK 293T cells were transfected 

with plasmids expressing the indicated Envs, HIV-1 packaging proteins, and a luciferase-expressing HIV-1 vector. After 48 hours, pseudoviruses were harvested 

and incubated with Cf2Th-CCR5 cells in 96-well plates. The plates were centrifuged at 600  ×  g for 30 min at 21°C. Medium containing serial dilutions of 

BNM-III-170 or CJF-III-288 was then added. After incubation at 37°C in a CO2 incubator for 48 hours, the cells were lysed, and luciferase activity was measured. 

RLU, relative light units. (C) To evaluate cold sensitivity, pseudotyped viruses were produced as described in the Fig. 1A legend and were incubated on ice 

for the indicated times, after which the virus infectivity was measured. In A–C, the means and standard deviations of triplicate measurements are shown. The 

experiments were repeated with comparable results.

Full-Length Text Journal of Virology

November 2023  Volume 97  Issue 11 10.1128/jvi.01171-23 10

https://doi.org/10.1128/jvi.01171-23


correlate with CD4mc sensitivity for carefully matched panels of HIV-1AD8 Env mutants 
(64). Additional studies are needed to evaluate the hypothesis that alterations in Env 
triggerability contribute to the variation in the sensitivity of natural HIV-1 strains to 
CD4mcs.

The difference in sensitivity of the A4 and BG505 Envs to CD4mcs was determined by 
the Phe/Tyr 317 polymorphism in the tip of the gp120 V3 loop. The tyrosine residue in 

FIG 7 Correlations between viral phenotypes associated with Env variants. (A) The correlation between the CJF-III-288 and BNM-III-170 IC50 values (in 

micromolar) for inhibition of pseudovirus infection of Cf2Th-CD4/CCR5 cells is shown for the Env mutants in this study. (B) The relationship between inhibition 

of infection of Cf2Th-CD4/CCR5 cells (on the x-axis) and activation of infection of Cf2Th-CCR5 cells (on the y axis) by CJF-III-288 is shown for the indicated 

pseudovirus variants. The x-axis values represent the IC50’s for each Env from Fig. 1A, 2A, 4A, and 5A. The y-axis values represent the areas under the curve 

calculated from the activation graphs in Fig. 6B. (C) The relationship between inhibition of infection of Cf2Th-CD4/CCR5 cells (on the x-axis) by CJF-III-288 

and sensitivity to cold exhibited by viruses pseudotyped with different Envs is shown. The x-axis values are as in B. The y-axis values represent the half-life of 

infectivity at 0°C obtained from the experiments shown in Fig. 6C. (D) The relationship between inhibition of infection of Cf2Th-CD4/CCR5 cells (on the x-axis) by 

CJF-III-288 and infectivity of viruses with the different Envs is shown. The x-axis values are as in B. The y-axis values represent the viral infectivities from Fig. 1B, 2C, 

4B, and 5C. The Spearman rank-order correlation coefficients (rS) and two-tailed p values are shown for each of the graphs.

Full-Length Text Journal of Virology

November 2023  Volume 97  Issue 11 10.1128/jvi.01171-23 11

https://doi.org/10.1128/jvi.01171-23


the A4 Env is infrequent at this position and is less hydrophobic than the more common 
Phe, Leu, or Trp residues. In available Env structures, the V3 loop projects toward the 
trimer axis at the membrane-distal apex (80–83) (Fig. 8A). Hydrophobic packing in 
the trimer apex has been suggested to contribute to the maintenance of the closed, 
pretriggered Env conformation (13, 29, 84). Based on this model, the more polar tyrosine 
317 residue may disrupt packing of the trimer apex and predispose the pretriggered 
Env to open into downstream conformations. The phenotypes of the A316W and A317W 
mutants demonstrate that hydrophobic substitutions in this region may result in either 
increases or decreases in CD4mc resistance, respectively. If hydrophobic packing of 
the V3 tip is important for maintenance of a pretriggered state, the large tryptophan 
indole ring may be better accommodated at position 316 rather than 317. Trp 316 has 
been suggested to stabilize sgp140 SOSIP.664 Env trimers by stacking against Tyr 318 
(78). In any case, Phe/Tyr 317 is located approximately 14 Angstroms from the nearest 
gp120 residue that contacts the CD4mcs, and thus, these V3 polymorphisms exert their 
phenotypic effects over a distance (Fig. 8B).

Our results reveal the functional consequences of naturally occurring polymorphisms 
in residue 317. In addition to conferring an increase in sensitivity to CD4mcs, Tyr 317 
increased CD4mc-induced gp120 shedding and activation of infection of CD4-negative, 
CCR5-expressing cells. For the entire panel of Env mutants evaluated, virus sensitivity 
to CJF-III-288 inhibition correlated with CD4mc activation of infection, virus infectivity, 
and cold sensitivity. The latter two Env phenotypes are evaluated in the absence of 
CD4mcs and, therefore, provide independent indicators of increased Env triggerability 
(26, 63, 64, 79). An increase in triggerability specified by V3 residue 317 apparently 
contributes to the moderate increase in replicative ability and cold sensitivity of the A4 
virus compared with the BG505 virus. The development of resistance to CD4mcs through 
down-modulation of Env triggerability is expected to incur a fitness cost, consistent with 
the decreases in virus infectivity that we observed. It will be interesting to determine 

FIG 8 Relationship of the gp120 V3 loop and CD4mc binding site on an Env trimer structure. A side view of the unliganded HIV-1BG505 sgp140 SOSIP.664 Env 

trimer (PDB 4ZMJ) (85) is shown, with gp41 (orange) at the top and gp120 (tan) at the bottom of the image. The gp120 V3 loop is colored green, with residue 317 

shown in CPK representation. The gp120 residues within 3.5 Angstroms of the CD4mc CJF-III-288 in gp120 core co-crystals (PDB 8FM3) (57) are colored red and 

shown in stick representation. (B) Close-up view of the gp120 region encompassing the V3 loop (with Phe 317) and the CJF-III-288 binding site, represented as in 

A. The CJF-III-288 contact residues (in red) are completely conserved between the A4 and BG505 Envs, as is Ser 375, which is not visible from this perspective. In a 

single protomer of the HIV-1BG505 sgp140 SOSIP.664 Env trimer, Phe 317 is 13.5 Angstroms from the nearest residue (Ile 424) that contacts CJF-III-288. Phe 317 on 

the adjacent Env protomer is even further away from the CJF-III-288 binding site.
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how various properties associated with Env triggerability are related in a larger panel of 
primary HIV-1 strains.

Among primary HIV-1, sensitivity to inhibition by CD4mcs and soluble CD4 (sCD4) is 
only weakly correlated (57). Nonetheless, changes in Env triggerability have been shown 
to result in resistance to both CD4mcs and sCD4 (64, 66, 68). In light of the apparent 
ability of V3 changes to modulate Env triggerability, it is interesting that V3 sequences 
from primary HIV-1 strains are major determinants of sCD4 sensitivity (86).

Changes in the gp120 Phe-43 cavity that affected HIV-1 sensitivity to both CD4mcs 
and BMS-806 arose during selection of a BNM-III-170-resistant virus (62). By contrast, 
the alterations of the V3 loop observed here affected sensitivity to CD4mcs but not to 
BMS-806. Unlike CD4mcs, conformational blockers like BMS-806 and its analogs do not 
need to induce large-scale conformational changes in Env to exert their antiviral effect 
(12). As a result, the potency of BMS-806 analogs is less susceptible to Env alterations 
distant from the drug-binding site that alter triggerability. Thus, despite the proximity of 
the gp120 binding sites of CD4mcs and BMS-806 (87, 88), the distinct consequences of 
binding related to their antiviral mechanisms strongly impact potential HIV-1 pathways 
of resistance. An appreciation of the differences between these classes of gp120-directed 
virus entry inhibitors will guide potential applications.

MATERIALS AND METHODS

Plasmids

The env genes encoding the A4 and BG505 Envs and chimeric Envs were expressed 
using the pcDNA3.1 Env plasmid (GenBank accession numbers QPJ74671 for the A4 env 
and ABA61516 for the BG505 env). Chimeric Envs were constructed by Q5 site-directed 
mutagenesis (New England BioLabs). The gp120Bgp41A chimera has the gp120 region 
of BG505 (5′atgagagtgatggggatacaga….. aagagtggtggggagagaaaaaaga3′) and the gp41 
sequence of A4 (5′gcagttgttggaatggg……. ttgaaagggctttactataa3′). The gp120Agp41B 
chimera has the gp120 region of A4 (5′atgagagcgagggggacaca….. aagagtggtgggaagag
gaaaaaga3′) and the gp41 of BG505 (5′gcagttggaataggagctgtcttcct………. tcaga
cagggcctcgaaagggctttgctataa3′).

In B(V1/V2+gp41)A, the V1V2 region (5′tgtaccaatgtcaccaataatat….. aacaaggagta
tagattaataaattgt3′) of gp120Bgp41A is replaced by the V1V2 region (5′tgtatcga
tattgccaatgacacaagccgcaatg……. ttagtaataatagcagtgagtatagattaataaattgt3′) of A4. In 
B(V3+gp41)A, the V3 region (5′tgtaccagacctaacaacaatacaagg ……. taggggatataagacaag
cacattgt3′) of gp120Bgp41A is replaced by the V3 region (5′ tgtactagacctggcaataa
taca……. ataataggggatataagacaagcatattgt3′) of A4.

In A(N-gp120)B, the N terminus (5′atgagagcgagggggacacagaagaat…….. ataataggg
gatataagacaagcatattgt3′) of A4 gp120 is replaced by the N terminus (5′atgagagtgatggg
gatacagaggaattgtcag………taggggatataagacaagcacattgt3′) of BG505 gp120.

In A(C-gp120)B, the C terminus (5′tgtactagacctggcaataataca…………aaggagaa
gagtggtgggaagaggaaaaaga3′) of A4 gp120 is replaced by the C terminus (5′tgtaccagacc
taacaacaatacaagg……. caaagagaagagtggtggggagagaaaaaaga3′) of BG505 gp120.

Additional primary HIV-1 Envs included in this study are from HIV-1191084 and 
HIV-1AG253.11 (GenBank accession numbers ADI62025 and ACC97453, respectively).

For experiments in which the Envs were expressed in the context of an 
HIV-1 provirus, the env genes were cloned into the pNL4-3 proviral clone (89). 
Using Q5 site-directed mutagenesis, NheI and SalI restriction sites were introduced 
into the pNL4-3 plasmid before the start and end of the env gene, respec
tively, using the primers (Fp: tacgtacccggggatgggtggcaagtggtcaaaaagtagtgt and Rp: 
atagtagctagctgccactgtcttctgctctttctattagtct). The resulting construct was named pNL4 
5′NheI-3′SmaI. Using the primers (A4FpNheI: atagtagctagcatgagagcgagggggacaca, 
A4RpSmaI: tacgtacccgggttatagtaaagccctttcaaaaccctgc and BG505FpNheI: atagtagctag
catgagagtgatggggatacaga, BG505RpSmaI: tacgtacccgggttatagcaaagccctttcgagg) and 
PfuUltra II DNA Polymerase (Agilent), A4 and BG505 sequences were amplified, 
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introducing NheI and SmaI restriction sites at their 5′ and 3′ ends, respectively. The 
amplified BG505 and A4 PCR products and pNL4 5′NheI-3′SmaI were digested with 
NheI and SmaI restriction enzymes and then ligated to yield the constructs pNL4-3 
NheIBG505SmaI and pNL4-3 NheIA4SmaI, respectively.

Using site-directed mutagenesis, the NheI (A4Fp: atgagagcgagggggacaca, BG505Fp: 
atgagagtgatggggatacaga, Rp: tgccactgtcttctgctctttcta) and SmaI (Fp: gatgggtgg
caagtggtcaaaaagtagtgtgattgga, RpA4: ttatagtaaagccctttcaaaaccctg, BG505Rp: ttatag
caaagccctttcgaggccctgtctgatt) restriction sites were removed to yield pNL4-3.A4 and 
pNL4-3.BG505. The DNA sequence of the env gene was confirmed for all constructs.

Cell lines and primary cells

293T cells were grown in Dulbecco’s Modified Eagle’s medium (Life Technologies, 
Wisent, Inc.) supplemented with 10% fetal bovine serum (Life Technologies, VWR) and 
100 µg/mL of penicillin-streptomycin (Life Technologies, Wisent, Inc.). Cf2Th-CD4/CCR5 
cells stably expressing the human CD4 and CCR5 coreceptors for HIV-1 were grown in 
the same medium supplemented with 0.4 mg/mL of G418 and 0.2 mg/mL of hygromycin. 
Cf2Th-CCR5 cells stably expressing the CCR5 coreceptor of HIV-1 were grown in the same 
medium supplemented with 0.4 mg/mL of G418.

Small-molecule HIV-1 entry inhibitors

The CD4mcs BNM-III-170, CJF-III-192, and CJF-III-288 were synthesized as described 
previously (37, 57). The compounds were dissolved in dimethyl sulfoxide at a stock 
concentration of 10 mM and diluted to the appropriate concentration in cell culture 
medium for antiviral assays. BMS-806 was purchased from Selleckchem.

Expression and processing of HIV-1 Env variants

HEK 293T cells were transfected transiently with plasmids encoding Envs, HIV-1 
packaging proteins, and a luciferase-expressing HIV-1 vector (26). Forty-eight hours later, 
the cell supernatant was cleared (600  ×  g for 10 min) followed by filtration through a 
0.45-µm membrane. The viruses were pelleted by centrifugation at 14,000 × g for 1.5 
hours at 4°C and lysed. The cell and virus lysates were Western blotted and probed with 
a goat polyclonal anti-gp120 antibody (Invitrogen), the 4E10 anti-gp41 antibody (NIH 
HIV Reagent Program), or a rabbit anti-Gag antibody (Abcam). The cell lysates were also 
Western blotted and probed with a rabbit anti-hsp70 antibody (Santa Cruz).

Production of recombinant pseudoviruses expressing luciferase

As described previously (26), 293T cells were transfected with pSVIIIenv plasmids 
expressing Env variants, the pCMVΔP1Δenv HIV-1 Gag-Pol packaging construct, and 
the firefly luciferase-expressing HIV-1 vector at a 1:1:3 µg DNA ratio using effectene 
transfection reagent (Qiagen). Recombinant, luciferase-expressing viruses capable of a 
single round of replication were released into the cell medium and were harvested 48 h 
later. The virus-containing supernatants were clarified by low-speed centrifugation (600 
×  g for 10 min) and used for single-round infections.

Virus infectivity, inhibition, and cold sensitivity

Single-round virus infection assays were used to measure the ability of the Env variants 
to support virus entry, as described previously (26). To measure the infectivity of the 
Env pseudotypes, equal volumes of HEK 293T cell supernatants containing recombinant 
viruses were added to Cf2Th-CD4/CCR5 target cells expressing CD4 and CCR5. Forty-
eight hours later, the target cells were lysed and the luciferase activity was measured. In 
parallel, aliquots of the virus-containing HEK 293T cell supernatants were processed and 
analyzed by Western blotting, as described above.

To measure virus inhibition, the compounds to be tested were incubated with 
pseudoviruses for 1 hour at 37°C. The mixture was then added to Cf2Th-CD4/CCR5 target 
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cells expressing CD4 and CCR5. Forty-eight hours later, the target cells were lysed, and 
the luciferase activity was measured.

To evaluate the cold sensitivity of the Env variants, pseudotyped recombinant viruses 
were incubated on ice for various lengths of time prior to measuring their infectivity, as 
described previously (26, 27, 63, 64, 79).

gp120 shedding

To measure CD4mc-induced gp120 shedding, 293T cells were transfected transiently 
with pNL4-3 provirus constructs expressing the A4, BG505, A(307)B, A(317)B, B(317)A, 
and B(307+317)A Envs. The transfected cell supernatants were harvested 48 hours later, 
clarified by low-speed centrifugation (600 × g for 10 min) and filtered through a 0.45-µm 
membrane. The viruses were pelleted by centrifugation at 14,000 × g for 1.5 hours at 
4°C and resuspended in 100 µL of 1× phosphate-buffered saline (PBS). The viruses were 
incubated with different concentrations of CJF-III-288 for 2.5 hours at 37°C, followed by 
centrifugation at 14,000 × g for 1.5 hours at 4°C. The virus pellets were lysed in 1× lithium 
dodecyl sulfate (LDS) buffer. The supernatants containing shed gp120 were bound to 
Galanthus nivalis lectin beads (Thermo Fisher Scientific). The glycoproteins captured 
on the beads and the lysates of virus pellets were Western blotted and probed with a 
goat anti-gp120 antibody, a 4E10 anti-gp41 antibody, or a rabbit anti-Gag antibody. The 
Western blots were quantified using Image J software (90).

Activation of virus infection by CD4mcs

Pseudoviruses were incubated with CD4-negative, CCR5-expressing Cf2Th-CCR5 cells in 
96-well plates. The plates were centrifuged at 600 × g for 30 min at 21°C. Medium 
containing serial dilutions of CD4mc was then added. Forty-eight hours later, cells were 
lysed, and luciferase activity was measured.

Statistics

The concentrations of HIV-1 entry inhibitors that inhibit 50% of infection (IC50 values) 
were determined by fitting the data in five-parameter dose-response curves using 
GraphPad Prism 8. Spearman rank-order correlation coefficients (rS) and p values were 
calculated using VassarStats (91).
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