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Abstract

Alcoholic myopathy is caused by chronic consumption of alcohol (ethanol) and is character-

ized by weakness and atrophy of skeletal muscle. Regular exercise is one of the important

ways to prevent or alleviate skeletal muscle myopathy. However, the beneficial effects and

the exact mechanisms underlying regular exercise on alcohol myopathy remain unclear. In

this study, a model of alcoholic myopathy was established using zebrafish soaked in 0.5%

ethanol. Additionally, these zebrafish were intervened to swim for 8 weeks at an exercise

intensity of 30% of the absolute critical swimming speed (Ucrit), aiming to explore the benefi-

cial effects and underlying mechanisms of regular exercise on alcoholic myopathy. This

study found that regular exercise inhibited protein degradation, improved locomotion ability,

and increased muscle fiber cross-sectional area (CSA) in ethanol-treated zebrafish. In addi-

tion, regular exercise increases the functional activity of mitochondrial respiratory chain

(MRC) complexes and upregulates the expression levels of MRC complexes. Regular exer-

cise can also improve oxidative stress and mitochondrial dynamics in zebrafish skeletal

muscle induced by ethanol. Additionally, regular exercise can activate mitochondrial biogen-

esis and inhibit mitochondrial unfolded protein response (UPRmt). Together, our results

suggest regular exercise is an effective intervention strategy to improve mitochondrial

homeostasis to attenuate alcoholic myopathy.

Introduction

Skeletal muscle is about 40% of body weight and is crucial in protein storage and physical

movement [1]. Alcohol is the most commonly consumed beverage worldwide, and excessive

alcohol consumption can lead to pathological changes in the skeletal muscle, known as alco-

holic myopathy [2–4]. Alcoholic myopathy, characterized by skeletal muscle atrophy and loss

of muscle strength, occurs in 40% to 60% of chronic alcoholics [5]. However, the methods and

mechanisms for treating alcoholic myopathy remain unclear. Therefore, it is crucial to find
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ways to alleviate or prevent alcoholic myopathy and to study its underlying molecular

mechanisms.

Mitochondria generate ATP through oxidative phosphorylation (OXPHOS) of the mito-

chondrial respiratory chain (MRC), therefore, MRC is critical for skeletal muscle force genera-

tion and maintenance of muscle mass [6]. MRC complexes I, II, and IV function was

significantly reduced in myotubes treated with ethanol [7]. Furthermore, the activity of MRC

complexes I and III was significantly reduced in ethanol-fed mice [8]. Mitochondria are

dynamic organelles that require the coordination of multiple processes (including mitochon-

drial dynamics, mitochondrial biogenesis, and the mitochondrial unfolded protein response)

to maintain mitochondrial homeostasis for normal mitochondrial function [9, 10]. The regula-

tion of mitochondrial dynamics is dependent on the processes of mitochondrial fission and

fusion, which have an impact on the shape, size, and quantity of mitochondria [11]. Mitochon-

drial dynamics imbalance and symptoms of alcoholic myopathy are observed in both alcohol-

fed Caenorhabditis elegans and rats [12, 13]. Mitochondrial biogenesis is a crucial process for

maintaining the quality of mitochondria, as it aids in replacing damaged mitochondria and

preserving their function [14]. Peroxisome proliferators γ activated receptor coactivator 1α
(PGC1α) is a crucial transcriptional regulator of mitochondrial biogenesis, which coordinately

regulates mitochondrial biogenesis by activating nuclear respiratory factor 2 (NRF2) [14]. In

mice with alcoholic liver disease, the expression of PGC1α and NRF2 is down-regulated, and

the mitochondrial function is impaired [15, 16]. Mitochondrial unfolded protein response

(UPRmt) is a stress response mechanism that aids in maintaining mitochondrial homeostasis

and cellular function [17]. In the skeletal muscle of men with chronic alcoholism, the mRNA

expression of the UPRmt marker was significantly increased, and skeletal muscle protein

metabolism was disturbed [18].

Regular exercise is a common approach to improving skeletal muscle myopathy, maintain-

ing mitochondrial homeostasis, and enhancing mitochondrial function [19–21]. Specifically,

regular exercise increases mitochondrial cristae density in athletes and the content of MRC

complexes I, III, and IV in the skeletal muscle of older adults [22, 23]. In addition, regular exer-

cise can also activate mitochondrial biogenesis and fusion in skeletal muscle [24, 25]. More-

over, regular exercise can improve alcohol-induced decline in liver mitochondrial function

and myocardial oxidative damage [26, 27]. However, the effects of regular exercise on alcoholic

myopathy are still unclear. In a previous study, we successfully established an alcoholic myopa-

thy model by soaking zebrafish in 0.5% ethanol [5]. Therefore, the objective of this study was

to investigate the effects of exercise on alcoholic myopathy and to gain a better understanding

of its underlying mechanism.

Materials and methods

Animal and treatment

In this study, a total of 75 male AB line zebrafish were selected at the age of 8 months and

divided into three groups: control group (CON, n = 25), ethanol treatment group (ET, n = 25),

and ethanol treatment combined with exercise group (ET-E, n = 25). The CON zebrafish were

raised in tank water, and the ET and the ET-E zebrafish were raised in a 0.5% ethanol solution.

The ET-E zebrafish trained 5 days a week, the swimming intensity was 30% Ucrit, and the

swimming time was 2 h/day for 8 weeks. The ET and the ET-E were placed in clean water two

hours before and after exercise. The water or 0.5% ethanol solution was replaced every 24

hours, and the ethanol concentration of the ethanol solution was monitored daily. To prevent

the acute effects of the last exercise session, tissue sampling was performed 60 hours after the

last exercise session. Hunan Normal University’s Laboratory Animal Ethics Committee
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approved this study (No. 2018–046). To reduce pain during sacrifice, zebrafish were anesthe-

tized using tricaine anesthetic. All animal experiments were performed using all possible meth-

ods to reduce or minimize potential pain.

Zebrafish determination of athletic ability and maximum oxygen uptake

(MO2max)

Ucrit is the highest continuous swimming speed and is an essential indicator of a zebrafish’s

’exercise ability’. Zebrafish Ucrit and MO2max measurements were performed in a miniature

variable-speed lane respirator (Loligo Systems, Tjele, Denmark). First, the zebrafish’s body

length and weight were measured and fasted for 24 hours. Subsequently, adaptive training was

performed in the swimming lane of the respirator for 2 hours at a speed of 0.8 (BL/S), and the

water speed was gradually increased at a speed increment of 1.35 (BL/S) every 7 min until the

zebrafish reached a state of exhaustion. Finally, calculate the critical swimming speed accord-

ing to the formula Ucrit = Uf+Us×(Tf/Ts), where Uf is the exhaustion swimming speed; Us is

the speed increment; Tf is the time for the highest speed increment; Ts is the time interval. To

eliminate the influence of zebrafish body length on swimming speed, the relative critical swim-

ming speed (Ucrit-r) is used to calculate the maximum swimming speed of zebrafish, and the

calculation formula is Ucrit-r = Ucrit/BL. Maximum oxygen uptake was calculated according

to the formula MO2 = SMR + aU2 BL + bUBL, SMR (standard metabolic rate) represents the

minimum oxygen consumption required by zebrafish at rest; UBL represents real-time swim-

ming speed/body length; a and b are constants.

Hematoxylin and eosin (HE) staining

The zebrafish were anesthetized with tricaine, and the skeletal muscle was quickly removed

and fixed in paraformaldehyde for 24 h, and then washed, dehydrated, transparent, paraffin-

penetrated, embedded, and sectioned to make paraffin sections with a thickness about 8 μm.

Moreover, carry out HE staining. Observe the HE staining results with an imaging system. The

CSA of muscle fibers was calculated using ImageJ software.

Dihydroethidium (DHE) staining

To analyze skeletal muscle sections, DHE (Thermo Fisher Scientific, USA) was freshly pre-

pared and incubated with the sections for 30 minutes at 37˚C in the dark. Nuclei were stained

with DAPI for further examination. ROS-positive areas were indicated in red. We acquired

images using a fluorescence microscope and quantified fluorescence intensity using ImageJ

software.

Transmission electron microscope (TEM) detection

The soaked electron microscope samples were stored at 4˚C, fixed with 1% osmic acid, dehy-

drated, soaked, embedded, and ultra-thin sectioned, and observed and filmed using a trans-

mission electron microscope (Hitachi H2600) at 5,000 to 20,000 magnifications.

Mitochondrial oxygen consumption test

Mitochondrial respiration parameters in the zebrafish skeletal muscle of each group were mea-

sured using a high resolution Oxygraph 2k (O2K) ventilator and processed using DatLab 6.2

software (Oroboros Instruments GmbH, Innsbruck, Austria). First, we took 5 mg of fresh zeb-

rafish skeletal muscle tissue, added 500 ul mitochondrial respiratory fluid, ground it evenly,

added it to the respiratory chamber, covered it to ensure no air bubbles, and absorbed the
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excess liquid on the lid. Once the respiration rate (red line) had stabilized, substrates for mito-

chondrial complex pyruvate, malate, and glutamate were added to achieve the peak value of

complex I. After equilibrating the red line of the respiration rate, add Cytochrome c to verify

the integrity of the mitochondrial membrane. After the red line of respiration rate equilibrated,

succinate, the substrate of complex II, was added. Maximum oxidative phosphorylation values

for complexes I and II were obtained. After the red line of the respiration rate was equilibrated,

the uncoupler CCCP was added. The maximum electron transport capacity values for com-

plexes I and II were obtained. After the red line of respiration rate was equilibrated, the com-

plex I inhibitor rotenone was added. We thus obtained the maximum electron transport

capacity value for complex II. After stabilizing the red line of the respiration rate, we added

antimycin A, which is an inhibitor of complex III. This allowed us to obtain the residual non-

mitochondrial respiration value.

Quantitative real-time PCR

TRIZOL solution (ThermoFisher Scientific, Waltham, MA, USA) was used for RNA extraction

from zebrafish muscle. cDNA was synthesized by reverse transcription of 1 ug RNA using a

PrimeScript RT Master Mix (Kusatsu, Shiga, Japan). Quantitative real-time PCR used a SYBR

Green PCR kit (Takara). Relative mRNA expression was measured using GAPDH as an inter-

nal control and calculated by the 2-ΔΔCT method. The primer sequences used are listed in S1

Table.

Western blotting

The Western blotting protocol was consistent with the one previously described [5]. Informa-

tion on the antibodies used is presented in S2 Table.

Data analysis

Statistical analysis was performed using GraphPad Prism 9 software, and statistical differences

were determined by ANOVA. Differences were considered significant if the P value was less

than 0.05.

Results

Regular exercise ameliorates alcoholic myopathy in ET zebrafish

Decreased muscle weight and muscle fibers CSA are skeletal muscle myopathy’s most promi-

nent histopathological features [28, 29]. The body weight and muscle mass/body weight (%) in

ET zebrafish were significantly lower than the CON, while regular exercise attenuated ET zeb-

rafish loss of body weight and skeletal muscle (Fig 1A and 1B). HE staining and Transmission

electron microscope (TEM) results show that regular exercise decreased muscle fiber spacing,

increased the muscle fiber CSA, and improved the disorder of muscle fiber arrangement in ET

zebrafish (Fig 1C and 1D). In addition, the proportion of 1101–1400 um2 fibers in the CON

was the highest, while the distribution of 801–1100 um2 fibers was the highest in the ET and

ET-E groups (Fig 1E).

Regular exercise improves the exercise ability of ET zebrafish

The exercise ability of zebrafish was measured by a swimming tunnel respirator. Compared

with the CON, the absolute critical swimming speed (Ucrit), relative critical swimming speed

(Ucrit-r), and maximal oxygen uptake (MO2max) in ET zebrafish were significantly reduced,

while regular exercise improved the exercise ability of ET zebrafish (Fig 2A–2C).
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Fig 1. Regular exercise increases ET zebrafish’s muscle fiber CSA and improves skeletal muscle arrangement. (A)

Zebrafish body weight (g), n = 25. (B) Skeletal muscle mass to body weight (%), n = 25. (C) HE staining and TEM

imaging of skeletal muscle cross-section. (D) Skeletal muscle fiber’s CSA statistics were produced using ImageJ, n = 3.

(E) Frequency distribution of muscle fiber area (%). Data are presented as mean ± SD; *P<0.05, **P<0.01,

***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g001
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Regular exercise inhibits protein degradation in ET zebrafish

The proximate cause of alcoholic myopathy is the imbalance between the synthesis and break-

down of protein [30–32]. However, in previous studies, there were no changes in the skeletal

muscle protein synthesis signaling pathway (IGF1/PI3K/AKT) in ET zebrafish compared with

CON (S1 Fig). The degradation of protein is intricately linked to the ubiquitin-proteasome sys-

tem (UPS) and autophagy-lysosome system (ALS) [33, 34]. Two E3 ligases: muscle RING fin-

ger 1 (MuRF1)/TRIM63, muscle atrophy F-box (MAFbx)/FBXO32, autophagy factor Beclin1,

and autophagy receptor P62 are the core factors of UPS and ALS, respectively [28]. The

mRNA and protein expression levels of Fbxo32, Murf1, and Beclin1 were upregulated in ET

zebrafish skeletal muscle. However, this upregulation was suppressed by regular exercise (Fig

3A–3C). In addition, regular exercise inhibited a decrease in the expression levels of the P62 in

ET zebrafish (Fig 3A and 3C).

Regular exercise improves mitochondrial function in the skeletal muscle of

ET zebrafish

To better characterize the effects of regular exercise on mitochondrial function in ET zebrafish,

we assessed the activity and content of MRC complexes. The ET zebrafish functional activity

of MRC complexes I, I+II, and maximal electron transport chain was reduced compared with

CON; however, regular exercise reduced the adverse effects of alcohol on MRC functional

activity (Fig 4A and 4B). In addition, regular exercise prevented the decreased mRNA and pro-

tein levels of MRC complexes I, II, III, and V in ET zebrafish skeletal muscle (Fig 4C and 4D).

Regular exercise improves oxidative stress and UPRmt of the skeletal

muscle in ET zebrafish

The impaired function of MRC complexes leads to increases the production of reactive oxygen

species (ROS), which in turn causes oxidative stress and damage to the MRC [35]. Assessing

the level of ROS in skeletal muscle via DHE staining, we found that the ROS content of ET zeb-

rafish was higher than that of the CON, and regular exercise reversed the increment of ROS in

Fig 2. Regular exercise improves locomotion ability in ET zebrafish. (A) Zebrafish Ucrit (cm/s). (B) Zebrafish ucrit-r (bl/s). (C) Zebrafish MO2max

(mmol/kg/h). Data are presented as mean ± SD; n = 25; *P<0.05, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g002

PLOS ONE No

PLOS ONE | https://doi.org/10.1371/journal.pone.0294700 November 30, 2023 6 / 17

https://doi.org/10.1371/journal.pone.0294700.g002
https://doi.org/10.1371/journal.pone.0294700


ET zebrafish (Fig 5A and 5B). NADPH oxidase (NOX) is another non-mitochondrial pathway

for ROS generation, and superoxide dismutase (SOD) is the main pathway for clearing ROS

[36, 37]. The mRNA expression levels of sod2 were decreased in ET zebrafish, while the

mRNA and protein expression levels of Nox2 and Nox4 were significantly increased; however,

Fig 3. Regular exercise suppresses elevated UPS and ALS in the skeletal muscle of ET zebrafish. (A) mRNA expression of UPS and ALS-

related genes in skeletal muscle, n = 6. (B) Murf1 and Fbxo32 protein blotting and quantitative analysis, n = 3. (C) Beclin1 and P62 protein levels

in skeletal muscle, n = 3. Data are presented as mean ± SD, *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g003
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Fig 4. Regular exercise improves activity and content in MRC complexes of skeletal muscle in ET zebrafish. (A)

Oxygen consumption curves and mitochondrial oxygen flux as they vary over time following the introduction of different

substrates or inhibitors. (B) Oxygen consumption rates (OCR) of mitochondrial complex I, as well as the combined rates

of complex I and II, and the maximal activity of the electron transport chain, n = 6. (C) mRNA expression levels of

subunits of MRC complexes I (ndufa9a), II (sdha), III (uqcrc2b), IV (cox5aa), and V (atp5f1b), n = 6. (D) Protein levels of
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these ethanol-induced adverse effects were reversed by regular exercise (Fig 5C and 5D).

Excessive ROS in vivo interferes with protein folding in mitochondria, triggering the UPRmt,

thereby reestablishing mitochondria protein homeostasis [38]. Compared with the CON, the

mRNA expressions of lonp1, clpp, hspd1, and hspa9 in UPRmt-related genes of ET zebrafish

skeletal muscle were significantly increased, and regular exercise decreased the mRNA expres-

sion of UPRmt-related genes in ET zebrafish (Fig 5E).

Regular exercise improves mitochondrial morphology and maintains

mitochondrial dynamics in ET zebrafish

To obtain a more direct observation of mitochondria, upon examining the mitochondrial

morphology of zebrafish skeletal muscle through TEM, it was observed that the mitochondrial

cristae were disordered in their arrangement in ET zebrafish. Exercise improved the mito-

chondrial morphology and enriched the mitochondrial cristae in ET zebrafish (Fig 6A). In

addition, We analyzed mitochondrial fission and fusion factors. The results showed that in ET

zebrafish skeletal muscle, the mRNA and protein expression of fission factors Drp1, Mff, and

Fis1 were increased as compared CON. Regular exercise reversed the increase in levels of mito-

chondrial fission in ET zebrafish (Fig 6B and 6C). In addition, Regular exercise increased the

mRNA expression of fusion factor opa1 and mfn1a, as well as the protein levels of Opa1 and

Mfn2 in the skeletal muscle of ET zebrafish (Fig 6B and 6D).

Regular exercise upregulates mitochondrial biogenesis signaling in ET

zebrafish

The role of the PGC1α/NRF2 signaling pathway in mitochondrial biogenesis is well estab-

lished [39]. To investigate this, we conducted an analysis of expression levels of Pgc1α and

Nrf2. The results showed that both the mRNA and protein levels of Pgc1α and Nrf2 were sig-

nificantly lower in the ET zebrafish compared to the CON. However, regular exercise

increased the expression levels of both Pgc1α and Nrf2 mRNA and protein in ET zebrafish

(Fig 7A and 7B).

Discussion

As the most common skeletal muscle disease, alcoholic myopathy still lacks an effective means

of improvement. This study provides a comprehensive experiment that demonstrates how reg-

ular exercise can improve zebrafish alcoholic myopathy by regulating mitochondrial homeo-

stasis. Specifically, regular exercise can increase muscle fiber CSA and exercise capacity,

reduce oxidative stress, and slow down protein degradation. Moreover, regular exercise can

improve mitochondrial dynamic imbalance and mitochondrial structural disorder, slow down

UPRmt, increase the activity and content of MRC complexes, and activate mitochondrial

biogenesis.

Loss of skeletal muscle mass, decreased muscle fiber CSA, and reduced exercise capacity are

common features of alcoholic myopathy [40]. Regular exercise significantly improved body

weight, muscle fiber CSA, and exercise capacity in ET zebrafish. This is similar to the results

wherein regular exercise improved skeletal muscle atrophy caused by kidney disease [41]. This

shows that regular exercise can effectively improve alcoholic myopathy. In cases of skeletal

subunits of MRC complexes I (Ndufb8), II (Sdhb), III (Uqcrc2), and V (Atp5a1), n = 3. Data are presented as mean ± SD;

*P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g004
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Fig 5. Regular exercise improves ethanol-induced oxidative stress and UPRmt. (A) DHE staining the muscle tissue. (B)

Quantitative analysis of skeletal muscle ROS, n = 3. (C) The mRNA expression of skeletal muscle oxidase nox2, nox4, and antioxidant

enzyme sod2, n = 6. (D) Protein levels of oxidase Nox2, Nox4, n = 3. (E) UPRmt-related genes mRNA expression levels of lonp1, clpp,

hspd1, and hspa9, n = 6. Data are presented as mean ± SD; *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g005
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Fig 6. Regular exercise improves mitochondrial morphology and regulates mitochondrial dynamics in ET

zebrafish. (A) TEM imaging of muscle tissue mitochondria. (B) mRNA expression levels of genes related to

mitochondrial dynamics, n = 6. (C) Western blot of mitochondrial fission-related proteins’ banding and quantitative

analysis, n = 3. (D) Western blot of banding and quantitative analysis of mitochondrial fusion-related proteins, n = 3.

Data are presented as mean ± SD;*P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g006
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muscle myopathy, including alcoholic myopathy, proteolysis is mainly controlled by two sys-

tems: UPS and ALS [42, 43]. In this study, regular exercise inhibited the increased expression

of UPS and ALS markers in ET zebrafish skeletal muscle. Illustrates that regular exercise

improves alcoholic myopathy by inhibiting UPS and ALS.

The maintenance of skeletal muscle mass and function is highly dependent on the integrity

of the MRC [44]. In denervated skeletal muscle atrophy, MRC complexes I, II, and IV activity

is significantly reduced [45]. The content of the MRC complex elevates with the increase in

human skeletal muscle exercise [22]. Our results demonstrate that regular exercise improves

the activity and content of MRC complexes in ET zebrafish. This suggests that regular exercise

could potentially aid in improving alcoholic myopathy by restoring the activity and content of

MRC complexes. Damage to mitochondrial dynamics may lead to impaired MRC function

[46]. Our study found that regular exercise improved both the structure and function of the

skeletal muscle mitochondria in ET zebrafish. This improvement in mitochondria function

may be attributed to the dynamic changes that occurred.

The reduced activity of MRC complexes I and III led to increased production of mitochon-

drial ROS, which impaired mitochondrial function [47, 48]. The observed increase in ROS lev-

els in this study may be attributed to damage in the MRC. Excessive accumulation of ROS can

further aggravate MRC damage and activate NOX, leading to increased ROS generation

through ROS-induced ROS release [49, 50]. We found that ET zebrafish skeletal muscle

decreased antioxidant levels and increased oxidation levels, possibly caused by increased mito-

chondrial ROS generation. According to previous studies, regular exercise has been shown to

increase skeletal muscle’s antioxidant capacity and decrease ROS generation and protein deg-

radation [51]. Our findings are in line with these studies, as we observed a significant

Fig 7. Regular exercise upregulates PGC1α/NRF2 signaling in ET zebrafish. (A) Expression levels of pgc1α and nrf2
mRNA in zebrafish, n = 6. (B) Western blot and quantitative analysis of Pgc1α and Nrf2 in skeletal muscle, n = 3. Data

are presented as mean ± SD; *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0294700.g007
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improvement in the redox balance of ET zebrafish through regular exercise, this was evident

through a decrease in ROS content and oxidation capacity and an increase in antioxidant

capacity.

The UPRmt is activated in response to a loss of mitochondrial proteostasis [52]. UPRmt

activation promotes mitochondrial repair and helps maintain cellular function. Our study

found that the markers of UPRmt were also increased in ET zebrafish skeletal muscle, possibly

due to damage to the MRC or increased generation of skeletal muscle ROS. However, despite

alcohol activating UPRmt, restoration of UPRmt was found to be insufficient in maintaining

mitochondrial homeostasis. We also found that regular exercise attenuated ethanol-induced

UPRmt in zebrafish. Paradoxically, high-intensity exercise activates UPRmt in the skeletal

muscle of aged mice, and this difference may be due to varying exercise intensity [53].

Mitochondrial dynamics are critical for reducing sarcopenia, maintaining the balance of

skeletal muscle protein metabolism, and the health of mitochondria [54, 55]. Research has

shown that inhibiting mitochondria fission can prevent muscle atrophy, conversely, specific

overexpression of the fission factor Drp1 in muscle can result in loss of muscle mass and

decreased exercise performance [56]. In addition, alcoholic liver disease patients have reduced

circumference and area of skeletal muscle mitochondria, and alcohol also increases the expres-

sion of fission factors in epithelial cells [57, 58]. Regular exercise can improve aging to induced

sarcopenia by promoting mitochondrial fusion and inhibiting fission [59]. Our research

results suggest that ET zebrafish have a shifted mitochondrial dynamics balance towards fis-

sion. However, regular exercise can promote mitochondrial fusion, and inhibit mitochondrial

fission.

Mitochondrial biogenesis cooperates to maintain mitochondrial homeostasis and muscle

mass [60, 61]. However, aging skeletal muscle experiences decreased levels of PGC1α,

impaired MRC function, and muscle atrophy [62]. However, increased expression of PGC1α
can inhibit the function of UPS and ALS, thus alleviating disuse muscle atrophy [63, 64]. Regu-

lar exercise can activate skeletal muscle mitochondrial biogenesis and improve skeletal muscle

function and sarcopenic phenotype in aged mice [24, 65]. In this study, regular exercise signifi-

cantly upregulated PGC1α/NRF2 signaling, indicating that regular exercise can activate mito-

chondrial biogenesis in ET zebrafish. However, this study still has some limitations. First of all,

due to funding and technical reasons, this study only reported that exercise can improve alco-

holic myopathy in male zebrafish, and did not conduct detailed verification and analysis of its

specific mechanism. Second, we did not explore which muscle fiber types were specifically

improved by exercise. Next, we will use omics and CRISPR/Cas9 technology to explore and

verify the specific molecular mechanism.

In conclusion, regular exercise improves skeletal muscle oxidative stress and mitochondrial

function and maintains mitochondrial homeostasis, inhibiting protein degradation and atten-

uating ethanol-induced alcoholic myopathy. This provides new targets and ideas for prevent-

ing and treating alcoholic myopathy.
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