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Abstract

Sepsis, a complex medical condition that involves severe infections with life-threatening organ 

dysfunction, is a leading cause of death worldwide. Treatment of sepsis is highly challenging. 

When making treatment decisions, clinicians and patients desire accurate predictions of mean 

residual life (MRL) that leverage all available patient information, including longitudinal 

biomarker data. Biomarkers are biological, clinical, and other variables reflecting disease 

progression that are often measured repeatedly on patients in the clinical setting. Dynamic 

prediction methods leverage accruing biomarker measurements to improve performance, providing 

updated predictions as new measurements become available. We introduce two methods for 

dynamic prediction of MRL using longitudinal biomarkers. in both methods, we begin by using 

long short-term memory networks (LSTMs) to construct encoded representations of the biomarker 

trajectories, referred to as “context vectors.” In our first method, the LSTM-GLM, we dynamically 

predict MRL via a transformed MRL model that includes the context vectors as covariates. In 

our second method, the LSTM-NN, we dynamically predict MRL from the context vectors using 

a feed-forward neural network. We demonstrate the improved performance of both proposed 

methods relative to competing methods in simulation studies. We apply the proposed methods to 

dynamically predict the restricted mean residual life (RMRL) of septic patients in the intensive 

care unit using electronic medical record data. We demonstrate that the LSTM-GLM and the 

LSTM-NN are useful tools for producing individualized, real-time predictions of RMRL that can 

help inform the treatment decisions of septic patients.
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1. Introduction.

When making treatment decisions, clinicians and patients often desire accurate predictions 

of remaining life expectancy that leverage all available patient information, including 

longitudinal biomarker data. The National Institutes of Health (NIH) defines a biomarker 

as “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention (Strimbu and Tavel (2010)).” Longitudinal biomarker measurements, such as 

blood pressure, ventilator dependence, and white blood cell count, are commonly available 

in electronic medical records (EMRs). The recent proliferation of EMRs has led to a 

growing interest in using longitudinal biomarker data with “dynamic” prediction methods 

which provide updated predictions as new biomarker measurements become available. 

Clinicians and patients are especially interested in using longitudinal biomarker data to 

dynamically predict mean residual life (MRL), the remaining life expectancy of a patient at 

time t, given the patient has survived up to time t.

MRL prediction is of particular interest for patients diagnosed with sepsis, a complex 

medical condition that involves severe infections with life-threatening organ dysfunction 

(Singer et al. (2016)). Sepsis is a leading cause of death worldwide (Singer et al. (2016)). 

Although international guidelines for sepsis treatment have been established, treating septic 

patients remains highly challenging (Evans et al. (2021)). The heterogeneity of septic patient 

populations results in differing responses to medical intervention László et al. (2015)). 

Dynamic predictions of mean residual life provide clinicians with individualized, real-time 

information that can help inform the treatment decisions of septic patients.

We dynamically predict the restricted mean residual life (RMRL) of septic patients in 

the intensive care unit (ICU) from EMR data. We conduct our study using a data set 

constructed from the Multiparameter Intelligent Monitoring Intensive Care (MIMIC-III) 

database. MIMIC-III is a freely-available database comprised of deidentified health records 

for over 40,000 patients who stayed in the critical care units at Beth Israel Deaconess 

Medical Center between 2001 and 2012 (Johnson et al. (2016)). MIMIC-III contains data on 

patients’ demographics, vital signs, laboratory measurements, medications, imaging reports, 

chart notes, procedure codes, diagnostic codes, hospital stay, and survival. For a complete 

description of the MIMIC-III database, refer to Johnson et al. (2016).

In 2016, the definitions and clinical criteria for sepsis and septic shock were updated in the 

Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) (Singer 

et al. (2016)). Sepsis-3 defines sepsis as a “life-threatening organ dysfunction caused by a 

dysregulated host response to infection” and provides clinical criteria for diagnosing septic 

patients (Singer et al. (2016)). Komorowski (2019) developed code to identify patients in 

MIMIC-III fulfilling the Sepsis-3 criteria. Komorowski’s code pulls relevant physiological 

parameters for each patient from up to 24 hours preceding their sepsis diagnosis until 

48 hours after. The code aggregates the data into four-hour time windows, recording an 

appropriate summary statistic when several measurements were taken in the same time 

window. We use the code to construct our studied data set which contains 48 covariates 
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measured on 20,954 patients. We observe time of death for less than 15% of the septic 

patients.

Due to the computational burden of repeated model fitting for performance evaluation, 

we study a reduced set of covariates that were identified to be important predictors of 

mortality for septic patients in relevant studies and exploratory data analysis (Carrara, 

Baselli and Ferrario (2015), Hou et al. (2020)). The selected covariates include a single 

baseline covariate and 15 longitudinal biomarkers. The baseline covariate of interest is an 

indicator of whether the patient was previously admitted to the ICU during the given hospital 

stay. The longitudinal biomarkers of interest include two treatment variables: the median 

dosage of vasopressors provided to the patient in the given four-hour time-window and 

the cumulative amount of intravenous (IV) fluid administered to the patient since hospital 

admission. We also study a longitudinal indicator of mechanical ventilator dependence as 

well as 12 vital signs and laboratory values: albumin, calcium, magnesium, hemoglobin, 

arterial lactate, arterial pH, fraction of inspired oxygen (FiO2), peripheral oxygen saturation 

(SpO2), Sequential Organ Failure Assessment (SOFA) score, respiratory rate, heart rate, and 

systolic blood pressure.

Biomarker trajectories of 25 randomly selected patients are illustrated in Figure 1. The 

longitudinal biomarker trajectories are sophisticated functions of time that exhibit notable 

variation among patients. Additionally, the number of biomarker measurements differs 

among patients. These complexities make it difficult to formulate a parametric model that 

fully captures the biomarker processes and their relationship with MRL.

The body of literature addressing how to model MRL with covariates measured only at 

baseline is vast. Popular baseline MRL models include proportional MRL models (Maguluri 

and Zhang (1994)), additive MRL models (Chen (2007)), and transformed MRL models 

(Sun and Zhang (2009)). Although Sun, Song and Zhang (2012) extended the family 

of transformed MRL models to accommodate time-dependent coefficients, none of the 

aforementioned models accommodate time-dependent covariates. Thus, they cannot be used 

to conduct dynamic prediction of MRL with longitudinal biomarker data.

A number of dynamic prediction models for survival risk have been developed via 

the landmarking approach (Zheng and Heagerty (2005), Van Houwelingen (2007), van 

Houwelingen and Putter (2012), Rizopoulos, Molenberghs and Lesaffre (2017), Zhu, Li and 

Huang (2019)). In a landmark analysis, a prediction model is fit at a series of time points, 

referred to as “landmark times,” using only data collected prior to the landmark time on 

patients at risk at the landmark time. Lin et al. (2018) used the landmarking approach to 

incorporate longitudinal covariates into the transformed MRL model presented by Sun, Song 

and Zhang (2012), effectively creating a dynamic prediction model for MRL.

To synthesize the longitudinal biomarker trajectories, Lin et al. (2018) proposed modeling 

the biomarkers using functional principal components analysis (FPCA). FPCA extracts 

dominant features from longitudinal trajectories as functional principal component (FPC) 

scores. Under the FPCA framework, Lin et al. (2018) introduced “window-specific FPC 

scores” that summarize a given longitudinal biomarker trajectory from baseline to the 
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time of prediction. The authors proposed including the window-specific FPC scores as 

time-dependent covariates in their dynamic prediction model for MRL.

To calculate window-specific FPC scores at a given prediction time, Lin et al. (2018) 

presented a method that uses measurements collected from baseline to maximum follow-up 

time. Consequently, when the window-specific FPC scores are included as predictors in a 

dynamic MRL model, information collected after the time of prediction is used to predict 

MRL. This is undesirable in the dynamic prediction setting, where we wish to predict MRL 

using only the information available at the time of prediction.

Building on the work of Lin et al. (2018), we introduce two new methods to dynamically 

predict MRL from longitudinal biomarkers. The methods offer two potential advantages. 

First, the proposed methods uphold the dynamic nature of prediction. Second, the proposed 

methods may more effectively synthesize the complex longitudinal biomarker trajectories 

observed in MIMIC-III.

The proposed methods use long short-term memory networks (LSTMs) to construct 

“window-specific context vectors” which summarize the biomarker trajectories from 

baseline to the time of prediction. LSTMs are especially suitable for constructing summaries 

of biomarker trajectories because they are capable of modeling complex, heterogeneous 

functions. Thus, LSTMs are an attractive alternative to FPCA for synthesizing the MIMIC-

III biomarkers. To uphold the dynamic nature of prediction, the LSTMs construct the 

window-specific context vectors using only the information available at the time of 

prediction.

The first proposed method, the long short-term memory generalized linear model (LSTM-

GLM), dynamically predicts MRL using a dynamic transformed MRL model that includes 

the baseline covariates and window-specific context vectors as predictors. The second 

proposed method, the long short-term memory neural network (LSTM-NN), dynamically 

predicts MRL from the baseline covariates and window-specific context vectors using a 

feed-forward neural network. We apply the LSTM-GLM and the LSTM-NN to dynamically 

predict the RMRL of septic patients in MIMIC-III. We demonstrate that the LSTM-GLM 

and the LSTM-NN produce accurate, individualized, dynamic predictions. Thus, the LSTM-

GLM and the LSTM-NN can be used to inform the challenging treatment decisions of 

patients diagnosed with sepsis.

In Section 2, we introduce the dynamic transformed MRL model, and we present the 

LSTM-GLM and the LSTM-NN. In Section 3, we describe the procedure used to evaluate 

prediction performance. In Section 4, we present simulation studies, and in Section 5, we 

apply the proposed methods to predict the RMRL of septic patients in MIMIC-III. We 

conclude with a discussion of implications and open problems in Section 6.
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2. Methods.

2.1. Notation.

Let there be i = 1, …, m patients, and let tij ≥ 0 denote the time at which biomarker 

measurement j was collected on patient i, j = 1, …ni. We study m = 20, 954 septic patients 

with ni ∈ [1, 20] measurements. Let T i > 0 and Ci > 0 denote the potential times to death and 

censoring, respectively, for patient i. We observe only Y i = min(T i, Ci) and Δi = I(T i ≤ Ci), the 

indicator of whether the death of patient i was observed (Δi = 1) or censored (Δi = 0). Let 

Xi denote the q-dimensional vector of baseline covariates measured on patient i. We study 

q = 1 indicator of whether patient i was previously admitted to the ICU during the given 

hospital stay. Let Zi(t) = {Zi1(t), …, Zip(t)} denote the p-dimensional vector of longitudinal 

biomarkers measured on patient i at time t ≥ 0. We study p = 15 longitudinal biomarkers, 

including two treatment variables, an indicator of mechanical ventilator dependence, and 12 

vital signs and laboratory values. Denote the covariate history of patient i at time τ ≥ 0 as 

ℋi(τ) = {Xi, Zi(ti1), …, Zi(tiτi)}, where τi = argmaxj(tij < τ). At time τ ≥ 0, the observed data for 

patient i are {Y i, Δi, ℋi(τ)}. The mean residual life (MRL) of patient i at time τ ≥ 0, given the 

patient’s covariate history, is E{T i − τ ∣ T i > τ, ℋi(τ)}.

To avoid infinite remaining life expectancy and extreme propensity weights (see 

Section 2.2), we set a restricted lifetime of L = 40 days. Our potential survival 

time of interest is then T i
∗ = min(T i, L), and the restricted mean residual life 

(RMRL) for patient i at time τ ≥ 0, given the patient’s covariate history, is 

E{T i
∗ − τ ∣ T i > τ, ℋi(τ)}. We use the dynamic prediction methods presented in Section 2 

to predict the RMRL of septic patients by redefining Y i = min(T i
∗, Ci) = min(T i, Ci, L) and 

Δi = I(T i
∗ ≤ Ci) = I(T i, ≤ Ci) + I{L ≤ min(T i, Ci)}{1 − I(T i ≤ Ci)}.

2.2. Dynamic transformed MRL model.

Building on the work of Lin et al. (2018), we present a dynamic transformed MRL model 

that regresses residual life only on information collected prior to the time of prediction 

on patients at risk at the time of prediction. Let f( ⋅ ) be a vector-valued function, and 

specify a prediction time τ ≥ 0. For patients with Y i > τ, define the v-dimensional vector 

ζi(τ) = f{Zi(ti1), …, Zi(tiτi)}. Additionally, let g( ⋅ ) be a prespecified, nonnegative link function 

that is twice continuously differentiable and strictly increasing. We specify the dynamic 

transformed MRL model as

E{T i − τ ∣ T i > τ, ℋi(τ)} = g{η(τ) + γ(τ)TXi + α(τ)Tζi(τ)}, (1)

where η( ⋅ ) is a scalar, time-dependent parameter, γ( ⋅ ) is a q-dimensional, time-dependent 

parameter vector, and α( ⋅ ) is a v-dimensional, time-dependent parameter vector.

Define wi = {ΔiI (Y i > τ)} ∕ G(Y i), where G( ⋅ ) is an estimate of the survival function of 

censoring time. We estimate the parameters in equation (1) via a landmarking approach. 

Contrary to Lin et al. (2018), we do not adopt a supermodel approach for parameter 

estimation (Van Houwelingen (2007), van Houwelingen and Putter (2012)). Instead, we 
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prespecify a set of positive prediction times T. For each τ ∈ T, we use penalized maximum 

likelihood methods (Friedman, Hastie and Tibshirani (2010)) to compute the values of η( ⋅ ), 
γ( ⋅ ), and α( ⋅ ) that minimize the objective function

1
2∑i wi

∑
i = 1

m
wi (Y i − τ) − g η(τ) + γ(τ)TXi + α(τ)Tζi(τ)

2
+ λ‖{γ(τ), α(τ)}‖1,

where λ is a scalar tuning parameter and ‖ ⋅ ‖1 represents the L1-norm. The inverse 

probability of censoring weights wi account for censoring in the data. We assume censoring 

time is independent of the baseline covariates and longitudinal biomarkers, and we estimate 

G( ⋅ ) using the Kaplan–Meier estimator. Alternatively, if censoring time is assumed to 

depend on only the baseline covariates, a Cox regression model can be used to estimate 

G( ⋅ ).

We impose an L1-penalty on v + q regression parameters in the objective function to prevent 

overfitting. To ensure fair penalization, we apply proportion-of-maximum scaling (POMS) 

to the longitudinal biomarkers such that

Zik(t)POMS = Zit(t) − mini, u{Zik(u)}
maxi, u{Zik(u)} − mini, u{Zik(u)} .

Conducting dynamic prediction of MRL with ζi(τ) = Zi(τ) is difficult in practice. Often, not 

all patients have longitudinal measurements Zi(τ) available at all desired prediction times 

τ ∈ T. In the MIMIC-III data set, longitudinal measurements are recorded at four-hour 

time intervals. Over 80% of patients are missing at least one measurement, and over 25% 

of patients are missing at least 10 measurements for all studied longitudinal biomarkers. 

Parametric models of Zi( ⋅ ) that could be used to impute missing measurements are likely 

to be misspecified due to the complex, heterogeneous nature of biomarker processes. 

Moreover, regressing MRL only on the biomarker measurements taken at the time of 

prediction discards the information contained in the history of measurements.

Intuitively, it is desirable to select a function f( ⋅ ) that summarizes the biomarker 

trajectories from baseline to prediction time τ. However, a simple summary function, such 

as average or slope, is unlikely to capture the complex trajectories of the longitudinal 

biomarkers. To address these complications, Lin et al. (2018) proposed summarizing the 

biomarker trajectories from baseline to prediction time using window-specific FPC scores. 

Alternatively, we propose summarizing the trajectories using window-specific context 

vectors constructed by LSTM autoencoders.

2.3. Context vector construction.

The window-specific context vector ψik(τ) is an encoded representation of the trajectory 

of biomarker k from baseline to prediction time τ for patient i. At each prediction time 

τ, a distinct LSTM autoencoder is used to construct each of the k = 1, …, p sets of window-

specific context vectors. An LSTM autoencoder is an unsupervised neural network that 
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learns how to best encode temporal input into a context vector, so it can then reconstruct 

the original input from that context vector. To uphold the dynamic nature of prediction, 

the LSTM autoencoder used to construct ψik(τ) only accepts as input the biomarker 

measurements collected prior to time τ on patients at risk at time τ, where patient i is 

defined to be at risk at time τ if Y i > τ.

An LSTM autoencoder, which consists of an encoder and a decoder, is illustrated in Figure 

2. Proportion-of-maximum scale the biomarker data, and let Zik
τ = {Zik(ti1), …, Zik(tiτi)} be the 

nik
τ -dimensional vector of scaled measurements of biomarker k collected on patient i prior to 

time τ. For each patient i with Y i > τ, input Zik
τ  into the encoder. The encoder compresses 

Zik
τ ∈ ℝnik

τ
 into the window-specific context vector ψik(τ) ∈ ℝs. The decoder then constructs an 

estimate of the input scaled biomarker measurements, Zik
τ
, from ψik(τ). The autoencoder is 

trained to minimize the reconstruction error

∑
i:Y i > τ

∑
j = 1

τi
Zik(tij) − Zik(tij)

2
.

After training the autoencoder, the decoder can be removed from the network, so the encoder 

outputs the context vector ψik(τ) directly to the user.

In an LSTM autoencoder, both the encoder and decoder are a type of recurrent neural 

network called a “long short-term memory network.” Recurrent neural networks (RNNs) are 

a class of artificial neural networks designed to process sequential data. RNNs contain a 

feedback loop that enables information from previous time steps to be passed to future time 

steps. The information is passed in an s-dimensional vector hi( ⋅ ), referred to as a “hidden 

vector.” The parameters in an RNN are estimated via the back propagation through time 

(BPTT) algorithm (Werbos (1990)). In the BPTT algorithm, derivatives are multiplied across 

time steps. Consequently, in RNNs with a large number of time steps, if the derivatives are 

large, the gradients will increase exponentially and “explode.” If the derivatives are small, 

the gradients will decrease exponentially and “vanish.” This is referred to as the “vanishing 

and exploding gradient problem (Aggarwal (2018)).” The vanishing and exploding gradient 

problem makes it difficult for simple RNNs to capture long-term dependencies. LSTMs 

were designed especially to mitigate the vanishing and exploding gradient problem.

An LSTM can be conceptualized as a network of temporal units, with a single temporal 

unit corresponding to each time step in the data. Figure 3 depicts the LSTM temporal unit 

corresponding to time tij. LSTM networks mitigate the vanishing and exploding gradient 

problem using an s-dimensional vector ci( ⋅ ), referred to as the “cell state.” Conceptually, 

the cell state can be thought of as a pseudo long-term memory that retains information from 

previous time steps (Aggarwal (2018)). The cell state is controlled by three s-dimensional 

gate control signals, the input gate ii( ⋅ ), the forget gate f i( ⋅ ), and the output gate oi( ⋅ ). These 

gate control signals determine which information in the cell state is updated, discarded, and 

output to the next time step, respectively. Let Ui(tij) represent the r-dimensional input vector 

for patient i at time tij, and let hi(ti, j − 1) represent the s-dimensional hidden vector output for 
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patient i at time ti, j − 1. Then the three gate control signals for patient i are characterized by the 

equations

Ωi(tij) = σ WΩUi(tij) + QΩhi(ti, j − 1) + vΩ , σ(x) = (1 + e−x)−1,

where Ω = i, f, o, WΩ is an s × r parameter matrix, QΩ is an s × s parameter matrix, and vΩ is 

an s × 1 bias vector. Note, WΩ, QΩ, and vΩ are gate-specific and temporally-shared.

At time tij, an s-dimensional candidate cell state for patient i, ci(tij), is computed as

ci(tij) = ReLU{WcUi(tij) + Qchi(ti, j − 1) + vc}, ReLU(x) = max(0, x),

where Wc is an s × r parameter matrix, Qc is an s × s parameter matrix, and vc is an s × 1 bias 

vector. Again, Wc, Qc, and vc are temporally-shared parameters.

At time tij, the cell state for patient i, ci(tij), is then computed as

ci(tij) = fi(tij) ⊙ ci(ti, j − 1) + ii(tij) ⊙ ci(tij),

where ⊙ represents the Hadamard product.

Ultimately, each temporal unit outputs a hidden vector for patient i, hi(tij), computed as

hi(tij) = oi(tij) ⊙ ReLU{ci(tij)} .

The hidden vector is then passed to the next temporal unit. Additionally, it may be output to 

the next layer in the LSTM autoencoder.

At each prediction time τ, for each of the k = 1, …, p biomarkers, we train a separate LSTM 

autoencoder to construct the window-specific context vectors ψik(τ) for all patients i such 

that Y i > τ. Let the superscript e signify elements of the encoder, and let the superscript d
signify elements of the decoder. Each encoder accepts as input the scaled measurements 

of biomarker k collected at times tij < τ on patients with Y i > τ. For a given patient i, each 

biomarker measurement is input into a separate LSTM temporal unit, so Ui
e(tij) = Zik(tij) and 

r = 1 for j = 1, …, τi. The hidden vector for patient i output by the last temporal unit is taken 

to be the context vector for patient i, so ψik(τ) = hi
e(tiτi).

Similar to the encoder, the decoder contains an LSTM temporal unit corresponding to each 

biomarker measurement. In the decoder, each LSTM temporal unit accepts the context 

vector for patient i as input, so Ui
d(tij) = ψik(τ) and r = s for j = 1, …, τi. Each temporal unit 

outputs the hidden vector hi
d(tij) which is fed into a feed-forward neural network (FFN) 

layer. At each measurement time j = 1, …, τi, the FFN layer constructs an estimate of the 

scaled biomarker measurement for patient i, Zik(tij), from the hidden vector hi
d(tij) via linear 

regression. Specifically,
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Zik(tij) = Wnhi
d(tij) + vn,

where Wn is an s-dimensional, temporally-shared parameter vector, and vn is a temporally-

shared scalar bias.

As previously mentioned, the LSTM autoencoder is trained to minimize the reconstruction 

error ∑i:Y i > τ ∑j = 1
τi {Zik(tij) − Zik(tij)}2. After training the autoencoder for biomarker k at 

prediction time τ, the window-specific context vector ψik(τ) can be extracted for each patient 

i such that Y i > τ. Because each window-specific context vector is constructed using only 

measurements taken at times tij < τ on patients with Y i > τ, ψik(τ) can be used to conduct 

dynamic prediction. Moreover, since the number and timing of biomarker measurements 

can differ between patients, imputation of missing or irregularly measured biomarkers is 

unnecessary.

Each LSTM autoencoder has several hyperparameters that influence how well the output 

window-specific context vectors summarize the input biomarker trajectories. Important 

hyperparameters include the dimension of the window-specific context vector, s, and the 

number of times the BPTT algorithm processes the entire data set, referred to as the number 

of “training epochs.” Too many training epochs can lead to overfitting the data, and too 

few can lead to underfitting. These hyperparameters can be selected via traditional tuning 

methods such as hold-out validation or cross-validation. In Section 1 of the Supplementary 

Material (Rhodes, Davidian and Lu (2023)), we present an automated approach for selecting 

these hyperparameters for the LSTM-GLM.

2.4. LSTM-GLM.

First, we dynamically predict MRL using a dynamic transformed MRL model that 

includes the baseline covariates and window-specific context vectors as predictors. Let 

ψi(τ) = {ψi1(τ), …, ψip(τ)} be an sp-dimensional vector containing the p biomarker-specific, 

window-specific context vectors for patient i at prediction time τ. Additionally, let g( ⋅ ) be a 

prespecified, nonnegative link function that is twice continuously differentiable and strictly 

increasing. The LSTM-GLM is specified as

E{T i − τ ∣ T i > τ, ℋi(τ)} = g{η(τ) + γ(τ)TXi + α(τ)Tψi(τ)} . (2)

The LSTM-GLM is a special case of the dynamic transformed MRL model, specified in 

equation (1), where ζi(τ) = ψi(τ). Accordingly, we estimate the parameters in equation (2) via 

penalized maximum likelihood by adopting the landmarking approach detailed in Section 

2.2. Because a separate context vector is constructed for each biomarker, the parameter 

estimates of the LSTM-GLM can be used to gain insight into the relationship between the 

longitudinal biomarkers and mean residual life.
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2.5. LSTM-NN.

Next, we introduce an alternative method for dynamic prediction of MRL from window-

specific context vectors. The LSTM-NN dynamically predicts MRL using a feed-forward 

neural network that accepts the baseline covariates and window-specific context vectors 

as input. Compared to generalized linear models, feed-forward neural networks are more 

capable of modeling complex functional relationships. In fact, a neural network with a single 

nonlinear hidden layer and a single linear output layer can compute almost any function 

(Aggarwal (2018)). This makes neural networks ideal for modeling the complex relationship 

between MRL and the biomarker processes.

The LSTM-NN is a feed-forward neural network comprised of one or more hidden layers 

and an output layer. The first hidden layer takes the baseline covariates and context vectors 

as input, and the output layer produces estimates of MRL. Additional hidden layers can 

be added to the LSTM-NN to tailor the network’s flexibility to the complexity of the 

studied data set. For our simulation studies and MIMIC-III data application, we consider an 

LSTM-NN with two hidden layers, as illustrated in Figure 4.

For a given prediction time τ, the first hidden layer, FFN1, accepts the baseline covariates Xi

and the window-specific context vectors ψi(τ) as input. FFN1 then computes and outputs the 

u-dimensional hidden vector Oi1(τ), which is calculated as

Oi1(τ) = tanh[W1{Xi, ψi(τ)} + v1], tanh(x) = ex − e−x
ex + e−x,

where W1 is a u × (q + sp) parameter matrix and v1 is a u-dimensional bias vector.

The second hidden layer, FFN2, then accepts Oi1(τ) as input. FFN2 computes and outputs the 

u-dimensional hidden vector Oi2(τ), which is calculated as

Oi2(τ) = tanh[W2Oi1(τ) + v2],

where W2 is a u × u parameter matrix and v2 is a u-dimensional bias vector.

The output layer, FFN3, then accepts Oi2(τ) as input. FFN3 computes and outputs the 

estimate of MRL for patient i at time τ as

Ri(τ) = W3Oi2(τ) + v3,

where W3 is a u-dimensional parameter vector and v3 is a scalar bias.

As with the LSTM-GLM, we estimate the parameters of the LSTM-NN via a landmarking 

approach. First, we specify a set of positive prediction times T. Then for each τ ∈ T, we 

train the LSTM-NN to minimize the objective function
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∑
i = 1

m ΔiI (Y i > τ)
G(Y i)

−1
∑

i = 1

m ΔiI (Y i > τ)
G(Y i)

(Y i − τ) − Ri(τ)
2

+ λ‖W1‖2
2 + λ‖W2‖2

2 .

Again, we use inverse probability of censoring weights to account for censoring, where G( ⋅ )
is the Kaplan–Meier estimate of the survival function of censoring time. Additionally, we 

apply an L2-penalty to the parameter matrices W1 and W2 to prevent overfitting. Here ‖ ⋅ ‖2

represents the L2-norm, and λ is a tuning parameter for the L2-penalties.

The LSTM-NN provides more flexibility in modeling the relationship between MRL and the 

longitudinal biomarkers than the LSTM-GLM. However, the complexity of the feed-forward 

neural network makes it difficult to interpret the relationship between the biomarkers and 

MRL. Moreover, the LSTM-NN has a number of hyperparameters that must be tuned, 

including the dimension of the parameter matrices u, the tuning parameter for the L2-penalty 

λ, and the number of epochs used to train the LSTM-NN. These hyperparameters can be 

tuned using traditional processes, such as hold-out validation or cross-validation. However, 

these processes are computationally-intensive, and imperfect tuning can result in poor 

prediction performance.

3. Performance evaluation.

3.1. Comparative methods.

For the LSTM-GLM and the LSTM-NN to have utility in the clinical setting, the 

models must produce accurate dynamic predictions of MRL relative to competing dynamic 

prediction methods. Consequently, we evaluate the prediction performance of the LSTM-

GLM and the LSTM-NN relative to six variations of the dynamic transformed MRL 

model specified in equation (1). For each of the six dynamic transformed MRL models, 

we define a distinct function of the history of longitudinal biomarker measurements, 

ζi(τ) = f{Zi(ti1), …, Zi(tiτi)}. To maintain the dynamic nature of prediction, we construct ζi(τ)
using only biomarker measurements taken at times tij < τ on patients with Y i > τ. First, we 

define ζi
(B)(τ) to be a vector of the baseline biomarker measurements. Second, we define ζi

(L)(τ)
to be a vector of the biomarker measurements collected most recently before prediction 

time τ (i.e., the “last-value carried forward”). Third, we define ζi
(A)(τ) to be a vector of the 

average value of each biomarker prior to time τ. Next, we define two vectors containing 

the intercept and slope of each biomarker regressed against time. The first vector, ζi
(S)(τ), is 

formed by conducting an independent linear regression on each patient for each biomarker. 

The second vector, ζi
(M)(τ), is formed by fitting a single linear mixed effects model with a 

random intercept and slope to all patients for each biomarker. Lastly, we define ζi
(F)(τ) to 

be a vector of FPC scores computed independently on each biomarker. For each biomarker, 

ζi
(F)(τ) contains the minimum number of FPC scores required to explain 99% of the total 

variance of that biomarker. We provide technical specifications for each comparative method 

in Section 2 of the Supplementary Material (Rhodes, Davidian and Lu (2023)).
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3.2. Performance metrics.

To evaluate prediction performance, we focus on measures of calibration and discrimination. 

In the MIMIC-III data set, the survival time of interest T i
∗ was observed for only 14.99% of 

patients. Consequently, it is important for the measures of calibration and discrimination to 

account for censoring. Let RMRLi(τ) represent a given model’s estimate of RMRL for patient 

i at time τ. We assess the calibration of each model via the inverse probability of censoring 

weighted mean square error

1
∑i

ΔiI (Y i > τ)
G(Y i)

∑
i

ΔiI (Y i > τ)
G(Y i)

(Y i − τ) − RMRLi(τ)
2

.

We refer to this quantity as the “testing loss.”

In addition to calibration, we assess each model’s discrimination, that is, its ability to 

accurately predict who among a given pair of patients will live longer. We compute the 

following discrimination metric based on Harrell’s C-Index (Harrell, Lee and Mark (1996)):

∑i ≠ j I{ci(τ) > cj(τ)} I {c i(τ) > c j(τ)}Δj
∑i ≠ j I{ci(τ) > cj(τ)}Δj

,

where ci(τ) = Y i − τ and c i(τ) = RMRLi(τ). We refer to this quantity as the “testing C-index.”

3.3. Software.

We conduct the simulation studies and MIMIC-III data application in Python and R. We 

build and train the LSTM autoencoders and LSTM-NNs in Python using the Keras library 

(Chollet et al. (2015)). We fit the LSTM-GLMs and the six dynamic transformed MRL 

models in R using the glmnet package (Friedman, Hastie and Tibshirani (2010)). We 

compute the Kaplan–Meier estimate of the survival function of censoring time, G( ⋅ ), in 

R using the survival package (Therneau and Grambsch (2000)). We leverage the fdapace R 

package (Gajardo et al. (2021)) to construct the FPCA vectors ζi
(F), and we use the lme4 R 

package (Bates et al. (2015)) to construct the linear regression vectors ζi
(S) and the mixed 

effects vectors ζi
(M).

4. Simulations.

We conduct simulation studies to assess the prediction performance of the LSTM-GLM 

and the LSTM-NN relative to the performance of the six dynamic transformed MRL 

models described in Section 3.1. We generate a single data set of covariates for m = 5000

patients. For each patient we generate a single baseline covariate Xi ∼iid U(0, 1), where U
denotes the uniform distribution. Let (τ1, τ2, …, τ19) = (0, 0.5, …, 9), and let N(μ, Σ) denote 

a normal distribution with mean μ and variance-covariance Σ. For each patient we 

generate a single longitudinal biomarker at j = 1, 2, …, 19 patient-specific measurement 

times tij = min(0, τj + εij), where εij ∼iid N(0, 0.052). We generate the longitudinal biomarker 
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measurements as Zi(tij) = Bi(tij) + ϵij, where ϵij ∼iid N(0, 0.52) represents the measurement error, 

and Bi( ⋅ ) is a piecewise linear mixed effects model with eight interior knots. Specifically,

Bi(t) = a + bi0 + (c1 + bi1)t + ∑
j = 2

10
I{t > (j − 1)}(cj + bij){t − (j − 1)},

where a = − 2 and (c1, c2, …, c10) = (4, − 7, 5, − 2.5, 3.5, − 5, 1.5, 2, − 2, 1). Let rep((x, y)) 
denote a vector containing x repeated y times. Then (bi0, bi1, …, bi10) ∼ N(0, D), where D is 

the diagonal matrix D = diag{1, rep(0.05, 5), rep(0.01, 5)}. Figure 5 illustrates the longitudinal 

biomarker trajectories of 25 randomly selected patients in the generated data set of 

covariates.

We conduct two simulation studies. In each study, we conduct 500 simulations using the 

aforementioned data set of covariates. For each of the 500 simulations, we generate a new 

data set of survival times T i and censoring times Ci for all patients i = 1, 2, …, 5000. In both 

studies, we generate the censoring times as Ci ∼iid U(0, 100). Conversely, we generate the 

survival times T i using a different model for each study. In the first study, we generate T i

according to the accelerated failure time (AFT) model νi = ∫0
Tiexp{β1Bi(s) + β2Xi} ds, where 

β1 = β2 = 1, νi = exp(θi), and θi ∼iid N(3, 1). In the second study, we generate T i according to a 

Cox proportional hazards model with an exponential baseline hazard function. Specifically, 

ℎi(t ∣ Bi(t), Xi) = λ exp{β1Bi(t) + β2Xi}, where β1 = β2 = 1 and λ = 0.05. In both studies, we 

impose a restricted lifetime of L = 50. We describe the technical details of the survival 

time generation process in the Supplementary Material, Section 3 (Rhodes, Davidian and Lu 

(2023)).

We conduct prediction at time τ = 5, so ni ∈ {10, 11}. Across the 500 simulated AFT data 

sets, between 1824 and 1958 (mean = 1886) patients are at risk at τ = 5. Across the 500 

simulated Cox data sets, between 1368 and 1502 (mean = 1438) patients are at risk at τ = 5. 

For both the AFT and Cox simulations, between 14% and 20% (mean = 17%) of the patients 

at-risk at τ = 5 are censored.

We log-transform the observed restricted residual lifetimes Y i − τ, and we define the link 

function for the LSTM-GLM and the six dynamic transformed MRL models to be the 

identity g(x) = x. Since we consider only a single longitudinal biomarker, we are not 

concerned with overfitting the data. Consequently, we set the tuning parameter to λ = 0
in all dynamic prediction models.

We specify the dimension of the window-specific context vectors to be s = 5, and we 

train the LSTM autoencoders for 500 epochs. We specify the dimension of the LSTM-NN 

parameter matrices to be u = 3, and we train the LSTM-NNs for 5000 epochs. We train 

all neural networks using the Adam optimization algorithm (Kingma and Ba (2017)). For 

the LSTM autoencoders, we use cross-validation to adaptively select the learning rate from 
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the options {1e−3, 1e−4} (O’Malley et al. (2019)). For the LSTM-NNs, we select a fixed 

learning rate of 1e−3.

For each simulation we randomly divide the data into a training data set and a testing data 

set, stratifying on the censoring status Δi. We specify the training and testing data sets to 

each include 50% of the patients at risk at time τ = 5. We estimate the survival function of 

censoring time G( ⋅ ) independently on the training and testing data sets. We then fit each 

model on the training data set and compute the performance metrics specified in Section 3.2 

on the testing data set. We provide the Python and R code used to conduct the simulation 

studies in the Supplementary Material (Rhodes, Davidian and Lu (2023)).

We plot the distributions of the 500 testing losses and 500 testing C-indexes for each of the 

eight studied dynamic prediction models in Figure 6. For both the AFT and Cox simulations, 

the LSTM-NN results in the lowest median testing loss, followed by the LSTM-GLM. The 

LSTM-GLM consistently results in the highest median testing C-index. The LSTM-NN 

results in the second-highest median testing C-index for the AFT simulations and in the 

third-highest for the Cox simulations, where it is surpassed by the FPCA model. Overall, 

the simulation studies indicate that the LSTM-GLM and the LSTM-NN exhibit better 

calibration and discrimination than the baseline, last-value carried forward, average, linear 

regression, and mixed effects models, and that they exhibit at least comparable performance 

to the FPCA model. Thus, the simulation studies support that the LSTM-GLM and the 

LSTM-NN are useful tools for dynamically predicting MRL from longitudinal biomarker 

data.

In Section 4 of the Supplementary Material, we repeat the simulation studies, reducing both 

the measurement error and the variation in measurement times (Rhodes, Davidian and Lu 

(2023)). Compared to the simulations studies described above, the supplemental simulation 

studies demonstrate a more significant improvement in calibration and discrimination for 

the LSTM-GLM and the LSTM-NN relative to competing methods. Thus, the supplemental 

simulation studies indicate that the LSTM-GLM and the LSTM-NN are especially useful 

for producing accurate dynamic predictions of MRL in settings where the longitudinal 

biomarkers are measured using precise instruments.

5. Application to MIMIC-III.

5.1. Data analysis.

We dynamically predict the RMRL of septic patients in the ICU from EMR data using 

the LSTM-GLM and the LSTM-NN. To evaluate the utility of the proposed methods in 

this clinical setting, we compare the prediction performance of the LSTM-GLM and the 

LSTM-NN to the performance of the six dynamic transformed MRL models described 

in Section 3.1. We conduct the study on the MIMIC-III data set described in Section 1. 

The distributions of the unrestricted and restricted survival times of the septic patients are 

depicted in Figure 7. Because the distribution of restricted survival times is notably right 

skewed and RMRL is nonnegative by definition, we log-transform the observed restricted 

residual lifetimes Y i − τ. We then define the link function for the LSTM-GLM and the 

six dynamic transformed MRL models to be the identity g(x) = x. Because we conduct 
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our study using p = 15 longitudinal biomarkers, we face the risk of overfitting the data. 

Consequently, we select the L1-penalty tuning parameter λ via five-fold cross-validation for 

the LSTM-GLM and the six dynamic transformed MRL models.

We provide a detailed description of the hyperparameter selection process for the LSTM-

GLM and the LSTM-NN in the Supplementary Material, Section 5 (Rhodes, Davidian and 

Lu (2023)). Let s denote the dimension of the window-specific context vectors, and let epa

denote the number of epochs used to train the LSTM autoencoders. At each prediction time 

τ ∈ T, we construct four sets of window-specific context vectors using the hyperparameter 

settings (s, epa) ∈ {(3, 150), (5, 150), (5, 300), (7, 300)}, and we fit four LSTM-GLMs that each 

regress on one of the four sets of context vectors. For each τ ∈ T, we define the LSTM-

GLM that results in the lowest median testing loss to be the “best” LSTM-GLM at time τ. 

The hyperparameter settings of the best LSTM-GLM at each τ ∈ T can be seen in Table 1.

Additionally, we fit an “automated” LSTM-GLM which selects the hyperparameter settings 

of the window-specific context vectors via cross-validation. We describe the technical details 

of the automated hyperparameter selection process in the Supplementary Material, Section 1 

(Rhodes, Davidian and Lu (2023)).

Let λ denote the LSTM-NN L2-penalty tuning parameter, let u denote the dimension of 

the LSTM-NN parameter matrices, and let epn denote the number of LSTM-NN training 

epochs. We train eight LSTM-NNs on the window-specific context vectors constructed with 

hyperparameter settings (7, 300) using all eight possible combinations of λ ∈ {0.005, 0.01}, 

u ∈ {1, 2}, and epn ∈ {2000, 3000}. For each τ ∈ T, we define the LSTM-NN that results in the 

lowest median testing loss to be the “best” LSTM-NN at time τ. The hyperparameter settings 

of the best LSTM-NN at each τ ∈ T can be seen in Table 1.

We train all LSTM autoencoders and LSTM-NNs using the Adam optimization algorithm 

(Kingma and Ba (2017)). For each LSTM autoencoder, we use Bayesian optimization to 

adaptively select the learning rate from the options {1 e−2, 1 e−3, 1 e−4} (O’Malley et al. 

(2019)). For the LSTM-NN, we select a fixed learning rate of 1e−4.

We conduct prediction at five prediction times, τ = {1, 1.5, 2, 2.5, 3}, where τ ∈ T represents 

the number of days passed since the time of the given patient’s first record in the data set. At 

prediction time τ ∈ T, we randomly divide the data into a training data set and a testing data 

set, stratifying on the censoring status Δi. The training data set is specified to include 70% 

of the patients at risk at time τ, and the testing data set is defined to include the other 30% 

of patients at risk. We estimate the survival function of censoring time G( ⋅ ) independently 

on the training and testing data sets. We then fit each model on the training data set and 

compute the performance metrics, specified in Section 3.2, on the testing data set. We repeat 

this process 100 times, using 100 unique divisions of the data.

5.2. Results.

For each prediction time τ ∈ T, we plot the distribution of 100 testing losses for the 

best LSTM-GLM, the automated LSTM-GLM, the best LSTM-NN, and the six dynamic 
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transformed MRL models in Figure 8, and we plot the distribution of 100 testing C-indexes 

in Figure 9.

First, we compare the calibration of the nine dynamic prediction models via the testing loss. 

Generally, the best LSTM-GLM, the automated LSTM-GLM, the best LSTM-NN, and the 

FPCA model result in the lowest median testing losses. The baseline model consistently 

results in the highest median testing loss.

At prediction times τ = 1, 1.5, 2.5, 3, the best LSTM-GLM results in the lowest median 

testing loss. At τ = 2, the best LSTM-NN results in the lowest median testing loss. In this 

application, the added flexibility of the LSTM-NN does not offset the cost of imperfect 

hyperparameter tuning.

In practice, we do not know which hyperparameter settings result in the “best” LSTM-

GLM and the “best” LSTM-NN. Consequently, we use cross-validation to automatically 

select hyperparameters for the LSTM-GLM, as detailed in Section 1 of the Supplementary 

Material (Rhodes, Davidian and Lu (2023)). Generally, the automated hyperparameter 

selection process performs well. Disregarding the best LSTM-GLM and the best LSTM-NN, 

the automated LSTM-GLM results in the lowest median testing loss at prediction times 

τ = 1, 2.5, 3, and in the second-lowest median testing loss at τ = 1.5, 2, where it is beat only 

by the FPCA model.

Second, we compare the discrimination of the nine dynamic prediction models via the 

testing C-index. As with calibration, the best LSTM-GLM, the automated LSTM-GLM, 

the best LSTM-NN, and the FPCA model generally result in good discrimination, and the 

baseline model consistently results in the poorest discrimination. Interestingly, the last-value 

carried forward model results in the highest median testing C-index at prediction times 

τ = 1.5, 2.

The best LSTM-NN results in a higher testing C-index than the best LSTM-GLM only at 

prediction times τ = 1.5, 3. Again, this indicates that the added flexibility of the LSTM-NN 

is offset by imperfect hyperparameter tuning.

The automated hyperparameter selection process for the LSTM-GLM performs well with 

respect to discrimination. Disregarding the best LSTM-GLM and the best LSTM-NN, the 

automated LSTM-GLM results in the highest median testing C-index at prediction times 

τ = 1, 3, the second-highest at τ = 2, and the third-highest at τ = 1.5, 2.5. In this case, the 

discrimination of the automated LSTM-GLM is beat only by the last-value carried forward 

model and the FPCA model.

In clinical application, calibration performance is often valued over discrimination 

performance. Typically, it is more important to accurately predict one septic patient’s 

remaining life expectancy than to accurately predict which of two septic patients has 

a longer remaining life expectancy. Taking this into consideration, these results suggest 

that the LSTM-GLM and the LSTM-NN exhibit the best performance when dynamically 

predicting the RMRL of septic patients in the ICU from EMR data, as compared to the 

baseline, last-value carried forward, average, linear regression, and mixed effects models. 
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Moreover, the LSTM-GLM and the LSTM-NN exhibit at least comparable performance to 

the FPCA model, and if their hyperparameters are properly tuned, the LSTM-GLM and 

the LSTM-NN exhibit better performance than the FPCA model. This study demonstrates 

that the LSTM-GLM and the LSTM-NN are useful models for producing individualized, 

real-time predictions of the RMRL of septic patients in the ICU from EMR data.

6. Discussion.

Sepsis is a leading cause of death worldwide and remains highly challenging to treat 

(Singer et al. (2016)). We introduce two methods, the LSTM-GLM and the LSTM-NN, 

to dynamically predict the RMRL of septic patients in the ICU from EMR data. Through 

simulation studies and application to the MIMIC-III data set, we demonstrate that the 

LSTM-GLM and the LSTM-NN exhibit superior prediction performance relative to six 

competing methods. Thus, the LSTM-GLM and the LSTM-NN offer an automatic method 

to synthesize complex longitudinal biomarker trajectories and produce accurate predictions 

of MRL, all while upholding the dynamic nature of prediction. By producing individualized, 

real-time predictions of the RMRL of septic patients, the LSTM-GLM and the LSTM-NN 

can help clinicians make informed treatment decisions, potentially improving septic patient 

care.

The LSTM-GLM and the LSTM-NN can process data containing a large number of 

patients and biomarkers, like that typically found in EMRs. However, the methods can be 

computationally expensive relative to the baseline, last-value carried forward, average, linear 

regression, mixed effects, and FPCA dynamic transformed MRL models.

Because we propose training a distinct LSTM autoencoder to construct the context vector 

for each longitudinal biomarker, the relative computational cost of the LSTM-GLM 

and the LSTM-NN is most notable in settings with a large number of longitudinal 

biomarkers. To improve the computational efficiency of the proposed methods, a context 

vector summarizing multiple biomarkers could be constructed by training a single LSTM 

autoencoder on multiple biomarkers. However, this approach further obfuscates the 

relationship between MRL and the biomarkers. Additional research needs to be conducted to 

evaluate the feasibility and utility of this approach.

Alternative to the presented methods, a joint model could be constructed to connect the 

longitudinal biomarkers with the hazard function of death (Tsiatis and Davidian (2004)), 

and MRL predictions could be derived from the hazard function. However, this procedure 

can make it difficult to interpret the relationship between the biomarkers and MRL. 

Additionally, constructing joint models with a large number of longitudinal biomarkers can 

be computationally challenging (Hickey et al. (2016)).

In this work, we assume censoring time is independent of the baseline covariates and 

longitudinal biomarkers, and we estimate the survival function of censoring time G( ⋅ ) via 

the Kaplan–Meier method. If censoring time is dependent on both baseline and longitudinal 

covariates, a time-dependent Cox regression model can be used to estimate G( ⋅ ). However, 

further research should be conducted to determine how best to incorporate the history 

Rhodes et al. Page 17

Ann Appl Stat. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of longitudinal biomarker measurements into the Cox regression model. Potentially, the 

window-specific context vectors could be used as predictors in the Cox model.

We present an automated hyperparameter selection process for the LSTM-GLM in the 

Supplementary Material, Section 1 (Rhodes, Davidian and Lu (2023)). Further research is 

required to formulate satisfactory methods for tuning the hyperparameters of the LSTM-NN.

In this paper, we focus on obtaining accurate predictions of MRL. Consequently, we impose 

an L1-penalty on the parameters of the LSTM-GLM to prevent overfitting. To conduct 

variable selection with the LSTM-GLM, a group LASSO penalty could instead be imposed 

to ensure that the entire context vector for a given longitudinal biomarker is either included 

in or removed from the model (Yuan and Lin (2006)). Further research is needed to 

determine the efficacy of using the LSTM-GLM to conduct variable selection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The biomarker trajectories of magnesium (left) and systolic blood pressure (right) for 25 

randomly selected septic patients in MIMIC-III.

Rhodes et al. Page 20

Ann Appl Stat. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An LSTM autoencoder at time τ, comprised of an encoder and a decoder. Both the encoder 

and decoder consist of a series of LSTM temporal units, labelled “LSTM.” The decoder 

also contains a feed-forward neural network layer, labelled “FFN.” The encoder compresses 

the input biomarker measurements Zik( ⋅ ) into the window-specific context vector ψik(τ), 
and the decoder attempts to reconstruct the original biomarker measurements from ψik(τ). 
Information is passed between the LSTM temporal units via the hidden vectors ℎi( ⋅ ).
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Fig. 3. 
An LSTM temporal unit at time tij.
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Fig. 4. 
The LSTM-NN at prediction time τ.
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Fig. 5. 
The biomarker trajectories of 25 randomly selected patients in the simulated covariate data 

set.
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Fig. 6. 
Distributions of the 500 testing losses and 500 testing C-indexes for each of the eight 

dynamic prediction models in the simulation studies. The models resulting in the lowest 

median testing loss and the highest median testing C-index are labelled 1. The models 

resulting in the highest median testing loss and the lowest median testing C-index are 

labelled 8. The six dynamic transformed MRL models are labelled according to their 

formulation of ζi(τ). “B” represents the baseline vector. “L” represents the last-value 

carried forward vector. “A” represents the average vector. “S” represents the linear 

regression vector. “M” represents the mixed effects vector. “F” represents the FPCA vector. 

Furthermore, “G” represents the LSTM-GLM, and “N” represents the LSTM-NN.

Rhodes et al. Page 25

Ann Appl Stat. Author manuscript; available in PMC 2023 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
LEFT: The distribution of unrestricted survival time, stratified by censoring status. RIGHT: 

The distribution of survival time restricted to L = 40 days, stratified by censoring status.
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Fig. 8. 
Distribution of the 100 testing losses for each of the nine studied dynamic prediction models 

at each prediction time τ ∈ T = {1, 1.5, 2, 2.5, 3}. The model resulting in the lowest median 

testing loss is labelled 1. The model resulting in the highest median testing loss is labelled 

9. The six dynamic transformed MRL models are labelled according to their formulation 

of ζi(τ). “B” represents the baseline vector. “L” represents the last-value carried forward 

vector. “A” represents the average vector. “S” represents the linear regression vector. “M” 

represents the mixed effects vector. “F” represents the FPCA vector. The best LSTM-GLM 

is labelled “G-B.” The automated LSTM-GLM is labelled “G-A. ” The best LSTM-NN is 

labelled “N-B.”
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Fig. 9. 
Distribution of the 100 testing C-indexes for each of the nine studied dynamic prediction 

models at each prediction time τ ∈ T = {1, 1.5, 2, 2.5, 3}. The model resulting in the highest 

median testing C-index is labelled 1. The model resulting in the lowest median testing 

C-index is labelled 9. The six dynamic transformed MRL models are labelled according 

to their formulation of ζi(τ). “B” represents the baseline vector. “L” represents the last–

value carried forward vector. “A” represents the average vector. “S” represents the linear 

regression vector. “M” represents the mixed effects vector. “F” represents the FPCA vector. 

The best LSTM-GLM is labelled “G-B.” The automated LSTM-GLM is labelled “G-A.” 

The best LSTM-NN is labelled “N-B.”
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Table 1

The hyperparameter settings of the best LSTM-GLM and the best LSTM-NN at each prediction time τ ∈ T, 

where the “best” model is defined to be the one resulting in the lowest median testing loss

Prediction Time LSTM-GLM LSTM-NN

Days s epa s epa λ u epn

1 3 150 7 300 0.01 1 2000

1.5 7 300 7 300 0.005 2 3000

2 3 150 7 300 0.005 2 2000

2.5 5 300 7 300 0.01 2 2000

3 7 300 7 300 0.01 2 3000
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