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Abstract

Within drug discovery, the goal of AI scientists and cheminformaticians is to help identify molecular starting points that will develop
into safe and efficacious drugs while reducing costs, time and failure rates. To achieve this goal, it is crucial to represent molecules in
a digital format that makes them machine-readable and facilitates the accurate prediction of properties that drive decision-making.
Over the years, molecular representations have evolved from intuitive and human-readable formats to bespoke numerical descriptors
and fingerprints, and now to learned representations that capture patterns and salient features across vast chemical spaces. Among
these, sequence-based and graph-based representations of small molecules have become highly popular. However, each approach
has strengths and weaknesses across dimensions such as generality, computational cost, inversibility for generative applications and
interpretability, which can be critical in informing practitioners’ decisions. As the drug discovery landscape evolves, opportunities
for innovation continue to emerge. These include the creation of molecular representations for high-value, low-data regimes, the
distillation of broader biological and chemical knowledge into novel learned representations and the modeling of up-and-coming
therapeutic modalities.
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DIGITAL FORMATS FOR SMALL MOLECULES
Describing molecules has taken many forms throughout history
and disciplines. Initially, uniquely naming molecules with ‘com-
mon names’ was sufficient. Understanding the atomic makeup of
molecules enabled a systematic designation of common moieties
and their positions on molecular graphs. In 1919, the International
Union of Pure and Applied Chemistry (IUPAC) was formed to
standardize chemical nomenclature and terminology, devising
a ‘preferred IUPAC name’ for molecules [1]. While this nomen-
clature permits a thorough description of molecules, it can be
difficult to understand and requires an encyclopedic knowledge
of chemical moieties, naming conventions and syntax. Alternative
formats better suited for computers [2] soon appeared to com-
pactly and accurately capture compounds of different sizes with
specializations for small molecules, macromolecules, polymers
and crystals. Currently, the choice of format is vast, with the open-
source Open Babel program supporting 146 different molecular
formats. Formats fall broadly into two categories: molecular-
graph-based formats and 3D molecular formats.

A popular molecular-graph-based format is Simplified Molecular-
Input Line-Entry System (SMILES) [3], which represents molecules
as a string of characters. For example, the popular drug
acetaminophen can be represented in SMILES format as ‘CC(=O)
Nc1ccc(O)cc1’. This format has the advantage of being easily
human- (with practice) and machine-readable. However, there

are multiple synonymous ways to write the same molecule
using this format. One can define rules to select the ‘canonical’
SMILES representation of a molecule, but different toolkits often
have different rulesets, which can complicate comparisons.
Extensions and alternatives to the SMILES format were developed,
including SMARTS, SMIRKS, OpenSMILES, SYBYL Line Notation [4]
and, recently, SELFIES [5]. IUPAC also created the InChI format
[6]. This hierarchical string format is difficult for humans to
interpret, but easily machine-readable, comprising distinct layers
of information, including charge, stereochemistry and isotope
information.

Molecular-graph-based formats do not typically include
specific spatial information of the atoms besides connectivity.
3D molecular formats [7], such as MOL and MOL2, describe
atoms and their positions in Euclidean space, often accompanied
by additional information such as partial charge. Wigh et al.
[8] provide a comprehensive breakdown of the MOL and
related Chemical Table (CTAB) formats. While the MOL and
MOL2 formats are comparable in terms of size, metadata
and human readability, MOL is more widespread, often with
multiple molecules in MOL format concatenated into a single
Structure Data File (SDF) file. SDF is a very popular approach
for representing small molecules with 3D information outside
of crystallography, molecular dynamics and other specialized
disciplines.
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Table 1: Comparison of different formats for digital representation of molecules

Qualities captured Examples Encoding efficiency Human-readable?

Connectivity
The most compact and simple way to
represent a molecule with
atom/group connectivity information.

IUPAC name,
SMILES, SMARTS, InChI

Low storage requirements. Low
encoding efficiency. Little
information captured besides
connectivity.

Readable.

Atom connectivity and 3D
conformation
The most common 3D small
molecule file storage formats.
Requiring potentially costly
conformation generation steps to
move from connectivity
representations to 3D molecules.

MOL, MOL2, PDB, SDF, CTAB High storage requirements,
potentially suboptimal ASCII text
in a structured format containing
repeats; may be compressed.

Not easily read. Conversion to
connectivity formats for
visualization is preferred.

Molecular descriptors
Basic computable properties of a
molecule, like the MW, number of
hydrogen bond acceptors/donors, etc.
Useful in filtering and applying
rulesets.

MW, logP, 3D descriptors like
USRCAT [9] and FEPOPS [10]

Low storage requirements,
although often suboptimal because
of correlated descriptors.

Yes; particularly useful to drive
Med Chem decision-making, with
their inclusion in many rules of
thumb, like Lipinski’s Ro5 [11] and
QED [12].

Fingerprints
Powerful molecular representations
of molecules traditionally used in
QSAR studies and early AI/ML
cheminformatics [13]. The popular
ECFP4 fingerprint was used
extensively in QSAR studies

FP4, MACCS [14], Morgan, ECFP [15],
FCFP, MinHashed [16]

Low storage requirements; efficient
encoding historically used for
catalog searching using fingerprint
lookups.

No; while decoding of bit
information may be possible
indicating feature presence (not
connectivity), bit strings are often
folded to a certain length and then
encoded to integers.

Learned representations
The broadest family, typically using
real numbers to describe a molecule
and its predicted properties.

Graph-based and latent space
embeddings

Low to medium storage
requirements. Often correlated
features inflate storage
requirements.

No; used to encode molecules in
often abstract ways for comparison
using tuned distance/similarity
functions.

As the field of computational drug discovery matured, various
ways to feed molecules into mathematical models were explored
(Table 1). Often these approaches only leverage molecular con-
nectivity information, since structural and dynamic information
can be expensive to measure or compute and increases storage
requirements. In the early days of the cheminformatics and QSAR
fields, hand-crafted designer encodings were invented, such as
molecular descriptors and fingerprints (section Bespoke Repre-
sentations). With the advent and rise of deep learning since the
2010s, these approaches have been complemented by learned rep-
resentations that can directly ingest strings (e.g. SMILES) or molec-
ular graphs (section Learned Representations). Currently, SMILES
and graph encodings have become the standard representation of
small molecules for use in neural network models. But this is not
the end of the story: there is ample room for improvement, and
conventional small molecules are only a portion of the growing
chemical space of pharmaceutical interest (section Conclusions).

BESPOKE REPRESENTATIONS
Molecular descriptors are numerical representations of small
molecules computed using predefined rules and enable mathe-
matical modeling. The development of molecular descriptors has
gone through a relatively long evolution [17–19]. Since the 1960s,
descriptors have been proposed to extract quantitative relation-
ships between chemical structure and properties (QSAR), starting
with intuitive physicochemical descriptors such as molecular
weight (MW) and logP, and topological descriptors [17] that suc-
cessfully contributed to ubiquitous medicinal chemistry rulesets
like Lipinkski’s Rule of 5 for predicting oral availability [20] and
other extended rulesets targeting prediction of lead-likeness [21].

Later on, researchers devised more complex E-state electrical
descriptors and topological autocorrelation descriptors [22, 23],
which capture the underlying structure of the molecule along
with physicochemical properties. As computer technology devel-
oped, more molecular descriptors were proposed, such as atom-
pair descriptors and computationally demanding molecular elec-
trostatic potentials [24–27], which aim to capture fields surround-
ing molecules that would be experienced or interacted with by
another molecule upon binding [27]. By 2000, thousands of molec-
ular descriptors had been proposed, as summarized by Todeschini
and Consonni [19].

The calculation of molecular descriptors mainly relies on spe-
cialized software packages (Table 2). These generally emerged
from one of three popular programming languages: C++, Java
and R. RDKit, a C++-based package with an extensively used
and ever popular Python interface, provides numerous molecu-
lar operations and can currently calculate 208 descriptors and
5 fingerprints. Many cheminformatic packages build on RDKit,
including Chemopy [28], PyDPI [29] and PyBioMed [30]. Others
extend existing functionality to generate new descriptors such
as MACAW [31], whereas others, like Mordred, generate popular
descriptors en masse. In 2003, Chemistry Development Kit (CDK)
[32] was developed in Java, which currently allows calculation of
275 common molecular descriptors and 9 fingerprints. BlueDesc,
jCompoundMapper [33] and MOLD2 [34] were later developed,
leveraging CDK as the underlying molecular engine for descriptor
generation, along with PaDEL [35], which benefits from a user-
friendly interface that popularized its use. Built in the R program-
ming language; Rcpi [36] was developed to model relationships
between compounds and proteins and allows generating more
than 300 small-molecule descriptors. Based on Rcpi, BioMedR
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Table 2: Examples of common software and webservers used for computing molecular descriptors. ‘Year’ means the date of first
release

Name Year No.
of descriptors

No. of
fingerprints

Link Ref.

Dragon 1997 5270 (v.7.0) – http://www.talete.mi.it/
CDK 2003 275 9 https://cdk.github.io/ [32]
BlueDesc 2003 174 – http://www.ra.cs.uni-tuebingen.de/

software/bluedesc/
Mold2 2008 779 – https://www.fda.gov/science-research/

bioinformatics-tools/mold2
[34]

Pybel 2008 24 4 https://github.com/pybel/pybel [57]
PaDEL 2011 1875 12 https://github.com/ecrl/padelpy [35]
RDKit 2013 196 8 https://www.rdkit.org/
PyDPI 2013 615 7 https://pypi.org/project/pydpi/ [29]
Chemopy 2013 1135 7 https://github.com/ifyoungnet/Chemopy [28]
Rcpi 2015 308 10 http://bioconductor.org/packages/

release/bioc/html/Rcpi.html
[36]

Mordred 2018 1825 – https://github.com/mordred-descriptor/
mordred

[58]

PyBioMed 2018 775 (9920 protein
descriptors, 6000
DNA/RNA descriptors)

19 https://github.com/gadsbyfly/PyBioMed [30]

alvaDesc 2019 5666 (v.2.0.16) 3 https://www.alvascience.com/alvadesc/ [59]
BioMedR 2021 293 (9920 protein

descriptors, 6000
DNA/RNA descriptors)

13 https://github.com/wind22zhu/BioMedR [37]

E-dragon 2005 1600 – http://www.vcclab.org/lab/edragon/
ChemDes 2015 3679 59 http://www.scbdd.com/chemdes [38]
BioTriangle 2016 540 (9890 protein

descriptors, 6376
DNA/RNA descriptors)

7 http://biotriangle.scbdd.com [39]

ChemSAR 2017 783 10 http://chemsar.scbdd.com [60]

was extended to describe nucleic acids [37]. Commercial software
such as Alvascience alvaDesc, CCG MOE, BIOVIA Discovery Stu-
dio, Schrodinger and SYBYL also provide descriptor generation
capabilities, whereas software like ADMEWorks ModelBuilder and
PreADMET allow generating descriptors as well as building QSAR
models. Besides standalone software, descriptors can also be
obtained through webservers such as E-Dragon, ChemDes [38] and
BioTriangle [39], or databases with precomputed descriptors, such
as PubChem, ChEMBL and DrugBank.

In practice, each tool has its own advantages and disadvan-
tages. Commercial software offers high stability but requires the
purchase of a license. While many standalone packages are highly
flexible and can be integrated into drug discovery pipelines, they
rely on specific runtime environments and often require program-
ming knowledge. The use of webservers does not require program-
ming knowledge, which expands their user base. However, their
calculation processes are often a black box and throughput is
limited by the network and server capabilities. While convenient
to use in industrial production environments, cutting edge science
will benefit from complete control over processes, which we see in
the growing adoption of open source software and FAIR principles
[40, 41].

Over time, descriptors were increasingly used for quantitative
relationship studies on various compounds and their interactions
with target proteins [42, 43]. They are also commonly used to
calculate and predict basic small molecule properties including
ADMET and synthetic accessibility [44] profiles, serving to dras-
tically reduce in silico search spaces and the number of com-
pounds that need to be synthesized. Arguably, their most powerful
use is enabled by the ‘molecular similarity principle’ [45], which

states that similar molecules should make similar interactions,
allowing the retrieval of potential actives based on known actives
and enabling further hit expansion, SAR exploration and scaf-
fold hopping [46–48] in order to replace core scaffolds, access
new chemistries, change pharmacokinetics, toxicity profiles and
chemical space. Further uses include database retrieval, QSAR,
molecular docking and structure/pharmacophore visualization
for rational drug design [46–49]. Since the advent of machine
learning, descriptors have been used as a method of molecular
encoding or ‘featurization’ and still offer state-of-the-art perfor-
mance in many applications as is evidenced in the literature
and AI/ML competitions with teams working to score highly in
benchmarks such as MoleculeNet [50].

Fingerprints can be considered a subtype of descriptors. They
initially represented molecules using bitstrings based on features
present within molecules. The distinction is blurry; however, as
many descriptors use binary elements to describe a molecule
mixed with more complex data types (e.g. FEPOPS [10]). Compared
with other molecular descriptors, fingerprints have some desir-
able characteristics: (i) they are computed and scored/compared
using fast and very robust algorithms, (ii) they encode molecules
into fixed-sized, information-rich vectors and (iii) powerful finger-
print generators are freely available in software like RDKit. With
thousands of descriptors available, feature cleaning and selection
can be tedious, making fingerprints a good plug-and-play option
to expedite modeling.

Interestingly, quantum machine learning (QML) models are
gaining popularity in predicting chemical properties because of
their increasing speed and the possibility of generating rich data
from first principles to describe molecules in models [51, 52].
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Property-based QML models such as AlphaQ [53] used the RHF/6-
31G∗∗ level of theory to calculate 3D distribution of electrostatic
potential in a molecule and used this to train a highly performing
neural in the prediction of blood–brain barrier permeability. As
an example of a wave-function-based QM model, Schütt et al. [54]
used atom types and positions as input to a deep neural network
to construct representations of the chemical environments of
>100 atoms, from which molecular properties such as HF ener-
gies, charge populations, bond orders and dipole moments could
be obtained. Both property-based and wave-function-based QML
models require QM calculation of the input chemical structures,
thus, their speed is mainly determined by the computation cost
of the level of QM theory incorporated in models. Advances in
quantum computing could popularize the application of these
and other approaches [55]. In contrast, delta-QML approaches
such as DelFTa [56] use 3D message-passing neural networks
to replace expensive calculations in density functional theory
(DFT) by computationally inexpensive GFN2-xTB approximations,
achieving very high speed in estimating molecular properties with
DFT accuracy. We believe they could open novel possibilities for
molecular representation and property modeling in drug discov-
ery, building more accurate models for the early attempts at cap-
turing electrostatics and field information to encode molecules.

LEARNED REPRESENTATIONS
The application of machine learning methods to problems in drug
discovery is exploding, with impacts seen across structure-based
virtual screening, molecular property prediction and molecular
similarity. As with bespoke descriptors, the aim of many deep
learning approaches to molecular representation is to map a
complex molecule into an appropriate embedding rich in use-
ful information for a given task. Unlike molecular descriptors
or fingerprints, learned embeddings are potentially lossless and
able to extract any information present in the parent molecule,
rather than a set of predefined features [61]. Hence, these learned
embeddings are arguably more suited to inference of desired prop-
erties in downstream prediction tasks compared with traditional
descriptors or fingerprints. While many deep learning models
applied to small molecules are trained to predict regression values
or classification labels, they produce learned embeddings inter-
nally from which these predictions are inferred. It is these learned
embeddings that are the subject of this section.

Table 3 summarizes some architectures discussed in the
following subsections. Different algorithms have different
inductive biases, which refer to the family of functions that
the algorithms can entertain. The shape or structure of this
hypothesis space (i.e. which functions are in it, which are not
and which are deemed more probable or preferable) provides
the algorithm’s inductive bias. The skill in machine learning
often lies in matching the problem with an algorithm (or family
of functions) that has a helpful inductive bias. While the best
inductive bias depends on the specific problem, graph- and string-
based encodings, in combination with expressive graph-neural
networks and transformer architectures, have become extremely
popular. However, they often require more data to train and
generalize than models with a more restrictive hypothesis space.
To alleviate this, we will see that pretrained embedders can be
used for any encoding approach. They leverage unsupervised
pretraining on large unlabeled molecular data sets to learn
generalizable representations before fine-tuning on downstream
tasks. This pretraining helps mitigate overfitting, especially
when labeled data is scarce, by exposing the model to much

more diverse molecules than typically seen during supervised
training.

Convolutional encodings
Convolutional neural networks (CNNs) came to force for their
utility in image recognition tasks, with LeNet being one of the
first high-performance architectures [62]. CNNs have been sim-
ilarly applied to images of small molecules. A convolution in this
context refers to a mathematical operation by which a compact
tensor of learnable values (a so-called filter) is multiplied and
summed over the larger input tensor. This strategy allows the
model to learn to extract higher-level features from anywhere in
the input in a very efficient way. The strength of CNNs stems from
these convolutions, and an input data tensor is transformed by
the result of multiple convolutions performed on each image or
sample, resulting in a weighted representation of aggregated local
patterns. In LeNet [62] and many following models, this weighted
representation of local patterns is pooled and fed to a dense linear
layer to perform a classification or regression task. This internal
representation is also a form of learned embedding.

Convolutional embeddings have been extensively applied to
molecular representations, starting from different molecular for-
mats. For instance, Chen et al. [63] used one-hot encoding of
SMILES strings as matrices, with each matrix column containing
binary encodings of atom-specific chemical features. Uesawa
[64] developed a QSAR predictive model trained on batches of
images of small molecules. Hirohara et al. [65] applied CNNs to
one-hot encoded matrices of small molecules. Yuan et al. [66]
applied a CNN to a 0.5 × 0.5 Å resolution 2D grid representation
of molecules detailing the van der Waals forces present in each
cell. Voxel grids representing the electron density of a specific
molecule’s conformation in 3D space have also been used as
inputs to CNNs: Kuzminykh et al. [67] used a voxel-based encoding
of 3D small molecules as inputs to a convolutional autoencoder.
Wang et al. used CNNs with several 3D point cloud representations
of protein-ligand systems, where ligand and protein atoms from
complex structures were encoded by their cartesian coordinates,
atom identities and a binary feature indicating protein or ligand.
The approach achieved accurate binding affinity prediction on a
CASF-2016 benchmark set [68].

Nevertheless, CNN-based embeddings have limitations, such
as the lack of rotation-invariance. The embedding produced from
a given input image or 3D electron density grid may change if the
molecule is rotated [69], which can lead to different predictions for
a given molecule. The same issue is true of one-hot encodings of
equivalent non-canonical SMILES strings. Many works circumvent
this issue by augmenting the input data with many rotations and
translations of the same training molecule or enumeration of
valid SMILES strings representing the molecule, aiming to force
the network to identify the molecular signal within the data
and become invariant to the rotational representational noise.
Augmentation of input representations in this manner is critical
for the models to generalize but hugely increases the training time
and computational cost. This limitation of the CNN architecture
led to the favored adoption of graph encodings for molecular rep-
resentation. A promising research direction is equivariant neural
networks, which incorporate Euclidean symmetry into the model
and overcome the need for data augmentation [70].

Graph encodings
In geometric (or graph-based) deep learning, atoms are repre-
sented as nodes in a graph, with bonds between atoms repre-
sented by edges [71]. Nodes and edges have associated features:
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Table 3: General characteristics of some common machine learning approaches used to generate molecular representations

Approach Input representations Inductive bias Usage

Convolutional encodings 1D strings, 2D images, 3D grids Translation invariance through
weight sharing

Use CNNs to extract features from
grid-based inputs

Graph encodings Molecular graphs—atoms as nodes,
bonds as edges

Rotation invariance through graph
structure

Use graph neural networks to
aggregate atom neighbor features

String encodings SMILES strings, other sequential
formats

Context through sequential
position encoding (and
self-attention)

Use RNNs, transformers and
autoencoders on sequence

Table 4: List of commonly used node and edge features when encoding small molecules as molecular graphs

Node features Edge features Edge connectivity

-One-hot encoded atom identity
-Atomic number
-Partial charge
-Aromaticity
-Hybridization
-Hydrogen bond donor/acceptor status
-Number of bonded neighbors (including or
excluding hydrogen atoms)
-Explicit valence
-Implicit valence
-Formal charge
-Number of radical electrons
-Chirality
-Mass

-One-hot encoded bond type (single, double,
triple, aromatic)
-Float bond length in angstroms
-Conjugation status
-Float bond angle
-Stereo configuration

-Undirected edges drawn between atoms with
chemical bonds
-Directed edges drawn between atoms with
chemical bonds
-Fully connected (all atoms to all atoms)
-Each atom connected to k-nearest atoms

node features typically detail atom characteristics (e.g. chemical
element and aromaticity) and edge features indicate bond types
(e.g. single, double and triple) (Table 4). In this way, a whole
molecule is represented as a single graph. Since graphs do not
typically contain data on the absolute positions of atoms, graph
neural networks allow near-perfect, rotation-invariant represen-
tations. Graph representations are well suited to deep learning
methods and can lead to superior performance over designer
representations like fingerprints [72]. Geometric deep learning has
been extensively applied to molecular property prediction [71],
including solubility, toxicity and oral bioavailability [50, 73, 74].

Molecular graph classification and regression tasks are com-
monly achieved using multiple convolutions in a graph convolu-
tional network [75]. During a convolution, for each node in the
molecular graph, the node features of neighboring nodes (con-
nected by edges) are aggregated with each node’s own features
using a given function (e.g. the mean or the sum of the given
node’s features) (Figure 1A). This aggregated node representation
is then passed through a simple dense layer with a non-linear
activation function to produce a weighted aggregated represen-
tation of arbitrary size J for each node (Figure 1A) [75]. Note that
the weights of these simple layers are trainable parameters. Each
nodes’ features are then updated with their new weighted aggre-
gated forms (Figure 1A). Applying multiple sequential convolu-
tional layers adds context of nodes further away as the aggrega-
tions travel through the graph [75]. Thus, few convolutional layers
restrict features richer in local information, whereas many con-
volutional layers produce node features containing more global
information from more nodes in the graph.

To obtain a 1D vector representation of the whole graph with
fixed size, a form of pooling is employed to aggregate the node
representations (Figure 1B). For example, for an input graph with
10 nodes and a hidden dimension J of size 64, each of the node’s
updated features would be concatenated to a matrix of size

64 × 10. This matrix could be pooled horizontally using a sum
or mean function, giving a final representation of size 64 repre-
sentative of all nodes in the graph [76]. These pooling methods,
therefore, result in a fixed-size vector J for any given number
of nodes (Figure 1B). The resultant pooled embeddings of small
molecules produced by geometric deep learning methods contain
both local information (e.g. the presence of a hydroxyl group) and
global information (the location of that hydroxyl group relative
to other groups) [77]. In supervised learning, training data often
consist of pairs of small molecules and their respective ground
truth labels for a classification task (e.g. drug-likeness) or a regres-
sion task (e.g. logP prediction). In such cases, this embedding
is generally hidden within the network and is connected to a
final linear layer to predict the label associated with the input
graph (Figure 1B). Although much less common, some examples
of contrastive learning to generate molecular embeddings have
also been reported [78, 79].

String encodings
String encoding of small molecules involves two steps. Initially,
string representations of small molecules are converted to a
numerical representation of the string characters. Frequently,
these are integer tokens (e.g. C:1, =:2, O:3) or 2D binary one-hot
encoding matrices (where a 1 in a column represents a SMILES
symbol, and a 1 in a given row represents the position of the
character in the SMILES string).

The ability to use SMILES strings to represent small molecules
in deep neural networks through techniques like one-hot encod-
ing was arguably a turning point, perfectly capturing the molec-
ular graph of a molecule. This was demonstrated to great effect
by Gómez-Bombarelli et al. [80] who used an autoencoder deep
neural network architecture (see below) to embed small molecule
SMILES in a numerical space (latent space). Of key importance
was the functionality to reconstruct SMILES from points within
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Figure 1. Illustration of convolution and pooling over a small molecule graph as part of a neural network model. (A) Detailed schematic of node feature
updating by a single convolution performed on a single node. (B) High level view of whole graph embedding involving a molecular graph, multiple
convolutional layers, global pooling and a linear layer for predictions.

this latent space, creating a generative method operating on a
continuous chemical space. While representing molecules this
way was undoubtedly less noisy and efficient than operating on
images of molecules, it was not without issues in that many areas
of the latent space decoded to invalid SMILES strings contain-
ing unclosed brackets and incorrect bond orders. These issues
were particularly visible when interpolating between molecules
within the latent space, or exploring areas not well represented
in training data. In an attempt to overcome this, additional line-
based representations were developed such as DeepSMILES [81]
and SELFIES [5], which aimed to alleviate the need of learning
the details of SMILES syntax to generate valid strings and provide
a robust route to mapping to small molecules. Wigh et al. [8]
provided an in-depth review of the autoencoder architecture as
applied to encoding small molecules into a conditioned embed-
ding space. Furthermore, models trained on encoded strings are
limited to their training set encoding vocabulary; molecules con-
taining elements not seen during training have no possible encod-
ing equivalent. Hence, these molecules cannot be adequately
encoded, which can limit the generality of models trained on
small data sets in this manner.

While convolutional approaches and autoencoders have been
popular in encoding one-hot matrices of string representations,
more recently, the transformer architecture has shown state-of-
the-art performance in string encoding and decoding tasks [82],
gaining popularity for modeling many types of sequence data in
biology, such as small molecule strings, protein sequences and
DNA sequences [83–85].

Pretrained embedders
The above-discussed architectures and subsequent learned
embeddings can be useful for supervised training on molecular
prediction tasks [86]. However, the combination of a small data

sets and complex models with many parameters often results
in failure to find truly good, optimized model parameters [87].
Hence, the learned embeddings of small molecules produced
within these models can lack key information about the input
molecule, be overly specific to the training data, focusing on
specific areas of chemical space explored in training data as
a function of the chosen loss function and subsequently fail
to generalize to unseen samples absent from training. For this
reason, the production and use of pretrained embedders for
molecular representation have increased rapidly in recent years.
The aim of these embedders is not to perform well on a single
given property prediction task, but rather solely to produce a
rich initial embedding of a molecule in latent space [88] and
fully capture a lossless representation of the molecule. To this
end, models are commonly trained in an unsupervised manner
[89]. Unsupervised training involves unlabeled data; molecules
without any specific property or endpoint being considered. These
models then have much more data available to them and if
trained carefully, are more likely to converge on good parameters,
enabling them to produce powerful, generalizable embeddings of
new input molecules [89].

Pretrained embedders are commonly trained by being asked
to encode a given input molecule in latent space, and subse-
quently decode the latent space embedding back to the ground
truth input given some challenging condition, such as an infor-
mation bottleneck as is the case for the autoencoder architec-
ture, or a partial (masked) input. While in principle any net-
work architecture could be trained in an unsupervised manner,
the most common architectures for unsupervised learning of
molecular representations are autoencoders and transformers.
Irwin et al. [90] applied the partial input masking technique in
training Chemformer, using a randomly sampled subset of 100
million molecules from ZINC 15, and achieved state-of-the-art
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Figure 2. High-level comparison of machine learning architectures used for unsupervised learning of molecular representations. (A) Autoencoder
architectures consist of encoder, decoder and bottleneck layer elements with the latter being the location of the learned embedding representation.
(B) Transformer architectures, which all consist of preprocessing and positional embedding steps, followed by multiple sequential encoder and/or
decoder blocks. Top: Sequence-to-sequence original or BART-style Transformer, where the encoder output can be aggregated as learned embedding
representation. Middle: Encoder-only BERT-style Transformer, typically fine-tuned on molecular classification/regression. The output of the encoder
module can be used as a learned embedding representation. Bottom: Decoder-only GPT-style Transformer, where the end state can be used as a learned
embedding representation.

performance in synthetic benchmarks. Zeng et al. [91] employed
an extensive repertoire of pretraining methods to produce a single
high-performing molecular encoder for the virtual screening of
anti-SARS-CoV-2 molecules, including molecular image recon-
struction and masked contrastive learning.

The autoencoder architecture has two main elements: the
encoder and the decoder. SMILES string encodings are passed
through a series of increasingly small encoder layers to the bot-
tleneck layer. The decoder module then attempts to take the
bottleneck layer output representation and reconstruct the orig-
inal input (Figure 2A). Hence, the model must learn to efficiently
represent the entire molecule as a small, fixed-size vector to
minimize the loss between the inputs and the reconstructed
outputs. Traditionally these models consist of standard dense
linear layers which decrease and increase in size sequentially,
although graph autoencoders have also been employed in this
field [92]. This autoencoder-based approach was employed by
Gómez-Bombarelli et al. [80] to produce rich latent space embed-
dings of small molecules that they leveraged for generative pur-
poses.

Since the release of the transformer architecture in 2017,
transformers rapidly gained popularity [93]. Large language
models (LLMs) based on the transformer architecture are
receiving much attention because of unprecedented performance
of Generative Pretrained Transformer (GPT) language models
in natural language tasks [94]. In the same way, Bidirectional
Encoder Representations from Transformers (BERT) and Bidirec-
tional Autoregressive Transformer (BART) style models have been
extensively applied to learn embeddings of string representations
of small molecules (Table 5). Transformers consist either of
encoder-only (e.g. BERT), decoder only (e.g. GPT) or of encoder

and decoder modules trained simultaneously (Figure 2C)79.
Alternatively, BERT-style transformers train multiple sequential
encoder blocks without decoder blocks, using a simple classifier
layer to return embeddings to string inputs. While autoencoders
employ a bottleneck layer between encoding and decoding,
bidirectional transformer training for molecular representation
is commonly achieved with a process called masking. String
representations of molecules are initially tokenized. These
tokenized representations have a subset of their elements
randomly hidden; this is the masking process. Finally, the
transformer is shown masked tokenized SMILES strings as input
data and asked to predict the unmasked original string as an
output (Figure 2B). To perform well at predicting the masked
characters, the transformer must learn the general ruleset of
valid strings. Hence, once trained the encoder module produces
powerful, chemically informed embeddings of input molecules.
Small molecule encoders, such as Chemformer, have shared in
the outstanding results of transformer-based sequence models
(Table 5) [90].

One key feature of the transformer architecture is its ability
to rapidly learn contextual information about input sequence
data through a process called attention [82, 93]. This enables
the weighting of an element in an input sequence in the con-
text of its relative sequence position. Just like the meaning of a
word is dependent on its position in a sentence and neighboring
words, atoms affect molecular properties differently when they
are in different positions and have different neighboring atoms. To
inform these weighted contextual encodings, each input sequence
element is augmented with a label based on its relative position.
A typical transformer consists of attention layers combined with
normalization and dense layers in ‘blocks’. Multiple encoder and
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Table 5: List of popular small molecule pretrained embedders

Name Year Training data Architecture # of
parameters

Link Ref.

Chemical VAE 2018 250 000 drug-like
molecules from ZINC;
108 000 molecules
from QM9 data set
under 9 heavy atoms

Autoencoder 4.2 M https://github.com/
aspuru-guzik-group/
chemical_vae

[80]

SMILES-BERT 2019 18.7 million
compounds sampled
from ZINC

Encoder-only
transformer

13 M https://github.com/uta-
smile/SMILES-BERT

[88]

ChemBERTa/ChemBERTa-
v2

2020 250 000 drug-like
molecules from ZINC

Encoder-only
transformer

5–77 M https://github.com/
seyonechithrananda/
bert-loves-chemistry

[99]

MolBERT 2020 1.27 million GuacaMol
benchmark data set
molecules

Encoder-only
transformer

85 M https://github.com/
BenevolentAI/MolBERT

[100]

MegaMolBART 2021 1.45 billion ‘reactive’
molecules from ZINC
under 500 Da and
logP ≤ 5

Encoder-decoder
transformer

45–230 M https://github.com/
NVIDIA/MegaMolBART

[101]

Molformer 2022 1.1 billion molecules
from ZINC and
PubChem

Encoder-only
transformer

110 M https://github.com/IBM/
molformer

[102]

Chemformer/MolBART 2022 100 million molecules
randomly sampled
from ZINC under
500 Da and logP ≤ 5

Encoder-decoder
transformer

45–230 M https://github.com/
MolecularAI/
Chemformer

[90]

X-MOL 2022 1.1 billion ZINC
database molecules

Encoder-decoder
transformer

110 M https://github.com/
bm2-lab/X-MOL

[103]

decoder blocks are connected sequentially, resulting in billions of
trainable parameters capable of considering both the identities of
elements in a sequence as well as their relative positions.

The latent space occupied by these learned embeddings
is highly organized. Indeed, impressive clustering of similar
molecules at close points in latent space is observed as a result of
unsupervised training [95]. While autoencoders and transformers
can encode molecules into latent space through their encoder
modules, they can also decode latent space vectors back into
small molecules [96]. Hence, areas of latent space of interest
(such as those containing known ligands for a given target) can
be sampled, and decoded to produce novel small molecules in
a generative manner [96, 97]. Early generative models faced the
problem of generating molecules that were not accessible by
chemical synthesis, which limited their adoption in practical
applications [44, 98]. Nonetheless, generative models for small
molecule design and drug discovery are an exciting and rapidly
evolving field, enabling the systematic exploration of vast areas
of chemical space.

Transfer learning
Small data set sizes make finding optimal weights for large
models difficult, which can fail to converge and reach high
performance [87]. In such cases, simpler machine learning
models like tree-based methods frequently perform better
[104]. Pretrained embedders, as discussed above, can leverage
much more training data than these end-to-end downstream
models, resulting in embeddings that are broadly applicable
but may lack the specific detail needed for specific tasks. On
the other hand, the embeddings produced within an end-to-
end model are most relevant to the task at hand but may
fail to generalize across chemical space. Transfer learning is

a recent development to make the best from this dichotomy
[105, 106].

Transfer learning is a form of semi-supervised learning: it cou-
ples an unsupervised pretraining step with a subsequent super-
vised fine-tuning step [105]. Often, a given pretrained model is
combined with a prediction head (often a linear layer taking the
embedded representation as input and producing a predicted
label as an output). This expanded model is then trained in a
supervised manner on a smaller data set relevant to the desired
downstream task [107]. For example, a transformer model could
be trained on the entire ZINC database using masking, and then
subsequently trained on a smaller data set to predict solubility,
toxicity or other molecular properties using only the encoder
module and an additional layer for property classification/regres-
sion. Pesciullesi et al. [108] successfully applied transfer learning
to fine-tune a SMILES-based transformer to predict chemical
reaction products of carbohydrates. Li and Fourches [109] lever-
aged transfer learning to achieve high performance on lipophilic-
ity prediction, blood–brain barrier penetration and several other
small molecule benchmarks. Jablonka et al. recently fine-tuned
GPT-3 [110] on various molecular regression, classification and
inverse design tasks, and showed promising results in the low-
data regime [111].

The transfer learning approach has multiple advantages. First,
much more data can be leveraged in the pretraining step because
of its unsupervised nature, exposing the model to a much larger
range of small molecules than would have been seen with tra-
ditional end-to-end training. Second, this large amount of initial
data allows the embedder to converge on sensible weights during
pretraining to produce molecular embeddings. In this way, during
the fine-tuning step, most of the model has sensible initial weights
and the loss can mainly be used to optimize the weights for the
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added prediction head, with little fine-tuning of the pretrained
embedder. Since parameters are changed less based on the small,
labeled data set, convergence to a high-performing combination
of weights is easier [105, 112]. Although transfer learning involves
pretraining a single model, which can then be reused and adapted
to multiple downstream tasks, the pretraining of the model can be
very expensive, complex, lengthy and energy intensive [113].

Large language models
Recently, LLMs like GPT-4 [94, 114] have been trained on natural
language text, such as English, and shown emergent capabilities
across domains. Their ability to reason over unstructured text has
great potential for extracting relevant information from chemical
literature, where standardization is often lacking. Moreover, mul-
timodal foundation models [115], which capture information not
only from text but also images, could further improve the litera-
ture knowledge extraction. For chemical text generation, question
answering and task solving, however, LLMs trained on immense
textual corpora typically still lack basic chemical reasoning [114,
116]. For instance, molecular structures and IUPAC names are
often hallucinated. While answers to chemical questions might
sound convincing, they are often inaccurate or wrong and should
always be verified. One attempt to overcome the weaknesses of
LLMs is to give them access to external tools [117], such as cal-
culators, a Python interpreter or a web search tool. For chemical
purposes, Bran et al. [116] introduced ChemCrow, which augments
GPT-4 with expert-designed tools for molecules, synthesis plan-
ning and execution, safety assessments and general applications.
Given a user input, ChemCrow autonomously queries relevant
expert-designed tools, and combines their responses, and solves
challenging chemistry tasks, which were out of reach for GPT-
4. With a different focus, Boiko et al. [118] show that LLMs can
query the web, read documentation and write code for launching
experiments on robotic platforms.

When used with responsibility, such LLM agents can lower the
barrier for non-experts to access various powerful tools and infor-
mation efficiently leading to a speed-up of research processes
[116]. However, by modifying the LLM agents’ aims, there can be
significant risks for dual use [119]. How to best put guardrails in
place and mitigate those risks should be discussed with a wider
community [120].

CONCLUSIONS
A key goal for AI scientists and cheminformaticians in drug
discovery is to reduce costs, time and failure rates. Despite the
current high costs for drug discovery, low approval rates and
reproducibility challenges [121–124], there are reasons for opti-
mism. Biotech and pharma are expanding toward new modalities,
such as proximity-induced neobiology, natural products, biologics
and other macromolecules [125–129], and they are doing so using
very powerful tools, such as DNA-encoded libraries, high-content
imaging, multi-omics and AI-powered screens [130–132]. This cre-
ates needs and opportunities for novel molecular representations.

First, limitations in the size of available data sets constrain
the ability to model many facets of drug discovery, particularly
those involving the costliest experiments. While end-to-end deep
learning models tend to overfit small data sets, the incorporation
of prior knowledge can enhance the models’ generality. One such
approach involves transfer learning: pretraining the models on
large data sets to extract general features, which are subsequently
fine-tuned for specific tasks. Despite significant advancements in
pretraining models at the molecular level [88, 133], most current

pretraining methods are limited to extracting features from the
molecule itself but ignore the interactions between the molecule
and other biological entities such as targets and diseases. Pre-
training at the molecule network level remains an area of limited
exploration. Indeed, in the field of drug discovery it is likely the
level of high quality, unbiased input data is a major limitation
rather than the sophistication of the available machine learning
architectures. Future efforts in this space require, not just design-
ing and evaluating increasingly complex and novel architectures,
but also identifying and curating data to better inform current
models [134].

Knowledge graphs (KGs) are multi-relational networks that
store interlinked descriptions of different entities. Broad biomed-
ical KGs have been well reported recently [135, 136], helping
understand complex biological systems and pathologies. Inte-
grating KGs information into molecular representation learn-
ing offers a powerful means of capturing the complex relation-
ships between different entities and can aid in the representation
of important structural and functional relationships between
molecules. Recent work [137] has demonstrated the efficacy of
incorporating KG pretraining strategies to address issues of small
training sets in reaction yield prediction, achieving strong gen-
eralization abilities even with limited data. Additionally, prior
knowledge can be derived from a variety of sources, including
proteomics, metabolomics and phenotypic features in response
to compound treatment such as pathway activity and modes
of action [138]. Moreover, the combination of AI and physical
simulations is increasingly fruitful thanks to the improved under-
standing of biological systems and the availability of supercom-
puters, GPUs, TPUs and other quasi-ASIC acceleration hardware.
Although encoding molecular information into descriptors, fin-
gerprints and deep learning models remains a challenge, the com-
bination of different representations through multi-view tech-
niques [139] can help overcome biases inherent to individual
representations.

An alternative strategy to cope with the limitations of small
data or even zero data is the combination of AI and physical sim-
ulations. Based on first principles, physical simulation provides
valuable domain knowledge for the development of AI models
[140]. Additionally, the prediction of AI can be effectively validated
by simulation through supercomputers, leading to further adjust-
ment and promotion of the model. We believe such a closed loop
holds great potential for AI in drug discovery.

Second, there is a need for representations that are inter-
pretable. Despite their expressive power in molecular repre-
sentation learning across molecular size ranges, sequence- and
graph-based deep learning methods lack interpretability. There
are efforts to create fingerprints suitable for larger, more complex
molecules [16, 141]. Compared with the learned representations
that require a vast amount of data, bespoke descriptors are
designed by experts, which make them easy to interpret and
analyze. For small data sets, bespoke descriptors can often offer
competitive performance, along with good interpretability and
low computational cost, but they may also be biased toward
the expert’s understanding of the problem. For example, Jiang
et al. [104] demonstrated comparable performance to a GCN
approach on several benchmark data sets using descriptor-based
features combined with statistical and simple machine learning-
based approaches. Interestingly, in recent work, XAI-FP [142]
(explainable artificial intelligence-assisted fingerprints) encoded
learned representations into fingerprints, showing that the com-
bination of interpretable descriptors and learned representation
can improve the quality of molecular representations.
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Third, there is a need for molecular representations better
suited to new therapeutic modalities. Beyond small-molecule
drugs, larger therapeutics are gaining increasing relevance
because of their potential to treat some conditions more safely
or efficaciously. Their larger size and complexity allow them
to address different targets, engage novel mechanisms or
achieve improved delivery and specificity. Accurately predicting
the properties of therapeutic classes such as nucleic acids,
peptides and proteolysis-targeting chimeras (PROTACs) becomes
necessary. To note some promising directions, Parisien et al. [143]
constructed the MC-Fold and MC-Sym pipelines for inferring
RNA secondary structure from raw sequences to guide the
development of nucleic acid aptamers. Hansen et al. [129] created
an algorithm to search for cell-penetrating peptides in proteins
or random peptide sequences based on new chemical descriptors
related to bioactive peptide design, providing new opportunities
for developing peptide-based intracellular delivery carriers.
PROTACs have been developed to accelerate the degradation of
target cellular proteins the ubiquitin-proteasome system [144].
Because of their fuzzy structure–activity relationship and the
frequent involvement of protein–protein interactions, the rational
design of PROTACs poses significant challenges. Li et al. [145]
introduced a deep neural network model to generate graph
representations of ligands and their binding pockets, inputting
them into a graph CNN for feature extraction, whereas the SMILES
representation of the linker was fed into a bidirectional LSTM
layer to generate features. The model achieved good prediction
accuracy on the test set.

Lastly, advances in natural language processing have shown
the extent to which leveraging unlabeled background information
can lead to impressive performance in general language tasks,
demonstrating the power of current models and architectures.
Integrating all existing chemical knowledge into a model could
similarly lead drug discovery to new heights. Unlike natural lan-
guage, chemistry knowledge is fragmented across very different
types of encodings, from chemical formulas to digital represen-
tations, mathematical equations and natural language, making
its integration and harmonization difficult. Compared with text,
high-quality chemical data are more scarce and costly to generate.
Advances in automation and self-driving labs, in which artificial
intelligence and active learning are used to guide experimental
design, could enable higher throughput data generation leading
to better models, more accurate predictions and more effective
drug discovery with higher clinical translation and success rates.

Key Points

• Conventional molecular descriptors are easy to use and
can be competitive for small data sets.

• Autoencoder and transformer representations based on
strings or molecular graphs are highly popular.

• Transfer learning and physical simulations can help alle-
viate the limitations of small data sets.

• Broader knowledge integration including large-language
models could enable novel applications.

DATA AVAILABILITY
This study does not produce or analyze new data.
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