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Abstract

Choropleth mapping continues to be a dominant mapping technique despite suffering from the 

Modifiable Areal Unit Problem (MAUP), which may distort disease risk patterns when different 

administrative units are used. Spatially adaptive filters (SAF) are one mapping technique that 

can address the MAUP, but the limitations and accuracy of spatially adaptive filters are not well 

tested. Our work examines these limitations by using varying levels of data aggregation using a 

case study of geocoded breast cancer screening data and a synthetic geore-ferenced population 

dataset that allows us to calculate SAFs at the individual-level. Data were grouped into four 

administrative boundaries (i.e., county, Zip Code Tabulated Areas, census tracts, and census 

blocks) and compared to individual-level data (control). Correlation assessed the similarity of 

SAFs, and map algebra calculated error maps compared to control. This work describes how 

pre-aggregation affects the level of spatial detail, map patterns, and over and under-prediction.
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1. Introduction

1.1. Challenges in health mapping

Disease mapping is a useful technique for visualizing and communicating the burden of 

disease to health stakeholders including government agencies, nonprofits and the general 

public. There are a myriad of techniques for creating disease maps with choropleth mapping 

being a popular approach. Choropleth maps are easy to construct; however, they suffer 

from two known problems in disease mapping: (1) the small number problem, and (2) 

the Modifiable Areal Unit Problem (MAUP) (Arbia and Petrarca, 2011; Fotheringham and 

Wong, 1991; Openshaw and Taylor, 1979). Small numbers occur in sparsely populated 

areas, small areal units, or when working with rare diseases. Small numbers can result 

in highly variable - and therefore unreliable - estimates of disease risk (Nakaya, 2000; 

Takiar et al., 2009). Small numbers can also lead to areal units being labeled as suppressed 

in maps produced by government health agencies. Small number problems have been 

addressed with fixed-sized filters (Turnbull et al., 1990) and statistical methods, such as 

Bayesian smoothing, headbanging, and geographically weighted regression (Bernardinelli 

and Montomoli, 1992; Best et al., 2005; Lawson, 2013; Mungiole et al., 1999). However, the 

MAUP remains a problem for analyzing and visualizing disease pattern.

The MAUP demonstrates that the number or size of spatial units breaks-up spatial data in 

artificial ways that obscure true patterns (Arbia and Petrarca, 2011; Openshaw and Taylor, 

1979). Visualizations or maps whose estimates are derived from areal unit aggregations 

- such as counties or zip codes - can be statistically unrepresentative of the underlying 

continuous pattern of disease risk, and changing the geographic unit of analysis (e.g., 

from county to zip code) changes the number and/or scale of units and perpetuates these 

artifacts. Further, reliance on predefined administrative boundaries limits our understanding 

of disease burden at the local level. For example, if data is pre-aggregated to the county 

level, it is difficult to make reliable estimates at lower levels, such as Zip Code Tabulated 

Areas (ZCTAs). New methods that produce reliable estimates at the local level, while 

simultaneously controlling for the effect of the MAUP, are needed.

There are several mapping approaches known to attenuate the effects of the MAUP. Working 

with individual data removes the aggregation bias, but is impractical for measures like rate 

calculation (with a numerator and denominator). Individual data also have additional privacy 

concerns that must be addressed unlike aggregated datasets (Hampton et al., 2010; Olson et 

al., 2006; Stinchcomb, 2004). Some statistical approaches, like geographically weighted 

regression, attempt to account for the MAUP by spatially weighing the relationships 

between observations. This approach can provide a more representative model of the 

underlying spatial heterogeneities in the data (Matthews and Yang, 2012). Regionalization 

techniques address MAUP through the creation of new geographic units; new units are 

systematically created using rules based on geographic adjacency, the similarity of attributes, 

or a threshold of population or disease events. These new geographic areas produce stable 

disease rates while maximizing homogeneity in underlying attributes (Wang et al., 2012). 

However, regionalization techniques may be biased as researchers could choose new units 

that support their hypotheses (Swift et al., 2008). Finally, researchers can conduct extensive 
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sensitivity analyses by constructing maps of various units and scales and comparing them, 

but this process increases the time of study and there is no agreed-upon reference for truth.

Spatially Adaptive Filters (SAF) are an estimation technique that attempts to overcome 

these problems by (1) implementing a minimum population threshold that produces reliable 

estimates for sparsely populated or small areas and (2) creating a surface that describes the 

burden of disease irrespective of administrative boundaries. Spatially Adaptive Filters have 

accurately described the variation of cancer incidence and mortality patterns (Beyer and 

Rushton, 2009; Tiwari and Rushton, 2005). A limitation of the previous literature is that the 

adaptive filters used pre-aggregated data. Our work adds to the literature by working with 

data at the individual level and comparing those results to various levels of pre-aggregation 

on spatially adaptive filters. To accomplish this, we will use breast cancer screening data 

from the Minnesota Department of Health. We use aggregations at the census block, census 

tract, ZCTA, and county levels to compare the resulting SAFs (i.e., estimates). Correlations 

and visualizations are used to assess change between the aggregation and individual-level 

SAF map as the control. Comparisons between SAF interpolated maps and choropleth maps 

are also conducted.

1.2. Description of the case study

Cancer is a leading cause of mortality among U.S. women, and 30% of women’s new 

cancer diagnoses in 2020 will be breast cancers (American Cancer Society, 2018; Hahn 

et al., 2018). Screening is effective at reducing breast cancer mortality, but uptake of 

screening has stalled in recent years; national breast cancer screening rates fell slightly 

(3%) among women 50 to 74 years old (Hall et al., 2018; Office of Disease Prevention 

and Health Promotion, 2019). The National Breast and Cervical Cancer Early Detection 

Program (NBCCEDP) is one path to increase breast cancer screening (Lantz and Mullen, 

2015). NBCCEDPs are implemented by state-level governments and provide free breast and 

cervical cancer screening to low-income women who are uninsured or underinsured.

To measure impact, NBCCEDPs require data on screening services utilization. Estimates of 

the number of women eligible for screening and screening utilization have been performed 

at the national and state levels (Howard et al., 2015; Tangka et al., 2006). Nation-level 

estimates suggest 10% to 20% of eligible women are screened by NBCCEDPs. There 

is a wide variation of screening rates among states with a range of 3.2–53% of the 

eligible population screened (Howard et al., 2015; Subramanian et al., 2015; Tangka et 

al., 2006). These estimates may be useful at a national level but are inadequate for local 

health administrators and community advocacy groups. Hughes et al. (2021) provide a more 

detailed assessment using spatial modeling of Minnesota’s NBCCEDP, “Sage“. Their results 

revealed that Sage had an average breast cancer screening rate of 37.21% in Minnesota. 

Furthermore, the analysis reported significant variation in the uptake of services. The 

program is designed to serve the entire state, but the interpolated raster cell estimates of 

the utilization of mammography services ranged within the state from 0% to 100%. These 

results indicate tremendous variation in local use of services.
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2. Data and methods

2.1. Datasets

2.1.1. Breast cancer screening instances (numerator)—Utilization of Sage breast 

cancer screening services was defined as instances of women screened every year 

(numerator) over the eligible population (denominator). Under Sage guidelines, every 

woman in Minnesota is eligible for screening services if they have income below 250% 

of the federal poverty level. A more detailed description of the Sage numerator and 

denominator is found in Hughes et al. (2021). This work performed a secondary analysis 

of observational data for the purpose of program evaluation and was not considered human 

subjects research.

Sage maintains a database of women screened and their residential addresses at the time of 

screening. Five years of data were pooled to ensure a sufficient sample size in sparsely 

populated areas. From 7/1/2010 to 6/30/2015 (five fiscal years), we identified 74,226 

instances of screening with address information. Sage clients were geocoded using the 

Minnesota Department of Health geocoder and we accepted a match score of 60 or greater. 

A match score, range 0–100, is given to the client’s street address, which is compared 

to a reference dataset of roads (Goldberg, 2013). The majority of addresses (73%) had a 

geocode score of 80 or greater. Address scores of this range were accepted as historical 

client addresses were being retrospectively geocoded using a current geocoding service.

Individuals in datasets that do not have complete address information can be difficult to 

incorporate into spatial analyses. Some Sage clients, 10%, did not have sufficient address 

information for geocoding, yet all clients did supply zip code. It is common practice to 

geocode individuals to a zip code using the zip code tabulated areas (ZCTA) (Rushton et al., 

2006). There are two common options for handling records that have only zip code/ZCTA 

data. The first is to place individuals at the ZCTA centroid, and the second is randomly 

assigning individuals within a ZCTA. Both options can lead to unrealistic clustering of 

individuals that skews results at an analysis below the zip code level. As the goal was to 

analyze datasets from a range of pre-aggregations, we did not want to bias the data toward 

ZCTAs, and developed a third option.

We developed an algorithm in PostgreSQL 10 and PostGIS 2.2 to systematically distribute 

individuals within a geographic boundary, in this case, a ZCTA. For all individuals within 

a ZCTA, the algorithm will determine the distance necessary for placing each point 

equidistant from any other point within the ZCTA. The algorithm begins with a set of 

distances that it will use to create an evenly spaced lattice. The distances are determined 

by taking the extent of the polygon and dividing it by the number of features that need to 

be placed within the boundary. For example, a ZCTA that has a spatial extent of 100 and 

needs to place four clients would have an initial space definition of 25. The algorithm then 

would calculate a lattice that was equally spaced and test to see if all necessary points are 

within the polygon. If the points are not within the boundary the algorithm would divide that 

distance in half and test again. The process repeats until a lattice is created that contains the 

number of required features.
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2.1.2. Eligible population (denominator)—Census datasets have historically been 

the primary source for denominator datasets but have limitations. First, they use pre-existing 

administrative boundaries. Second, census data have privacy limitations, so to reduce the 

chance of identification, they do not provide detailed demographic cross-tabulations (e.g., 

the number of uninsured African American women between the ages of 50–55) for small 

areas such as the census block. To address this concern, we employed the RTI 2010 

U.S. Synthesized Population dataset (RTI international, 2012; Wheaton et al., 2009). The 

synthetic population is a dasymetric modeled representation of the U.S. 2010 census. The 

dasymetric model employed is derived from the American Community Survey Public Use 

Microdata (U.S. Census, 2018). The model dataset provides geocoded households with 

characteristics like income, and household individuals with age, race, and sex characteristics.

Our Sage denominator population was determined by the Sage eligibility criteria, that is, 

women aged 40 or greater and household income is less than or equal to 250% of the federal 

poverty level. Additionally, this program provides screening services for age-appropriate 

American Indian or Alaska Native women regardless of income. To account for five years of 

screening data, the denominator population was multiplied by 5.

2.1.3. Creating pre-aggregation datasets—The numerator and denominator 

populations were both individually spatially joined to four sets of geographic units in 

Minnesota: county, ZCTA, census tract, or census block. Geographic unit shapefiles are from 

the U.S. Census (Manson et al., 2020). The individual-level data were retained to serve as a 

control.

2.2. Spatial adaptive filters and interpolation

Spatially adaptive filters consist of three datasets: (1) a defined set of grid points which are 

the centers of the filters and where rate calculations are assigned, (2) geographic coordinates 

for the eligible population, and (3) a distance matrix, which is an ordered collection of 

distances between grid points and the eligible population. We employed a regularly spaced 

grid, with a defined distance of 5000 m, across the entire state of Minnesota. Each grid 

point (Fig. 1) represents the center of an adaptive filter whose size grows until it reaches or 

surpasses the standardized population threshold of the eligible population. The population 

threshold value is determined by a sample size calculation (Cai et al., 2012). We accepted a 

standard error of 0.10, which gives a population threshold value of 500. Each filter grows in 

size until it encompasses the geographic locations of (at least) 500 eligible women for the 

denominator. When the filter size is determined, all the instances of screening that fall inside 

the filter serve as the numerator. The ratio calculation is completed by using a spatial join 

that assigns numerator/denominator for each grid point. The sizes of the filters vary, with 

smaller circles located in densely populated areas and larger circles in more rural areas (Fig. 

1). The following equation was used to derive the minimum population threshold required to 

achieve a standard error of 0.10.

Eq. (1), Sample Size Calculation

Haynes et al. Page 5

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ei ≥ Z2
1 − ∝

Ri − 1 2

Where Ei is the required minimum population threshold needed to achieve a standard error 

of 0.10, Z is the standardized normal distribution Z statistic at our desired alpha level cutoff 

(0.10) and Ri is our estimated standardized morbidity ratio (Cai et al., 2012).

To ensure a fair comparison between the four pre-aggregated spatially adaptive filter 

estimates and the individual-level spatially adaptive filter estimates, each was computed 

using the same grid and the same population threshold. However, pre-aggregation will 

affect the size of the calculated SAF as its size is determined by meeting or surpassing 

the population threshold. Fig. 2 provides a 1-dimensional example of spatially adaptive 

filter calculation at the individual, census Block, and ZCTA levels. Filter size determination 

begins at the grid point and expands from left to right until it reaches the threshold of 

500 eligible women. With individual data the filter size determination is exact and only 

500 women are included in the denominator every time. However, when working with 

pre-aggregated units (i.e., census block, ZCTA, and county) the filter size is not as precise. 

The filter grows until it meets or surpasses the population threshold of 500 eligible women 

and since unit inclusion is binary (in or out) the threshold can quickly be surpassed based on 

the population of the unit.

Spatially adaptive filters have not been rigorously applied in disease mapping due to 

the computational complexity necessary when creating a distance matrix and performing 

spatial joins between two datasets. For example, a sparse grid with 1,000 points and 5,000 

geographic locations results in a distance matrix holding 5 million distance calculations. 

Our grid contained 9,486 points and computed distance matrices with as little as 87 to 

231,520 (county centroids to individual-level coordinates) geographic locations. Centroids 

were calculated using the geometric centroid and distances were determined by projecting 

both the grid and geographic centroids into UTM Zone 15 North. Our largest distance matrix 

and spatial join contained over 2 billion distance calculations. We used the big data platform 

Apache Spark due to the number of calculations necessary for this analysis. Apache Spark is 

an in-memory parallel computation environment that uses Resilient Distributed Datasets to 

partition data into small segments for effective parallel computing. The library GeoSpark is 

used for handling geospatial data types and providing spatial functions (Yu et al., 2018).

After the SAF were calculated in GeoSpark, we interpolated the screening utilization rate 

using secondary geospatial software (ArcGIS Pro version 1.4). The surface is interpolated 

using an inverse distance weighted algorithm with a defined raster cell size of 500 m.

2.3. Comparative methods

Multiple comparative methods were used to examine how pre-aggregation affects both SAF 

estimates and interpolated visualizations. Our analyses began by observing the effect of 

the MAUP on our datasets, we report descriptive statistics of the spatial distribution of the 

numerator (instances of screening) and denominator (eligible population) populations. Next, 
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we report properties of the spatially adaptive filters and how they vary when using different 

pre-aggregated datasets, for example, the average spatial extent of the filters. This forms a 

basis for understanding how pre-aggregation and SAF can alter estimates and visualizations.

Our analysis concludes with two comparative measurements. R (version 3.5.2) was used 

to calculate Pearson’s correlation among screening utilization grid point estimates (R Core 

Team, 2020). Pearson’s correlation is a measure of the similarity between two sets of SAF 

screening estimates. Next, differences between interpolated screening rates, or raster cell 

estimates, are performed, by using map algebra to create error maps. Absolute error maps 

were produced using R (version 3.5.2), to identify locations as well as the magnitude of 

changes between two rasters (Hijmans, 2020). The individual map is considered the control 

for the absolute error maps.

3. Results and discussion

We examined the distribution of Sage clients and eligible population for each pre-

aggregation dataset and observed the effect of the MAUP (Table 1). Some geographic 

scales (e.g. ZCTA, Tract, or Block) had multiple units with zero instances of screening 

and/or eligible population. Some geographic scales have far more than others, suggesting 

that pre-aggregations may bias the analysis in artificial ways that could affect downstream 

visualizations, especially in the case of choropleth mapping. The bias is due to how the 

geographic units are derived. All census-derived units (i.e., census blocks, block groups, and 

tracts) have minimum and maximum population thresholds they must adhere to U.S. Census 

(2013), which results in geographic units that are more homogeneous and standardized. 

However, ZCTA are generalizations of zip code delivery routes that have population data 

allocated to them.

Pre-aggregation affected the size of SAFs (Table 2). The median number of geographic 

features needed to meet the population threshold of 500 was influenced by geographic scale. 

For example, filters derived using data aggregated to the county have a median value of 1.0, 

as most filters reached or exceeded the minimum population value by using a single county. 

The number of features needed to reach the population threshold increased as the geographic 

scale decreased. The average eligible population found within a filter follows a similar trend. 

As we increase the spatial resolution (county to individual) our denominator becomes more 

exact. Table 2 confirms the logic we expected in Fig. 2, where larger geographic units have 

eligible populations that easily exceed the threshold of 500 eligible women.

The results depicted in Table 3, show that pre-aggregation has a strong effect on the 

relationship between the SAF grid point estimates. Geographic units with similar scales are 

more correlated. Correlations varied from 0.498 (Individual : County) to 0.970 (Individual : 

Block). Decreasing the spatial resolution (Individual to County) reduced the correlation 

of the grid point estimates. This suggests that a significant amount of the original overall 

pattern of information is lost with increasingly large pre-aggregations.

We gain greater insight as to how pre-aggregation alters estimates by interpolating and 

visualizing the estimated breast cancer screening rates to raster cell estimates. Raster cell 
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estimates were used to create standardized map visualizations for each pre-aggregation 

and the individual-level datasets (Fig. 3). While the overall spatial pattern of breast cancer 

screening utilization for each pre-aggregation level is consistent, one can immediately see 

deviations. Larger pre-aggregations are smoother and show less variation, which likely 

obscures detailed information. For all maps, the average utilization rate is lowest in the 

North-West and South-West portions of the state and is depicted by the darker browns. One 

region that has consistently high rates of utilization is in the Central-Western portion of the 

state. Only the individual and Block-level maps estimate breast cancer utilization rates above 

40%.

Table 4 provides summary statistics of the interpolated maps of raster cell estimates. The 

county map has the smallest deviation and the smallest range of estimate values. As we 

increase the spatial resolution of the pre-aggregated units, we begin to see more variation in 

the resulting dataset.

To determine how much error occurs with aggregation, we calculate the absolute error. We 

used the individual-level map as the control and calculated absolute errors for all other maps, 

which are any deviation from the individual-level map. The individual values serve as the 

reference, so positive values indicate underprediction and negative values are areas where 

overprediction has occurred. Areas that are zero indicate alignment between datasets.

Absolute error maps are beneficial because unlike the correlation statistics, which provide 

summary results for the entire dataset, they describe the individual raster cell errors that 

occur.Fig. 4 shows the full state view of the county, ZCTA, census tract, and census block 

error maps. The county, ZCTA, and census tract errors are largest in the north-central region 

of the state (Fig. 5). This region is characterized by the largest under predictions; error rates 

are up to 1.0. An error rate of 1.0 could result, for example, if the ZCTA or census tract map 

predicted a value of 0.2 and the individual map values were 1.2 for the same raster cell. This 

clearly describes how pre-aggregation has “smoothed“the rate. Other notable errors found in 

the ZCTA and census tract maps are the overprediction errors in the North-East corner of 

the state. When examining the census block error map there is little error, however, the over 

and under prediction errors are found in similar regions for the ZCTA and census tract error 

maps.

Table 5 provides measures of statistical measures of central tendency for each of the error 

maps. The Individual-County error map has the most error, and accordingly, it has the 

largest standard deviation and the largest count of over and under predicted raster cells 

(Table 5,Fig. 4). As the spatial resolution increases, therefore decreasing the size of the 

units, we show that the error decreases. The Individual-Block error map has the least error 

overall, however, it does have the largest under prediction for a single raster cell, with a 

value of −0.549. The error maps for the ZCTA and Tract have similar central tendency 

measures, however, the tract aggregation overpredicted twice as many raster cells. The 

majority of those cells (31,127) had very small prediction errors between 0.1 and 0.2.
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4. Limitations

We developed a non-deterministic algorithm that evenly spaces the population across a 

ZCTA boundary. However, we did not test if different instances of the distribution affected 

any downstream calculations. This is a limitation of the analysis and the scope of the work, 

but we have used the same dataset implementation in all our analyses. Secondly, we did not 

perform a sensitivity analysis on the 5000 m grid, which was used to calculate the spatially 

adaptive filters. Varying the grid density and size could change the patterns of the map and 

should be explored in future work. Our analysis is conducted only in the state of Minnesota. 

Therefore, the population distribution of census blocks, census tracts, ZCTA, or counties 

in other states may lead to other results. Completing similar analyses in other locations 

would be a great avenue of future investigation; although individual-level datasets for health 

behaviors or disease are rare.

5. Conclusion

Disease mapping’s primary contribution is to provide visual evidence of the burden of 

disease. However, maps derived from pre-aggregated data have limited ability to describe the 

pattern and burden of disease risk at the local level. Choropleth maps are limited in their 

ability to accurately describe the prevalence of disease risk for small areas. Additionally, 

there are no methods that easily allow us to precisely compare choropleth maps that use 

different spatial scales. A main contribution of our work is that by using the SAF with this 

pre-aggregation approach, we begin to examine how much information is lost. Previously, 

our understanding of the variation of disease risk has been limited to the development 

of new techniques. Our work performs a sensitivity analysis using the various spatial 

scales to quantify the amount of information potentially lost. Maintaining the accuracy 

of this information is important for understanding the potential burden of disease upon 

communities of interest. The techniques we have applied can create maps that provide 

reliable local information to address public health concerns and direct resources to those 

communities.

We demonstrate that spatially adaptive filters are an appropriate method for mapping disease 

for small areas as they limit the effect of the small number and modifiable areal unit 

problems. However, we also show that SAF are affected by MAUP through pre-aggregation. 

The employment of the RTI synthetic dataset allowed us to reveal high-resolution patterns of 

disease risk, which in turn allowed for the quantification of error. Our current work lays the 

foundation for future work to explore how disease prevalence, geographic feature size, and 

grid size affect our ability to better understand the true pattern of disease risk.

SAF can work with individual-level data to produce statistically reliable results without 

losing spatial accuracy. Our work also demonstrates that SAF, like many other smoothing 

techniques such as Bayesian smoothing, headbanging, and geographically weighted 

regression can also be applied to very small-scale geographic units that have inflated 

counts of zero values and would fail, with choropleth mapping, to produce reliable and 

informative maps. Additionally, our work shows that working with larger pre-aggregated 

units can greatly impact the quality and informativeness of resulting maps even when using 

Haynes et al. Page 9

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SAF. Even when using the same grids and population threshold the interpolated patterns 

for the SAF estimates are strikingly different. Pre-aggregation smooths out the variation for 

some of the most vulnerable communities and this smoothing effect is seen in the sparsely 

populated areas around the state. If one must use pre-aggregated data, we recommend using 

the smallest unit size aggregation possible.
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Fig. 1. 
Example of spatially adaptive filters.
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Fig. 2. 
1-Dimensional view of filter determination based upon unit aggregation.
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Fig. 3. 
Breast cancer screening utilization rates by aggregation.

Haynes et al. Page 15

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Absolute error maps: depicting the effect of scale on predictive accuracy using the individual 

values as reference. Positive values representg underpredictions (pink) and negative values 

representing overpredictions (green).
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Fig. 5. 
Absolute error maps: depicting the effect of scale on predictive accuracy using individual 

values as reference. positive values represen underpredictions (pink) and negative values 

representing overpredictions (green).
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Table 1

Description of the spatial distribution of sage clients and eligible population.

Geographic Scale Geographic Units with Number of 
Clients > 0

Geographic Units with Eligible 
Population > 0

Total Number of Geographic 
Units

County 87 87 87

ZCTA 844 867 969

Tract 1328 1330 1336

Block 27,186 50,516 259,777

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2023 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Haynes et al. Page 19

Table 2

Description of spatially adaptive filters.

Geographic Scale Min Filter Size (m) Max Filter Size (m) Median Number of Features Needed Average Eligible Population

County 126.12 96,955.10 1 6747.32

ZCTA 140.02 75,097.25 2 1235.59

Tract 120.92 84,647.37 2 890.72

Block 368.33 74,126.94 52 510.22

Individual 377.94 74,109.83 500 500.00
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Table 3

Correlations of spatial adaptive filters (Grid Points) by aggregation.

Individual Blocks Tracts ZCTA County

Individual 1 0.970 0.650 0.681 0.498

Blocks 1 0.654 0.683 0.499

Tracts 1 0.718 0.689

ZCTA 1 0.617

County 1
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Table 4

Screening utilization maps statistics.

Min Max Mean St. Deviation

County 1.0% 31.7% 11.1% 5.7%

ZCTA 0.3% 61.5% 11.7% 7.3%

Tract 1.0% 47.2% 12.2% 7.5%

Block 0.0% 100% 12.9% 9.6%

Individual 0.0% 104% 13.1% 10.0%
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