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ABSTRACT: Coarse-grained force fields (CG FFs) such as the Targets CGCompiler
Martini model ?nFa11 a predefined, fixed set of Lennard-]o.nes mmmmm Evaluate optimal
parameters .(bulldln.g blocks) to model virtually all possible m%“w% / fitness parameters
nonbonded interactions between chemically relevant molecules. .
Owing to its universality and transferability, the building-block i) Shsenabie
coarse-grained approach has gained tremendous popularity over ‘....,&----... MV-PSO
the past decade. The parametrization of molecules can be highly  Building blocks Y a U

. . . A\ o pdate
complex and often involves the selection and fine-tuning of a large fi’iﬁ Beadtypes === swarm

number of parameters (e.g, bead types and bond lengths) to G4 (categorical)
optimally match multiple relevant targets simultaneously. The o new FF

g Seflg 1 Bonded-interactions rameter:
parametrization of a molecule within the building-block CG g\&; (continuous) parameters
approach is a mixed-variable optimization problem: the non- : '
bonded interactions are discrete variables, whereas the bonded
interactions are continuous variables. Here, we pioneer the utility of mixed-variable particle swarm optimization in automatically
parametrizing molecules within the Martini 3 coarse-grained force field by matching both structural (e.g, RDFs) as well as
thermodynamic data (phase-transition temperatures). For the sake of demonstration, we parametrize the linker of the lipid
sphingomyelin. The important advantage of our approach is that both bonded and nonbonded interactions are simultaneously
optimized while conserving the search efficiency of vector guided particle swarm optimization (PSO) methods over other
metaheuristic search methods such as genetic algorithms. In addition, we explore noise-mitigation strategies in matching the phase-
transition temperatures of lipid membranes, where nucleation and concomitant hysteresis introduce a dominant noise term within
the objective function. We propose that noise-resistant mixed-variable PSO methods can both improve and automate
parametrization of molecules within building-block CG FFs, such as Martini.

1. INTRODUCTION fine-grained system. However, because the partition function
Atomically detailed molecular dynamics (MD) simulations only describes a single thermodynamic state point at
provide great insights into the structure and dynamics of equilibrium, ie, a unique combination of pressure and
biomolecular and other soft matter systems, but larger time temperature values, systematically parametrized “bottom-up”
and length scales often require a coarse-grained (CG) coarse-grained force fields are not suited to describe phase
description. In coarse-graining, a group of atoms is mapped transitions over a wider temperature range. Phase transitions or
into one bead or supra-atom. Coarse-grained descriptions phase diagrams can, however, be optimally modeled using
achieve computational efficiency by reducing degrees of coarse-grained force fields based on the alternative Statistical
freedom while preserving relevant aspects. This not only Associating Fluid Theory (SAFT) parametrization approach,
allows for bridging larger time and length scales but also which uses a scaled Lennard-Jones interaction potential whose
enhances our understanding of the fundamental physics functional form (the exponent) is uniquely adapted for each
underlying the molecular processes within biological cells. interaction type.g’9 However, the main practical problem of all

For example, it can enable fundamental insights into
phenomena like the self-organization of lipid membranes and
the formation of characteristic thermodynamic phases,
including liquid-ordered, liquid-disordered, and gel phases.' ™ -

Systematic coarse-graining approaches such as inverse ReC_EIVEd: June 13, 2023 15 1-
Boltzmann and inverse Monte Carlo approaches4’5 as well as Revised:  October 9, 2023 %;g{(
force-matching approaches®” parametrize coarse-grained force Accepted: October 10, 2023 ) o~
fields by reproducing the structural part of the partition Published: November 16, 2023 . 9\%
function of the fine-grained system by either matching relevant

radial distribution functions or (combined) forces within the

of these coarse-grained force fields is their lack of chemical
transferability; i.e., inclusion of a new molecule (interaction
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type) within the system would require reparameterization of all
of the existing interaction parameters.

The Martini coarse-grained force field'”"" is a building-
block force field (FF); i.e., common chemical groups are
parametrized as basic building blocks, which can be combined
to build up any existing molecule. These basic building blocks
of Martini, the beads, are parametrized top-down and
reproduce the thermodynamic properties of the chemical
groups they model, such as partitioning free energies in liquid—
liquid systems, while complete molecules are parametrized
with a combination of top-down (experimental data) and
bottom-up (atomistic simulation). Such a parametrization
enables the qualitative simulation of phase transitions as well as
phase segregation in lipid membranes while simultaneously
conserving molecular compatibility (transferability) by describ-
ing all nonbonded interactions with the same 12—6 Lennard-
Jones potential form. However, a major drawback compared to
other systematic coarse-grained approaches is that para-
metrization of molecules in Martini can be highly complex
and often involves the selection and fine-tuning of a large
number of parameters (e.g.,, bead types and bond lengths) to
optimally match multiple relevant targets simultaneously. A
task that is time-consuming when done by human labor.
Additionally, it is not always obvious which parameters have to
be changed in what manner to enhance a certain behavior,
particularly when cooperative processes are involved. While the
choice of individual bead types can be made using chemical
intuition, still a sizable subset of combined possibilities exists.
Importantly, parametrization of bonded and nonbonded
parameters should be optimally performed simultaneously
since bonded and nonbonded interactions are not independ-
ent—they are directly influencing each other via the density of
interactions.'”'? Recent versions of the Martini force fields
such as Martini 3 rebalanced the density of interactions by
introducing an even larger number of possible interaction
types, thereby rendering the parametrization of molecules,
often a nontractable problem, to common users. Automation
of coarse-graining is thus critical, especially in the construction
of large databases of molecules. Automation offers a solution to
address the challenge of force-field development, which
typically involves collaboration among multiple researchers
working on interdependent parameters. By automating the
process, a clear, structured, and reproducible flowchart-based
hierarchy is established, providing an overview of how the
parametrization is conducted and which objectives are
targeted. Moreover, the same objectives can be used for a
wide range of molecules in the same family, thereby increasing
the consistency of the force field even when the development is
carried out in different laboratories. The automation approach
therefore facilitates collaborations by allowing researchers to
focus on selecting a set of relevant objectives and assigning
importance or weights to each objective. These objectives,
along with their individual weights, define the force field’s
philosophy. Furthermore, automation empowers collaborations
to prioritize two key aspects: the generation and provision of
reference data for the objectives at hand and the design of
analysis tools to quantitatively assess how each objective is
addressed within the automation pipeline. By automating the
parametrization process, collaborators can allocate their efforts
toward obtaining high-quality reference data that accurately
represent the desired objectives. Simultaneously, they can
focus on developing comprehensive analysis tools that enable
thorough quantitative evaluation, ensuring the effectiveness of
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the automation pipeline in achieving the defined objectives.
This collaborative approach maximizes the efficiency, reli-
ability, and reproducibility of the parametrization process while
facilitating a deeper understanding of the force field’s
performance.

Earlier works on automated parametrization for building-
block FFs focused on optimizing bonded interactions
only."*™'® For example, a method such as PyCGTOOL
generates coarse-grained model parameters from atomistic
simulation trajectories by using a user-provided mapping.
However, it does not perform parameter optimization; instead
equilibrium values and force constants are generated by
Boltzmann inversion.'* No other targets are used. The
SwarmCG method performs parameter optimization with
traditional PSO and targets only bond 1en§th and angle
distributions, as well as bilayer dimensions.'® The melting
temperature is used only in validation after optimization.
Nonbonded parameters are not bein$ optimized, although a
previous SwarmCG implementation'’ could also perform
optimization of continuous nonbonded parameters. No bead
assignment is proposed, which is problematic for molecule
parametrization in building-block FFs, as explained further
down. Other approaches that addressed both the automation
of mapping as well as the parametrization of bonded and
nonbonded parameters solely focused on small molecules and
rather provide an initial guess than an optimized para-
metrization.'®'? In Auto-Martini, bead type selection is done
via ALOGPS***' partitioning prediction of fragments.'®
Bonded parameters use generic values without any optimiza-
tion. The approach from Potter et al. is similar to Auto-Martini
but features an improved mapping scheme, and nonbonded
interactions are derived in a similar fashion, bond lengths are
taken from relaxed atomistic structures, and the force constants
use generic values.'” We note that fast methods such as Auto-
Martini and the method from Potter et al. could be used as a
complementary approach to CGCompiler by providing an
initial mapping as well as an initial nonbonded/bonded
parameter guess for CGCompiler. Automation schemes exist
also for systematic coarse-graining approaches.””*’

Particle swarm optimization (PSO) is a powerful computa-
tional method used to optimize problems by iteratively
improving candidate solutions based on a defined objective
function. Compared to evolutionary optimization methods
such as genetic algorithms, PSO offers advantages in efficiently
finding global optima within high-dimensional continuous
spaces due to its vectorial search direction. PSO has been
successfully employed in various coarse-grained (CG) para-
metrization tasks, as demonstrated in previous stud-
es'15—17,24,25

PSO is primarily designed for continuous variables, making
it well-suited for optimizing structure-based coarse-grained
(CG) models where bonded and nonbonded parameters can
be chosen from a continuum of values. However, in building-
block models like Martini, the nonbonded parameters are
predefined and discrete, representing different interaction
levels. Consequently, the parametrization of molecules in a
building-block CG force field becomes a mixed-variable
optimization problem.

When using PSO for parametrization in building-block
models, a transformation from the continuous space to the
discrete space of force-field parameters is necessary. This
transformation introduces cumulative rounding errors, which
can potentially affect the quality of the parametrization,
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Figure 1. Parametrization workflow. (i) Set of training systems from which the target properties can be extracted. (ii) Target data acquired from
atomistic simulations and experiments. (iii) Initial swarm generated with FF parameters randomly selected from a predefined range of feasible
parameters. (iv) All candidate solutions simulated in all training systems. The target observables are measured and compared to the target data; i.e.,
the fitness of the candidate solutions is estimated. New candidate solutions are generated by utilizing the swarm’s knowledge of the fitness
landscape. (v) Step iv repeated until a termination criterion is fulfilled. (vi) Screen-to-the best procedure yielding the optimized set of FF

parameters.

especially in larger molecules. Therefore, additional evaluation
and reparametrization steps are often required to ensure the
optimal performance of the force field.

It is crucial to parametrize both bonded and nonbonded
interactions simultaneously since they are not independent and
their optimization should be performed in a coordinated
manner.” By considering their interplay during the para-
metrization process, the resulting force field can better capture
the complex behavior of molecules in the system.

To address the limitations of existing PSO approaches, we
employ a mixed-variable PSO scheme (mv-PSO) for para-
metrization. This approach allows for the simultaneous
optimization of both discrete parameters (representing non-
bonded interactions) and continuous parameters (representing
bonded interactions), enhancing the accuracy and reliability of
the parametrization process.

Furthermore, due to the chaotic nature of MD simulations,
observables measured in MD simulations are subject to noise.
Since standard PSO was designed for deterministic objective
functions, straightforward application to noisy optimization
problems is error prone, because the algorithm can no longer
correctly identify global and personal best solutions when noise
levels are similar to differences between objective function
values.”® Noise-mitigation strategies are particularly important
when thermodynamic data are utilized as targets, as these are
notoriously expensive to estimate accurately in MD simu-
lations, even when employing CG models. Particularly
problematic is the targeting of phase transition temperatures,
which involve a first-order phase transition and are thus subject
to nucleation and concomitant hysteresis.

In this work, we pioneer the application of mixed-variable
particle swarm optimization in automated parametrization of
molecules within the Martini 3 coarse-grained force field by
matching both structural (e.g, RDFs) and thermodynamic
data (phase-transition temperatures). The important advantage
of this approach is that both bonded and nonbonded
interactions are simultaneously optimized while conserving
the search efficiency of vector guided particle swarm methods
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over other metaheuristic search methods such as genetic
algorithms. In addition, we explore noise-mitigation strategies
in matching the phase transition temperatures, where
nucleation and concomitant hysteresis introduce a dominant
noise term within the objective function. To the best of our
knowledge, the impact of noisy objective function values has
not been previously addressed in the context of applying PSO
for CG parametrization. The manuscript is structured in the
following way: Section 2 describes the mixed-variable PSO
algorithm and parametrization procedure. As an example, we
parametrized the linker region of sphingolipids, a biological
highly relevant class of lipid molecules, that constitutes
approximately 30 mol % of the plasma membrane lipids”’
but has not been updated for Martini 3, yet. Details of the
simulated molecules, systems, and observables are given in
Section 3. Results are presented in Section 4, followed by
conclusions in Section S.

2. CG MOLECULE PARAMETRIZATION VIA
MIXED-VARIABLE PARTICLE SWARM
OPTIMIZATION

With CGCompiler we present a Python package that
streamlines CG molecule parametrization. It employs mixed-
variable particle swarm optimization to simultaneously
optimize categorical (bead type) and continuous (bonds,
angles, dihedrals, ..) variables. Therefore, CGCompiler is
particularly well suited for, but not limited to, parametrization
tasks in CG FFs that follow a building-block approach. To
enable the application of the building-block approach also to
larger molecular fragments, consisting of more than one CG
bead, the method allows for optimization of shared building
blocks in different molecules, e.g, the headgroup, linker, or
tails of lipids.

Molecule parametrization in Martini 3 follows three steps:
(i) choice of mapping and bead sizes; (ii) assignment of
chemical bead types; (iii) choice of bonded terms and
assignment of bonded parameters.'’ While a mapping from
atomistic to the CG model and the set of of bonded terms have

https://doi.org/10.1021/acs.jctc.3c00637
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to be predefined, the algorithm presented here optimizes bead
size, chemical bead type, and bonded parameters simulta-
neously.

The parametrization workflow is shown in Figure 1. For a
given parametrization task, the user provides or generates the
target data and creates a set of CG training systems that allow
measurement of the target observables. In the initial iteration,
the optimization algorithm generates a number N, ie., the
swarm size, of candidate solutions with random FF parameters
and runs MD simulations for each candidate solution and each
training system. Candidate solutions are then scored by how
well the parametrization targets are reproduced. By utilizing
the swarm’s knowledge of the fitness landscape, candidate
solutions are updated and a new cycle of MD simulations,
analyses, and fitness evaluations starts. This is repeated until a
termination criterion is fulfilled. Due to noise in the objective
function evaluation, the selection of the true best parameters
can only be done with a certain probability. Therefore, the set
of the best, statistically equal candidate solutions undergoes a
screen-to-the-best procedure, which either provides one
solution that is significantly better than the rest or reduces
the field of viable candidate solutions further, on which more
expensive evaluation simulations would be performed.

2.1. Mixed-Variable Particle Swarm Optimization. In
the original PSO algorithm for continuous optimization
problems in a D-dimensional parameter space, particle i has
a position vector X; = (x!, ..., x°) and a velocity V, = (v}, ..,
vP).*® At each iteration t the velocity and position are updated

by
Vit + 1) = w V()
+ en(pbest(t) — X,(t))

+ c,n,(gbest(t) — X,(t)) (1)

X(t+1)=X0{) +V(t+1) (2)

where pbest,(t) is the personal best position of particle i and
gbest(t) is the best position found by the whole swarm. w is an
inertia weight, which balances global vs local search. The
coefficients ¢; and ¢, are balancing personal vs social
experience. r; and r, are vectors with random numbers. In
the mv-PSO algorithm that is utilized in our work, the position
vector of a particle takes a hybrid form, where Z dimensions
encode continuous variables and V dimensions encode
categorical variables.””

/12 Z 7+l 742
X, = (o, 07, ey a7, 677, 2775, L

1 xiZ+V)

continuous

categorical (3)

The continuous and categorical parts of the position vector are
updated separately.

2.1.1. Continuous Reproduction Method. In classical PSO
the swarm can get trapped in local optima and therefore
prematurely converge.”” To promote diversity while maintain-
ing good convergence efficiency, Wang et al. proposed an
altered continuous reproduction scheme, where particle i
learns from the best position of a randomly selected particle.”’
In order to guide the swarm toward improved solutions, the
pool of pbest to choose from only consists of solutions whose
fitness is superior to pbest;(t) .

V(t+ 1) = wV(t) + cr-(pbest (£) — X,(0)) @

Algorithm 1 Continuous reproduction method

1: Input: sorted swarm, particle 7, parameter w;
2 for j=1..Z do

3: Randomly choose 7, i <r < N

1 vl (t+1) = w; -0l (t) + ¢ v (pbest] — a])
5: 2t +1)=al(t)+v/(t+1)

6: end for

7. return (z},22,...,2%)

2.1.2. Categorical Reproduction Method. Values of
categorical variables are assigned according to a probability.
Initial probabilities are given by

Prob; ,(0) = 1

" (s)
where 7; is the number of available values for the jth variable.
To leverage the swarm’s knowledge of good solutions, only the
superior half of the sorted swarm is utilized in updating the
probabilities of available categorical values. To avoid
premature extinction of the available values, a lower limit is
assigned for Prob,,. If Prob;,, falls below that lower limit, Prob;,
is set to that threshold value, and all probabilities are
renormalized such that Y, Prob;, = 1. The categorical update
method is shown in Algorithm 2.

Algorithm 2 Categorical reproduction method

1: Input: sorted swarm, particle 7, parameter a;

2 for j=1.V do

3: for each available value n, n =1 to n; do Count;, =0
4 for each personal best pbest;, i = N/2 to N do

5: if pbest; ; == Values;, then

6: Countjn+ =1

T end if

8 end for

9: Prob;,(t + 1) = a; - Prob;,(t) + (1 — a;) - %
10: end for

11: end for

12: for j = 1.V do

13: Assign an available value to .1‘;/” according Prob;

14: end for

15: return (27t 272 . 27tV

2.1.3. Cost Function. Molecule parametrization is typically a
multiobjective optimization problem (MOP). A simple way to
scalarize a MOP is by linear weighting. The scalarized
optimization problem is solved by minimizing the cost,
which is given by

cost = Z wf, (x) ©

where w, is an objective weight, f, the objective cost function,
and x the parameter vector. The objective weights can be used
to balance the importance of the utilized parametrization
targets. The weights are set by the user. Setting weights might
require some intuition about the parametrized molecule,
quality of target data, etc.

Each objective can have a different objective cost function f,.
New objective cost functions can be added by the user easily.
In its present form, the parametrization algorithm uses two
distinct objective cost functions. For single valued observables,
such as area per lipid, membrane thickness, melting temper-
ature, and solvent accessible surface area (SASA), the objective
cost function is defined as

1
f(®) = =
’ DITH
N, 1 Niypes,s
N 1
X Z u{,'sr Z max(0, SAE(yS/t(x), ysyt) - Eg"s
s types,s t

(7)
where y,(x) is the observed value in training system s, given the

FF parameters x. J, is the target value. N, is the number of

https://doi.org/10.1021/acs.jctc.3c00637
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training systems that is used for the current parametrization
objective. When using average bond lengths or angles, Ny, is
the number of bond or angle types being parametrized. The
deviation from the target is calculated by the scaled absolute
error SAE(y, §) = |22

. With error tolerance Ef,‘fsl, uncertain-

ties in target data can be accounted for. Each training system
has an additional weight w,, which can be used in the case of
differences in target data quality or similar cases. Generally
these are set to 1.

For observables that are given in the form of distributions,
such as bond lengths, angles, or radial distribution functions
(RDFs), the objective cost function is given by

N,

1 1 types,s R
f(x) = > wy—— D EMD(h(x,,), §,)
ZS u{),s s Ntypes,s t '

(8)

where ¢(x) is the observed distribution, given the FF
parameters x. ¢ is the target distribution. The earth mover’s
distance EMD(¢p(x,,), ¢,,) is a measure of the distance
between the two distributions.*’

2.2. Noise Mitigation Strategies for PSO. PSO was
designed for deterministic objective functions. Due to the
chaotic nature of MD simulations, hereby measured observ-
ables are subject to noise. With noise in objective functions,
the selection of the true best solutions is not guaranteed. Since
solutions that are identified as the best attract the swarm
toward regions of interest in parameter space, noise can
misguide the swarm and therefore deteriorate PSO perform-
ance.

2.2.1. Resampling. Resampling is a widely applied strategy
for noise mitigation within an objective function. Relatively
simple resampling methods are equal resampling (PSO-ER),
extended equal resampling (PSO-EER), and equal resampling
with allocation to top-N solutions (PSO-ERN).*" These
simpler methods are regularly outperformed by state-of-the-
art resampling methods, such as optimal computing budget
allocation (PSO-OCBA),*” but the quality of results depends
on the specific optimization problem and noise levels.””*!
OCBA aims to maximize the probability of correctly selecting
good solutions. This is done by first allocating a primary
computational budget equally to all current solutions to
estimate their cost means and variances. A secondary budget is
then sequentially allocated to solutions with lower means and
higher variances to improve the fitness estimations of
potentially good solutions. For efficient secondary budget
allocation at least 5 primary evaluations should be executed for
mean and variance estimation.” This might make application
of OCBA prohibitively expensive for regular CG molecule
parametrization tasks. Based on the observation that most
observables utilized in the multiobjective optimization of the
sphingomyelin (SM) linker region have a low variance and
only a few suffer from a larger variance (cf. Figure SS), we
hypothesize that in the molecule parametrization task at hand,
one primary objective function evaluation is sufficient to
differentiate potentially good solutions from bad solutions, but
to maximize the probability of correctly selecting the true best
solution, the accuracy of the fitness estimates has to be
increased. Therefore, we propose a somewhat pragmatic
approach that salvages the core idea of OCBA, i.e., allocate
additional computational budgets to where it is the most useful
(low mean and high variance). At each iteration, our
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resampling method involves one full objective function
evaluation of the current solutions. The current solutions are
then ranked by their fitness, and for the best N solutions, only
the observables that have significant variance are reevaluated.

2.2.2. Set of Statistically Equivalent Solutions. Even with
noise mitigation, at the end of an optimization run, there will
be a number of solutions with very similar scores. While in a
deterministic setting, the global best position is determined by

gbest = arg ;rgg f(x) ©)
where %, is the set of all positions that have been visited by the
swarm up to iteration ¢, with noise in the objective function no
solution can be declared the best with 100% certainty.*® With
the screen-to-the-best procedure of Boesel et al.’* a set of
positions P¥ C %, can be selected, such that the true global
best solution gbest is contained in P¥ with probability of at
least 1 — a (with 0 < @ < 1).%°

For solutions i, j € P, f; and S;* denote the sample mean
and sample variance of objective function values. The
elementary steps of the screen-to-the-best procedure are

1. Compute W,

1/2
2 2
. £S; + tJ'SJ'
v n; 1 ’

Vi#je®R
(10)

where t; = t(;_,ymi-1, _; and tg, is the f quantile of the
t distribution with v degrees of freedom

2. Set P§ = {iief, | 5]3 + W, Vi#jeR}

3. Return P#

Wj; is the half-width of pooled t-confidence intervals on the
difference between the scores of solutions i and j.26 Therefore,
the procedure entails a pairwise comparison of solutions and
determines if differences of the sample averaged scores are
statistically significant.”®

3. EXAMPLE APPLICATION: SPHINGOLIPID LINKER
PARAMETRIZATION

As an example application of CGCompiler, we re})arametrize
the linker region of sphingomyelin in Martini 3.'" Figure 2
depicts the CG models of two sphingolipids, sphingomyelin,
and ceramide. Except for the differing headgroup, the two CG
models share the same parameters, following Martini’s
building-block approach.

3.1. Simulation Details. The Python package is based on
evo-MD.> All simulations were performed with GROMACS

PC/no head

amide-enol
linker

generic tails
A: TCC
B: CCCC

Sphingomyelin Ceramide

Figure 2. CG description of sphingomyelin and ceramide.
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Table 1. Atomistic Target System Details”
system lipids no. of TIP3P no. of NA no. of CL T/K simul time/ns
DPSM128 328 K 128 SSM 5120 328.15 150
POPC SSM CHOL 100 POPC 100 SSM 100 CHL1 9000 18 18 321.18 300
“In the naming scheme of the CHARMM FF, SSM and CHLI denote sphingomyelin (18:0) and cholesterol, respectively.
Table 2. Coarse-Grained Training System Details
no. no. no.
system lipids of W of NA of CL T/K
DPSM128 328 K 128 DPSM 1177 328.15
DPSM256 biphasic 256 DPSM half gel/half liquid 2300 26 26 286, 291, 296, 301, 303, 305, 307, 308, 309, 310, 311, 316, 321, 326
POPC SSM CHOL 96 POPC 96 DPSM 96 CHOL 2124 23 23 321.15
Table 3. Weights of Observables w, and System Specific Observable Weights w, ; for Optimization Run 1
observable Wo Wo,DPSM128 Wo,DPSM256 Wo,POPC SSM CHOL
bond length dist 1 1 0 1
angle dist 100 1 0 1
dun 500 1 0 025
APL 1000 1 0 0.25
T, 250 0 1 0
RDF COM DPSM-CHOL 1 0 0 1

2020.4 and 2021.4°° and analyzed with in-house Python scripts
that are utilizing MDAnalysis,””** LiPyphilic,”” SciPy,”" and
pyemd, which is a Python wrapper for Pele and Werman’s
EMD implementation.*"**
NGLview. "

3.1.1. Atomistic Models. All atomistic models were
simulated using the CHARMM36™ 7% force field. Table 1
provides details about the atomistic target systems. Initial
configurations of the membrane systems were generated with
the CHARMM-GUI membrane builder.*”~** Following energy
minimization and equilibration, all systems were simulated
with a 2 fs time step. Bonds of hydrogen atoms were
constrained employing the LINCS algorithm.” van der Waals
forces were gradually switched off between 1.0 and 1.2 nm.
The PME algorithm51 was used for electrostatic interactions.
Temperature coupling was done via the velocity rescale
algorithm®” with a coupling time 7, = 1.0 ps. System pressures
were held at 1 bar by using the Parinello—Rahman barostat™
with a coupling time 7, = 5.0 ps. Pressure coupling was applied
isotropically for aqueous solutions and semi-isotropically for
membrane systems.

3.1.2. Coarse-Grained Models. All coarse-grained models
were simulated using the Martini 3'' force field. DPSM
denotes SM(16:0) and SM(18:0) in the Martini FF, as the
current tail models do not differentiate between the two. f§
version 14 of the Martini 3 cholesterol parameters was
used.”»> TInitial configurations of membrane systems were
generated with the Python script insanepy.’® Details of the
employed training systems are listed in Table 2. All systems
were energy minimized and equilibrated with the current
version of DPSM, which made the Martini 2 model of
sphingomyelin compatible with Martini 3. During the particle
swarm optimization each system was equilibrated with the
candidate FF parameters in two stages, with time steps of 2 and
20 fs, respectively. For all coarse-grained production
simulations, a time step of 20 fs was used. Nonbonded
interactions were cut off at 1.1 nm. For electrostatic
interactions, the reaction-field method was used with a

Visualization was done with
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dielectric constant of 15 and the reaction-field dielectric
constant was set to infinity.

Temperature coupling was obtained via the velocity rescale
algorithm®” with a coupling time 7, = 1.0 ps. System pressures
were held at 1 bar by using the Parinello—Rahman barostat’’
with a coupling time 7, = 12.0 ps. Pressure coupling was
applied isotropically for aqueous solutions and semi-isotropi-
cally for membrane systems. In simulations for melting
temperature estimation anisotropic pressure coupling was
employed, using the Berendsen barostat™ with a coupling

time 7, = 4.0 ps.

4. RESULTS

Our aim was the development of an automatization framework
for molecule parametrization in building-block force fields. As
an example, we parametrized the sphingolipid linker region.
Section 4.1 shows the results of the parametrization with
CGCompiler using a simple noise-mitigation strategy. Since
noise-mitigation strategies can only reduce the effects of noise
when selecting the true best solution, the best statistically
equivalent solutions generated during the mv-PSO run are
subsequently screened-to-the-best, as described in Section
2.2.2.

4.1. Parameterization of the Sphingolipid Linker
Region. Table 3 shows the observables and their weights
used in the parametrization. The observable weights w, were
chosen pragmatically such that no single contribution
dominates the overall cost. System specific observable weights
w,,, are usually either 0 or 1, depending on whether the
observable is evaluated in a certain system. The choice of 0.25
for membrane thickness and APL in the POPC/SSM/CHOL
system stems from the fact that no experimental data were
available for these observables in this composition. Instead data
from atomistic simulations was used. To reflect Martini’s
emphasis on experimental data, the weights for the AA
simulation data were lowered in this case. The swarm size was
64. Noise-mitigation was done by reevaluating the melting
temperature of the 16 best candidate solutions of the current
iteration 12 times; i.e., results were obtained with noise-
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Figure 3. Thickness, average area per lipid, and melting temperature for the set of statistically equal candidate solutions that remained after the
second screen-to-the-best procedure performed after reevaluating the initial set 20 times.
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Figure 4. Validation of targets from rerun simulations for the set 8. (A) Bond length distributions. (B) Angle distributions.

mitigation setting mv-PSO-R16 (cf. Section 4.2). Ty, is the
major contribution to cost variance, but the employed T,
estimation method is good for differentiating good from bad
solutions; i.e., it has an accuracy of a few K. Other observables
were only evaluated once, and area per lipid (APL) fluctuations
were the second largest cause of cost variance. For more details
on noise-mitigation efficacy, see Section 4.2.

All results shown include the complete set of the best
statistically equivalent candidate solutions $® that remained
after two rounds of the screen-to-the-best procedure (cf.
Section 2.2.2). This set contains 18 candidate solutions.
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4.1.1. Improved Reproduction of Membrane Properties.
Figure 3 shows thickness, average area per lipid, and melting
temperature of pure DPSM membranes for the set of
statistically equal candidate solutions that remained after the
second screen-to-the-best procedure performed after reevaluat-
ing the initial set 20 times. All new candidate solutions
outperform the current DPSM model regarding thickness. The
average area per lipid of the current model is closer to the
target value, but most of the candidate solutions are within the
tolerance of 1.5% deviation. In general, thickness and APL are
inversely correlated, increasing one will always result in
decreasing the other; therefore, with both values inside the

https://doi.org/10.1021/acs.jctc.3c00637
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tolerance, the new models represent a better balance of
thickness and APL. It is important to note that, in the
comparison, SM(18:0) was used as the atomistic target. The
current tail model of the Martini FF represents both SM(16:0)
and SM(18:0). The CHARMM model for SM(16:0) exhibits a
reduced thickness when compared to SM(18:0).* It is
therefore not unexpected that the Martini DPSM models
show a reduced thickness compared to SM(18:0).

While the melting temperatures estimated with the biphasic
approach, which is used during optimization for performance
reasons, are not within the specified tolerance regime of 2 K
but ~#5—6 K below the target value and ~3—4 K below the
lower target threshold, the new models are greatly improved
compared to the current model, which was 20 K off target.
Notably, the estimation of T, is approach-dependent.
Estimations using the alternative, reversible melting approach
with slow melting rates, based on Kowalik et al.>® and Sun and
Béckmann® (see the Supporting Information (SI) for further
details), which requires a very large computational budget (as
done here; total simulation time for one T, estimation > 90
us), show an even better agreement with the experimental
melting temperature.

The biphasic approach performed here utilizes a bilayer that
is half gel and half liquid. The gel phase is fabricated by
quenching to a temperature well below the melting temper-
ature, and the gel phase system is combined with a pre-
equilibrated liquid system. The combined system is then
equilibrated, with thermostats set to different temperatures for
the two phases. As quenching and equilibration can take up to
several hundreds of nanoseconds, reconstructing the starting
structure for every candidate solution would significantly
increase the computational cost of a PSO run. Therefore,
starting structures for this procedure were generated with the
current DPSM parameters beforehand and equilibrated by
using the parameters of each candidate solution. While
equilibration of the fluid phase is generally fast, this certainly
is not the case for the gel phase. Considering that an
unequilibrated phase is inherently less stable, the presence of
an equilibrated liquid phase alongside an unequilibrated gel
phase may lead to a slight systematic underestimation of the
melting temperature (T,,).°° However, this potential under-
estimation can be anticipated and taken into account during
the analysis.

The equilibrium melting rate approach does not suffer from
the potential problem of unequally equilibrated phases. To
minimize bias caused by the quenched starting structures used
in this approach, for each validated candidate solution, eight
different starting conformations were generated.

4.1.2. Structural Properties of the Parametrized Sphingo-
myelin Models. Figure 4 shows the distributions of the newly
parametrized bonds and angles for the candidate solutions in
P¥. The atomistic target distributions are matched reasonably
well in all cases. Some finer details of the atomistic model, such
as double peaks or extensive shoulders, cannot be matched in
the CG model. The parametrization philosophy of Martini 3
adopts a size—shape concept, where bond lengths are
determined based on the molecular volume of the atomistic
fragment mapped by the beads, rather than simply centers of
mass. This complication further underscores the necessity of
employing multiobjective optimization algorithms to achieve
effective molecule parametrization.

The solvent accessible surface area (SASA) is commonly
used to further compare the molecular volumes and shapes
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Figure 5. Solvent accessible surface area of the linker and beads
connected directly to it. Beads involved in the SASA calculation are
highlighted.

between CG and AA models.'"®" Figure 5 shows the SASA
values of % in comparison to the AA and current CG DPSM
models. The SASAs are computed for the linker beads AM1
and AM2, as well as all supra-atoms that are directly connected
to the linker, i.e., beads PO4, T1A, and CI1B, as these
connections are also parametrized. With SASA values of ~6.24
nm* all newly parametrized CG models show a better
reproduction of the AA value (5.24 nm®) compared to the
current model (6.45 nm?), but with discrepancy of ~19% all
SASA values remain grossly too high. It appears that solely
reparametrizing the linker region is not enough to fix this issue.
Furthermore, using SASA directly as a target in the high-
throughput optimization scheme is not necessarily beneficial
since a specific SASA value is not a unique representation of a
certain shape. Therefore, comparisons of solvent accessible
surface areas between AA and CG models are most helpful
when done by simultaneous visual inspection. For automated
parametrization, however, more detailed shape descriptors
should be used.

4.1.3. Force Field Parameters. Nonbonded Interactions.
Due to the polar nature of the linker region of sphingolipids,
only the chemical types of the P-block of the Martini 3 FF
were eligible. As groups of 3 or 4 heavy atoms were combined
into supra-atoms in the specified mapping, bead sizes small (S)
and regular (default) could be chosen by the algorithm. Both
bead sizes were permitted for both interaction sites, to allow
for some wiggle room, even though 4 heavy atoms are grouped
together into supra-atom AMI1 and 3 into AM2. A slight
miscount of mapped atoms is not uncommon in Martini; e.g.,
the mapping of the NC3 bead is actually 6-to-1."" Generally,
eligible bead types should be chosen with Martini rules in
mind. Martini’s pragmatic philosophy allows for some freedom
to match certain properties more accurately, but the bead type
should not deviate strongly from the chemical identity of the
molecule fragment."'

One feature of the mixed-variable approach is that the
optimization procedure directly yields a probability distribu-
tion of bead types, cf. Figure 6A. While for the interaction site
AM2 there is clear consensus on the bead type, for AM1 only
the size (small) is clearly determined, but there is some
ambiguity regarding the interaction strength. The reduced size
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Figure 6. Force field parameters of the set of statistically equivalent solutions $¢ for the sphingolipid linker region. (A) Bead probability
distributions. (B) Bond parameters. Dashed lines are the upper and lower parameter limits. (C) Angle parameters. Dashed lines are upper and
lower parameter limits. The equilibrium angles of AM1—T1A—C2A and AM2—C1B—C2B are not varied during optimization. They are fixed at

180°.
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of one of the beads seems to be warranted, given the still too
high SASA values shown above, and is also inline with the new
Martini 3 models of glycerolipids.'' It is also worth mentioning
that the chemical bead types chosen by our algorithm match
the expected assignment suggested by Martini 3.

A converged “degenerate” probability distribution of bead
types is the result of two or more bead types having
indistinguishable effects on fitness. This can be caused by
noise levels being larger than the fitness differences, or the
employed set of observables and training systems is lacking the
necessary discriminatory power. Both issues can be remedied
in postoptimization screening but should optimally be
addressed during optimization. As the former option would
merely improve selection from the pool of generated candidate
solutions, the latter would potentially allow the generation of
truly better solutions.

Additionally, for both nonbonded and bonded FF
parameters, diversity can be caused by the fact that the
objective cost function for single valued observables (eq 7) has
an error tolerance to accommodate for uncertainties in target
data. With respect to these observables, different para-
metrizations with different “phenotypes” can have the same
objective cost, as long as they are within the specified
tolerances.

Bonded Interactions. Table 4 lists the range of permitted
bond parameters used in the optimization. The resulting

Table 4. Bonded Interactions: GROMACS Function Type,
Permitted Parameter Ranges for Equilibrium Bond Length/
Angle, and Corresponding Force Constants

GROMACS bond funct

bond type by/nm fc/[(kJ/mol) /nm?*]
PO4—-AM1 1 0.25—-0.40 1000—9000
AM1-AM2 1 0.20—-0.35 1000—9000
AM1-T1A 1 0.40—-0.55 1000—9000
AM2—-C1B 1 0.25-0.50 1000—9000
GROMACS angle funct
angle type ap/deg  fc/(kJ/mol)
PO4—-AM1-AM2 2 90—180 5—100
PO4-AMI1-T1A 2 90—-180 5—100
AM1-T1A—-C2A 2 180 5—-100
AM2—-C1B—-C2B 2 180 5—100

bonded parameters of $® are shown in Figure 6. For
equilibrium bond lengths b, there is little variation among
different candidate solutions. This strong consensus suggests
that the optimization has converged and that small changes in
equilibrium bond length are linked to significant cost changes.
The situation for the force constants is quite different. The
values fluctuate over a relatively large range, compared to the
predefined domain of permitted values. The measured bond
length distributions (Figure 4A) show that these seemingly
substantial differences in force constant values have only minor
effects on the molecule’s behavior.

The situation for the angle FF parameters is similar. The
equilibrium values show smaller variances than the force
constants compared to their respective domain sizes of
applicable values. Again, the differences in FF parameters
have little effect on the observed distributions (cf. Figure 4B).
Notably, the optimal force constants for the angles of PO4—
AMI1-T1A and AM2—-C1B—C2B were close to or at the
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maximum of their permitted ranges. Further optimization was
therefore likely hindered, and a wider range should have been
chosen.

In a similar vein to the discussion surrounding nonbonded
parameters, the relatively wide range of force constants in ¢
indicates that additional metrics or training systems could be
employed to further optimize the overall performance of
candidate solutions while maintaining the quality of the
employed observables. For instance, exploring lipids in
environments other than a bilayer, which induce different
lipid conformations, could benefit from a candidate solution
with a lower angle force constant to allow for increased
conformational variation.

4.2. Noise-Mitigation Improvement of Quality of
Parametrized Models. We investigated whether the simple
noise-mitigation strategy described in Section 2.2.1 can
improve the quality of the solutions found by the algorithm.
The swarm size, training systems, observables, and weights are
the same as in Section 4.1. We tested three different
resampling allocation settings and compared these to the mv-
PSO without noise mitigation. Each optimization run was
given a fixed computational budget of 16128 MD simulation
slots. One simulation slot equates to roughly 1.25 h on 6
physical cores of an Intel Cascade Lake Platinum 9242 CPU.
Therefore, each optimization run had a cost of 120960 core-h.
Using 12 nodes, each with two of the said CPUs, the wall time
for one run was roughly 4.4 days. One should note that
optimization runs were given a fixed number of iterations for
comparability. In a normal parametrization task, optimization
would be stopped after convergence is reached, which would
have significantly reduced the computational cost. Further-
more, the required computational cost of a parametrization
strongly depends on the observables that are used. In the
presented example, the estimation of the melting temperature
requires a comparatively large amount of sampling, especially
when noise mitigation is applied.

With the given number of MD simulation slots, a swarm size
of 64 particles, and 3 training systems required for one full
objective function evaluation, this amounts to 84 iterations for
the mv-PSO without resampling (named mv-PSO-RO). In the
optimization runs with resampling, an initial computational
budget of 64 X 3 = 192 MD simulation slots was used for one
full objective function evaluation of each particle, and a second
equally sized computational budget was allocated to reevaluate
the melting temperature (the target observable with the largest
variance) of the best 16, best 32, or all 64 candidate solutions
of the current iteration. For brevity, we will refer to these as
mv-PSO-R16, mv-PSO-R32, and mv-PSO-R64. Due to the
fixed computational budget, for each particle involved in
resampling, T, was reevaluated 12, 6, or 3 times. As half of the
total computational budget was used for resampling, the
number of iterations was set to 42 in these runs.

From the literature on PSO noise mitigation,*q’l’62 we draw
the expectation that which of the resampling, or no resampling,
strategies is the best depends on the level of noise. If noise
levels are very low, the additional number of possible
iterations, when resampling is avoided, could lead to better
solutions. For intermediate noise levels, initial fitness
evaluation results in a sufficient differentiation of good and
bad solutions; i.e., overall sorting is roughly correct, and the
focus on improving sorting of the very best solutions is most
helpful. In the case of even higher noise levels, initial sorting
would be vastly incorrect and a larger fraction of the swarm
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Figure 7. Comparison of cost estimated during the optimization run and average cost estimated from repeated reruns of P$(A) and the 72 best
candidate solutions (B—D). Error bars are standard errors. (A) Original cost: 16 particles resampled, 1 + 12 T, samples. (B) Original cost: 32
particles resampled, 1 + 6 T,, samples. (C) Original cost: 64 particles resampled, 1 + 3 T,, samples. (D) No resampling during optimization but

twice as many iterations.

needs to be resampled to achieve satisfactory overall sorting.
As a consequence, the sorting quality of the very top would be
degraded as there is less computational budget allocated here.

The true quality of a candidate solution is not necessarily
reflected by the cost estimated during an optimization run, as
there is some uncertainty in estimates of target observables
other than T,, and the confidence level of the T,, estimation
with different resampling settings differs vastly. Therefore,
validation is required. As we are mostly interested in the
quality verification of the best solutions, the first step of the
screen-to-the-best procedure from Boesel et al.’* can be used
to select the statistically equivalent set of candidate solutions.
For mv-PSO-R16 the set P¥ contains 69 candidate solutions.
Due to the increased uncertainty in mv-PSO-R32 and mv-
PSO-R64, their respective sets ¢ contain hundreds of
candidate solutions. To keep the computational cost for
validation manageable, we selected only the 72 best solutions
of these optimization runs for validation. As there are no
variance estimates in the optimization run without resampling,
the selection procedure is not applicable. Again, the 72 best
solutions from the optimization run were selected for
validation. All candidate solutions chosen for validation were
fully (all training systems and all observables) reevaluated 20
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times. The resulting rerun cost vs the originally estimated cost
is shown in Figure 7. Clearly, mv-PSO-R16 gave the best
results, while the quality of the best solutions in the three other
cases did not differ much. Furthermore, the fact that for all
selected candidate solutions of mv-PSO-RO the rerun cost
estimate is substantially higher than the original cost estimate
indicates that these original estimates are particularly favorable.
While there are also candidate solutions with substantial
differences in original and rerun cost for the resampling
systems, in this case mostly caused by APL fluctuations, these
are much less frequent and there is much better correlation
between original and rerun cost (Pearson correlation
coefficient 0.21 vs 0.64, for mv-PSO-RO and mv-PSO-R16,
respectively).

Our interpretation of these results is the following: The
noise level is low enough so that even without noise mitigation,
the sorting of candidate solutions is correct in a coarser sense
and the swarm is guided toward the “correct” vicinity in
parameter space. Yet, noise levels are substantial enough, so
that the resolution of finer cost differences is impeded. Only
the concentrated allocation of the resampling budget on the
top 16 solutions lowers the cost estimation errors sufficiently,
such that improved candidate solutions can be found.
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Figure 8. Phase behavior of binary sphingomyelin—cholesterol membranes. T = 300 K. Production simulations were performed at 1 ys. Snapshots
are from the last frame. To help with the nucleation of the gel phase, all systems were pre-equilibrated for 50 ns at 290 K (CGCompiler result) or
270 K (original DPSM). (A) CGCompiler optimized (rank 0 of ?g’) (B) Current DPSM.

4.3. Validation: Phase Behavior of Binary Sphingo-
myelin—Cholesterol Membranes. To discern the universal-
ity of the parametrization, we conducted a validation test on a
target that was not included in the optimization process.
Specifically, we assessed whether the optimized model (ranked
0 within the set Pg) could accurately replicate the phase

behavior of binary sphingomyelin—cholesterol membranes.
Experimental results show that below T,, increasin

cholesterol content fluidizes the otherwise frozen systems.’

For very low cholesterol concentrations the system remains in
the gel phase (S,); at around 10 mol % there is a transition to
coexistence of gel and liquid ordered (L,) domains; and above
~30 mol % there is a (S, + L,)/L, transition.> As can be seen
in Figure 8 the optimized model correctly reproduces the
experimental findings, while systems simulated with the current
DPSM model are always in the fluid phase, regardless of the
cholesterol concentration. These findings therefore highlight
the robust universality and transferability of the parametriza-
tion acquired with GCCompiler.

5. DISCUSSION AND CONCLUSION

We have illustrated how to apply mixed-variable particle swarm
optimization for automated CG molecule parametrization. As
an example application, we parametrized the sphingolipid
linker region for the Martini 3 FF. The newly parametrized
sphingomyelin model reproduces important target observables
accurately, including the melting temperature, which was ~20
K off target before and is now within 22 K of the experimental
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reference. Notably, reproduction of experimental melting
temperatures had been historically problematic in Martini
lipid models.**

The mixed-variable approach offers a major advantage when
parametrizing molecules for building-block force fields. Due
the explicit use of building blocks, every candidate model is a
valid parametrization in the given FF. Otherwise, changing
nonbonded interaction parameters of the FF’s building blocks
breaks the wvalidity of their parametrization. Candidate
solutions generated by a continuous treatment of nonbonded
interactions have to be converted to a valid FF model, followed
by additional validation of this model.

A drawback of the mixed-variable treatment is that some
advanced improvements to PSO, such as the fuzzy parameter
tuning of Nobile et al,*® are not directly applicable to mv-PSO,
because in the categorical representation there is no similarity
metric, which is utilized in the PSO parameter tuning. This
could be overcome by using discrete ordered representation
for nonbonded interactions instead of the categorical treat-
ment.

One of the great benefits of automated parametrization
algorithms is the simultaneous optimization against multiple
structural and thermodynamic target data. As thermodynamic
observables can be expensive to estimate accurately in MD
simulations, formal consideration of noise in objective function
values is an important conceptual improvement. As demon-
strated, optimization with applied noise mitigation produced
significantly better solutions and the utilized screen-to-the-best
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procedure provides a systematic approach to the post-
optimization selection of the best model.

Although we have demonstrated the adverse effects of
objective function value noise on the sorting and performance
of PSO, it is important to note that the nondeterministic
nature of particle swarm optimization necessitates multiple
repetitions of full optimization runs to confidently determine
the most effective noise-mitigation setting. Achieving a high
level of confidence in identifying the optimal approach would
require a significant number of iterations. Furthermore, the
“ground truth”, ie., the true score of a candidate para-
metrization, is unknown; hence, a large amount of validation
simulations would be required. This is not feasible due to a
high computational cost. Rigorous development and testing of
noise-mitigation strategies should not be done with objective
function evaluations that require costly MD simulations and
are therefore beyond the scope of this work. Moreover, the
additionally gained insight would only be of moderate value.
The PSO literature has shown that under significant noise PSO
performance is degraded and performance differences between
resampling methods for noise mitigation are problem- and
noise-level-dependent. Generally, noise-mitigation methods
employing OCBA perform the best under various circum-
stances,”* but its sequential secondary budget allocation puts
constraints on the parallelization of the parametrization
algorithm. Still, its integration into the parametrization pipeline
should be explored in the future.

Together with the general benefits of automation, the
conceptual advantages presented here will further facilitate
rigorous CG molecule parametrization. The CGCompiler
Python package that comes with our method is tailor-made for
parametrization tasks in building-block FFs, such as Martini.
Also larger building blocks, i.e., a molecule class with shared
regions, can be parametrized simultaneously. Our approach is
not limited to lipid parametrization but can be applied to any
kind of molecule. CGCompiler can be easily adapted to the
needs of a specific parametrization task. Implementing new
observables is not much different from writing Python
functions for analyzing MD data. Importantly, our automation
platform eases collaborations between individual researchers
since a clear overview of the parametrization flow is provided.
This also renders force-field reproducibility as well as
retrospective force-field corrections, such as corrections to
the targets (e.g., improved atomistic force-fields or simulation
settings) or inclusion of additional targets rather straightfor-
ward.

The here-presented study focuses on method development,
and the sphingolipid linker parametrization was merely a test
case. The parameters of the headgroup and lipid tails,
predefined in our study, are still actively improved/(re)-
parametrized by the core developers.'' Once these final
parameters are released, reparametrization of the linker may be
necessary, ideally with an even broader set of training systems,
including liquid-ordered—liquid-disordered phase behavior.

Properly defining the set of feasible bead type choices, for
the fragments that are to be optimized with CGCompiler, is a
crucial step in the parametrization of a molecule. In the Martini
FF, bead type assignment is based on partitioning data of
isolated beads,'® and as of Martini 3 also partitioning of whole
molecules and miscibility data are considered.'' The Martini 3
supporting material lists defaults bead type choices.'' For more
accurate bead type assignment proximity and connectivity,
effects between fragments need to be considered, and
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perturbations around the default solution are therefore
allowed."" In complex cases, bead type selection can become
nontrivial when several proximity effects are present in a
molecule.'" The use of target data other than the free ener_gies
of transfer is recommended and regularly employed®*®"*"~"!
when refining bead type choices. In our proof of concept
parametrization, we have chosen to use the full range of P-
block beads to showcase the capabilities of the algorithm. As
the free energy of transfer was not explicitly part of the loss
function, this choice could have possibly resulted in a deviation
of free energies of transfer on the order of a few kJ/mol per
linker fragment. As the final best bead type choices closely
match the default bead type choices, this is not an issue for the
optimized CG model of sphingomyelin. In a normal para-
metrization run and when a fragment’s partitioning and
miscibility behavior is encoded by the choice of possible
bead types and not explicitly part of the loss function, it is
recommended to restrict the set of feasible bead types more
narrowly. Otherwise, if applicable to the molecule that is to be
parametrized, researchers should consider including the free
energy of transfer into the loss function, either by calculating
the free energy of transfer for the whole molecule or by making
use of partitioning data for individual fragments.

In order to achieve fully automated molecule parametriza-
tion in high-throughput applications, the development of an
automated mapping and selection of bonded terms remains a
crucial component. Currently, mapping and parameter
optimization are separate tasks, but integrating an automated
mapping scheme into the parametrization pipeline could be
facilitated prior to employing mixed-variable particle swarm
optimization, utilizing CGCompiler. The choice of bonded
parameters not only influences the accuracy of the model but
also impacts the simulation stability. Various strategies, such as
the use of virtual sites, restricted bending potentials, and hinge
and “divide and conquer” constructions,®®’* have been
previously described to address instability. Additionally, careful
consideration of constraints is necessary to ensure simulation
stability and prevent artificial temperature gradients.”””* These
aspects should be incorporated as essential steps in a future
fully automated parametrization pipeline.

Reweighting of CG trajectories could be an interesting route
to decrease the computational effort required for para-
metrization,””~”” particularly in a high-throughput setting.
However, this currently is not part of CGCompiler for the
following reason. The applicability of reweighting critically
depends on the overlap of the original and the reweighted
trajectory.’””’® As the candidate solutions in the swarm at a
given iteration can have rather different potentials, it is
unknown beforehand how many candidate solutions reweight-
ing can be applied and how many new CG trajectories have to
be generated. As CGCompiler is intended to be used with a
high degree of parallelization on compute clusters, where a
compute job runs on a fixed hardware allocation, not having to
run a simulation for some of the candidate solutions does not
directly result in decreased usage of a computational budget.
For reweighting to be of use, an adaptive scheduling algorithm
would be required, which could be implemented in future
versions of CGCompiler.

When the number of optimized parameters is linearly
increased, the search space grows exponentially, which
negatively affects convergence of the optimization algorithm.
In the study presented here, 2 categorical (nonbonded) and 14
continuous (bonded) parameters were optimized simulta-
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neously. In a recent reparametrization of PC lipid tails'® 77
bonded parameters were calibrated using a different flavor of
PSO. As both parametrizations required only moderate swarm
sizes and number of iterations for convergence, we expect that
our PSO approach can be used for the parametrization of
larger molecules as well. However, for very large molecules
with several hundreds or even thousands of unique parameters,
parametrization with CGCompiler or similar approaches likely
becomes unfeasible. On one hand standard PSO in general is
not the method of choice to tackle such large scale
optimization problems (LSOPs).”® On the other hand, even
if the PSO part of CGCompiler would be replaced by an
optimization algorithm more suitable for an LSOP, the number
of required function evaluations, i.e., MD simulations, likely
remains too large to be of practical use in a molecule
parametrization task.

No matter the number of parameters that are co-optimized,
in order to lessen the computational cost, convergence can be
facilitated by restricting the search space. Optimization with
CGCompiler must then be performed on an initial, close guess
rather than scanning a broad parameter range. Such an initial
guess can be constructed either manually by following the
Martini 3 rule book or by an automated tool. (Auto-Martini'®
and the method of Potter et al.'” would need to be adapted for
Martini 3, in order to be used in such a parametrization
pipeline.) A restriction of search space that is not too narrow
will not hinder discovery of good solutions, as parameters that
are very far away from the standard Martini rules are not of
interest anyway. Bond lengths that are very different from the
atomistic reference would result in misshaped molecules. Very
different bead types would result, for example, in incorrect
partitioning behavior. In principle, these unwanted regions of
the search space are filtered out by the cost function, but they
can be excluded beforehand to save computational effort. A
narrower search space restriction is expected to be more
important when the number of parameters is large.

Another future prospect is the advancement of true
nonscalarized multiobjective optimization, which eliminates
the need for user-defined weights on the targets within the
objective function. However, it can also be argued that these
user-defined weights, which reflect the importance of targets
based on intuition, experience, or additional knowledge, along
with the predefined set of relevant structural and thermody-
namic targets for the CG force field, encompass what is
commonly known as the “force field’s philosophy”. In this
sense, the user-defined weights embody the guiding principles
that shape the force field.
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