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ABSTRACT

Artificial intelligence (Al) is a science that involves creating machines that can imitate human intelligence and learn. Al
is ubiquitous in our daily lives, from search engines like Google to home assistants like Alexa and, more recently, OpenAI
with its chatbot. Al can improve clinical care and research, but its use requires a solid understanding of its
fundamentals, the promises and perils of algorithmic fairness, the barriers and solutions to its clinical implementation,
and the pathways to developing an Al-competent workforce. The potential of Al in the field of nephrology is vast,
particularly in the areas of diagnosis, treatment and prediction. One of the most significant advantages of Al is the
ability to improve diagnostic accuracy. Machine learning algorithms can be trained to recognize patterns in patient data,
including lab results, imaging and medical history, in order to identify early signs of kidney disease and thereby allow
timely diagnoses and prompt initiation of treatment plans that can improve outcomes for patients. In short, Al holds the
promise of advancing personalized medicine to new levels. While Al has tremendous potential, there are also significant
challenges to its implementation, including data access and quality, data privacy and security, bias, trustworthiness,
computing power, Al integration and legal issues. The European Commission’s proposed regulatory framework for Al
technology will play a significant role in ensuring the safe and ethical implementation of these technologies in the
healthcare industry. Training nephrologists in the fundamentals of Al is imperative because traditionally,
decision-making pertaining to the diagnosis, prognosis and treatment of renal patients has relied on ingrained practices,
whereas Al serves as a powerful tool for swiftly and confidently synthesizing this information.

Artificial intelligence (AI) has become an integral part of our lives, from search engines and home assistants to
advanced chatbots like ChatGPT. In the field of nephrology, AI holds immense potential for improving diagnosis,
treatment and prediction. Al algorithms can be trained to analyze patient data, including lab results, medical history
and imaging, to identify early signs of kidney disease. This enables timely diagnoses and personalized treatment
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plans, leading to better patient outcomes. However, the implementation of Al in healthcare faces several challenges.
The European Commission’s proposed regulatory framework aims to promote the safe and ethical use of Al in
healthcare. To fully leverage the benefits of Al, nephrologists and other healthcare professionals need to be educated
about its fundamentals and its potential applications in routine patient care. This will enable them to effectively
utilize Al technologies and provide better care for kidney patients.

Keywords: artificial intelligence, kidney, machine learning, natural language processing, nephrology

INTRODUCTION

Artificial intelligence (Al) is described as the science and engi-
neering of creating intelligent machines that can mimic human
intelligence and learn. Many of us might think that Al is some-
thing complex that we do not want to get involved with because

“artificial” help. But fortunately, or unfortunately, this is not an
option. We live wrapped in Al Google, Amazon, Tesla, Alexa,
Roomba, Siri, Deepl, facial recognition on our mobile phone,
etc., as well as, more recently, OpenAl with its chatbot, ChatGPT,
and its customized image designer, DALL-E 2 (Fig. 1). ChatGPT
is a large language model (LLM) based on the GPT (Generative

we are doctors, we know our speciality, and we do not need any

A

WHAT IS A
GLOMERULUS?

A glomerulus is a tiny blood vessel
in the kidney that acts as a filter. It is
made up of a cluster of capillaries,
and its main function is to filter
waste products and excess fluid
from the blood and send them to
the renal tubule, where they are
further processed and eliminated
from the body as urine,

TRY AGAIN IN A MORE
SCIENTIFIC WAY

A glomerulus is a specialized structure located within
the renal corpuscle of the kidney. It is composed of a
capillary network that is surrounded by Bowman's
capsule. The glomerulus acts as a filter, allowing small
molecules such as water, ions, and small solutes to
pass through while larger molecules such as blood
cells and proteins are retained in the bloodstream.
The filtrate that passes through the glomerulus enters
the renal tubule for further processing and ultimately
excretion as urine. The glomerulus is essential for
maintaining the balance of fluid and electrolytes in
the body and removing waste products from the
bloodstream.

OpenAl, ChatGPT accessed 22 December 2022

TRY EVEN MORE SPECIFIC
FOR NEPHROLOGISTS

The glomerulus is a highly specialized microvascular
structure located within the renal corpuscle of the kidney. It
serves as the initial filtration site for blood in the renal
system. The glomerulus is composed of a network of
fenestrated capillaries, which are surrounded by Bowman's
capsule. The capillaries are formed by the convergence of
afferent arterioles and the divergence of efferent arterioles.
The glomerular capillaries are lined by specialized
endothelial cells called fenestrated endothelial cells, which
are characterized by the presence of diaphragms or
fenestrations that allow for the passage of small solutes
and water, but not larger molecules such as proteins or red
blood cells. The Bowman's capsule is composed of simple
squamous epithelial cells, which surrounds the glomerular
capillaries. The Bowman's capsule also forms the proximal
convoluted tubule which is the first segment of the renal
tubule. The filtrate that passes through the glomerulus
enters the proximal tubule where it undergoes
reabsorption and secretion which results in the formation
of urine. The glomerular filtration rate (GFR) is a measure
of the rate at which the glomerulus filters the blood, and it
is considered the most accurate indicator of kidney
function. Nephrologists rely on the measurement of GFR to
assess the health of the kidney and to monitor the
progression of kidney disease.

OpenAl, DALL-E2 accessed 227 December 2022
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Figure 1: Examples on how OpenAl is used. (A) Questions and answers from ChatGPT. (B) Proposal to DALLeE 2: oil paintings of a patient leaving hospital with a new

transplanted kidney in his hand.
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Figure 2: ML, step by step: ML is a type of Al that enables computer systems to learn from training data without explicit programming. DL is a more specific subset of ML
that uses algorithms with multiple layers, simulating the complexity of the human brain. In healthcare, popular DL algorithms include artificial neural networks (ANNS),
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). There are three main types of ML algorithms: supervised learning, unsupervised learning
and reinforcement learning. Supervised learning uses labeled data to train classification models, while unsupervised learning identifies clusters in unstructured data.
Reinforcement learning relies on trial and error to learn from feedback. Once the model has been selected and data has been inputted, it must be trained with the
data to produce accurate results. The model should then be validated to ensure it can generalize to new data and be reproducible for reliable clinical use.

Pre-training Transformer) architecture, trained on a dataset of
internet text to generate human-like text, while DALL-E 2 is a
new Al system that can create realistic images and art from a
description in natural language. These astonishing Al tools can
help us all. And we say “help” because in most areas of medicine,
Al'will not replace the professional; rather, whoever understands
and can manage it is likely to be a better professional and to
make better informed decisions. In this regard, there is much
controversy in the USA about the nomenclature, with the Amer-
ican Medical Association using the term “augmented intelli-
gence”[1].In fact, Al and digital health will augment (not replace)
our ability to improve care and maintain health. This means us-
ing Al algorithms to augment human intelligence rather than to
replace it.

Al has the potential to improve clinical care and research in
nephrology, butits use requires a solid understanding of the fun-
damentals of Al the promises and perils of algorithmic fairness,
the barriers and solutions to its clinical implementation, and the
pathways to developing an Al-competent workforce. To adopt
a new technology, clinicians and scientists need to be familiar
with its fundamentals, fluent in its vocabulary and nomencla-
ture, and inspired by its potential to improve outcomes for pa-
tients with or at risk of kidney disease. Due to the integration
of Al into the field of medicine, nephrologists will soon engage
with this technology on a daily basis, making it essential for
the nephrology community to be well-informed and educated
about its implications. Nephrologists around the world need to
understand the core concepts of Al and its subtypes, and how
the models are created, so that they can critically evaluate them
and actively participate in minimizing the current challenges.
Given nephrologists’ medical duties and legal responsibilities for
the care they provide, they may be understandably reluctant to

take action on a patient based on unexplained decisions made
by black-box algorithms. The success of any Al-based study will
therefore require strong interdisciplinary collaboration between
medical experts and computer scientists, always avoiding the
black-box feeling which refers to the opaqueness that often per-
plexes Al users when attempting to elucidate the algorithm’s
operations. Black-box is directly related with the lack of inter-
pretability of the AI system. Interpretability, also often referred
to as explainability, refers to the study of how to understand the
decisions of machine learning (ML) systems, and how to design
systems whose decisions are easily understood, or interpretable.
Interpretable Al systems yield less risk as it can be better iden-
tified whether the model makes sense or not, given the obser-
vation of parts of the Al in which the reasoning might be flawed
(for instance due to confusing variables).

For all these reasons, education on Al should be one of the
objectives of nephrology societies (including the European Renal
Association). A focus on the basics of Al education for nephrol-
ogists will enhance our specialty and improve patient care.

In this review, we aim to provide a very basic knowledge of
what Al and more specifically ML is, as well as to outline its chal-
lenges and applications in renal medicine.

MACHINE LEARNING

ML is a subset of Al that involves algorithms and statistical mod-
els that enable computer systems to improve their performance
on a specific task based on the analysis of data (Fig. 2). ML al-
gorithms are designed to learn from training data, identify pat-
terns, and make predictions or decisions without being explic-
itly programmed to do so. The application to healthcare has
been established for decades for classical methods like logistic



regressions, but the use of newer methods like neural networks
is still incipient, and although the number of publications is
quite large, the number of models deployed on the healthcare
market are still increasing at a slow pace [2].

There are three main types of ML algorithm: supervised
learning, unsupervised learning and reinforcement learning.

Supervised learning algorithms learn from labeled data,
where the input data are already categorized or labeled with
known outcomes. These are commonly used in healthcare appli-
cations for tasks such as predicting disease diagnosis or patient
outcomes.

Unsupervised learning algorithms, on the other hand, are
used to identify patterns in unlabeled data, meaning that the
input data are not labeled with known outcomes. These algo-
rithms are used to find structure in data, e.g. identification of
clusters of patients with similar disease symptoms or charac-
teristics.

Reinforcement learning algorithms are used to learn through
trial and error and involve conveying feedback to the algorithm
after this has generated its outputs. In such a scheme, an al-
gorithm could receive feedback from the patient’s response to
treatment generated by an ML algorithm and adjust the treat-
ment plan accordingly to achieve the best possible outcome.

These algorithms are to be trained on sets of medical data,
such as electronic health records or medical images. The qual-
ity and quantity of the training data are critical factors for the
performance, robustness and general trustworthiness of the de-
vised algorithm. Such algorithms, once trained, can provide a
prediction or output such as a diagnosis, a risk score for a par-
ticular condition, a natural language response to a patient state-
ment, molecular subtyping or survival data projected from pa-
tient trajectories.

One of the most important aspects of training a ML algorithm
for clinical applications is the quality and quantity of the train-
ing data. The algorithm’s ability to make accurate predictions
and generalizations depends critically on the quality and rep-
resentativeness of the data used to train it. If the training data
are biased, incomplete or not representative of the population
for which this algorithm will be deployed, i.e. if the training data
design is poor, the algorithm may not perform well in real-world
settings and may even be liable to biased assessments. These
defects might not be evident, as they might be the result of a
biased workflow, for instance if a segment of the population is
less likely to receive a treatment due to systematic or uninten-
tional exclusion of that segment of population (e.g. of racist or
economic selection nature).

The concept of generalization refers to how well the algo-
rithm performs on new data on which it has not been trained. If
the algorithm is overfitting to the training data, it will not gen-
eralize well. Overfitting occurs when the algorithm learns the
noise, bias, confounding effects or random variation in the train-
ing data instead of the underlying clinical patterns. To prevent
overfitting, the algorithm is generally validated on a separate
dataset, called the validation dataset. The validation dataset is
used to evaluate the performance of the algorithm and ensure
that it is not overfitting to the training data, thus ensuring the
correct generalization of the algorithm.

Other factors can affect the quality and overall generalization
of an ML algorithm, including choice of model, the hyperparam-
eters of the model and the evaluation metrics used to assess the
performance of the algorithm. The choice of model depends on
the type of data and the task for which the algorithm is being
developed. For example, if the algorithm is being developed to
analyze endoscopy medical images, a convolutional neural net-
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work may be a good choice of model [3]. If the algorithm is being
developed to predict outcomes, a logistic regression model may
be more appropriate.

Hyperparameters are settings that are used to fine-tune the
model and can affect its performance. Examples of hyperparam-
eters include the learning rate, batch size and number of hidden
layers for a neural network. The optimal values for hyperparam-
eters can be determined through a process called hyperparam-
eter tuning, where the model is trained and evaluated with dif-
ferent hyperparameters. All ML and AI models have some sort
of hyperparameter design [4].

Additional concepts relevant to ML development for medi-
cal use are those of reproducibility. ML in health must be repro-
ducible to ensure reliable clinical use. This can be achieved with
the publication of open datasets and the provision of code acces-
sibility, which is still an open issue in the case of health-related
ML models [5].

Deep learning (DL) is a subset of ML that involves algorithms
inspired by the structure and function of the human brain. These
algorithms, called artificial neural networks, consist of multiple
layers of interconnected nodes that can learn to recognize pat-
terns and make decisions based on input data. DL algorithms are
particularly effective in handling unstructured data, such as im-
ages, video and natural language, and have been used in appli-
cations such as image and speech recognition, natural language
processing (NLP), autonomous driving and healthcare [6].

NATURAL LANGUAGE PROCESSING

NLP is a field of Al that deals with the interaction between com-
puters and human language. Specifically, NLP aims to enable
computers to understand and generate natural language, as well
as to perform various tasks such as text generation, text classi-
fication, machine translation and information extraction (Fig. 3).

NLP has undergone a significant shift in recent years, mov-
ing from a mainly rule-based approach to one that relies heav-
ily on ML. This shift has been instrumental in enabling NLP to
achieve better results. Rule-based approaches have significant
limitations, such as time-consuming and labor-intensive devel-
opment, requiring domain experts to spend significant time and
effort crafting rules and patterns. Additionally, rule-based sys-
tems can struggle to handle the variability and complexity of
natural language and do not generalize well to newer domains.

ML techniques have enabled NLP systems to overcome many
of these limitations. ML-based systems are trained on datasets,
allowing the ML algorithms to learn patterns and associations.
ML-based systems adapt to new data and contexts more eas-
ily than rule-based systems and can achieve higher levels of ac-
curacy and performance [7]. These ML algorithms, able to learn
about language, are referred to as language models. Although
language models, statistical representations of language, have
been used since 1948 [8] in applications like spell checking,
specifically, LLMs [9] have played a key role in improving the
quality and effectiveness of embeddings, the numerical repre-
sentation of a words or documents that captures its context and
meaning, and therefore the results in NLP tasks. LLMs are a type
of neural network that have been trained on vast amounts of text
data, allowing them to capture a wide range of linguistic pat-
terns and relationships. LLMs might be able to capture the sub-
tle differences in meaning between terms like “glomerular” and
“proteinuria” that are closely related, as well as between terms
like “heart attack” and “lung cancer” that are not.

NLP use cases vary from improving patient care to increas-
ing operational efficiency and reducing errors. In the context of
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Consultation for edeme in
both legs since last week.

Thi smorning the edema
persists and there s
associated foamy urine.

The episode reminds her the
last relapse of minimal
changes a year ago.

She has started furosemide
40mg at breakfast since the
onset of edema without
improvement. .

Both legs

Request PrU/CrU.

Relapse Pru/Cru

]

Began Characteristics Treated with
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When Qualified

| l

This morning No improvement

Figure 3: Use of NLP to extract data from medical records. NLP, a branch of Al, can convert the human language used in medical records, which may include typing

errors, into a computer-understandable language in the form of algorithms.

clinical care, NLP is being used to automatically extract relevant
information from medical records; for example, diagnoses, med-
ications and laboratory results can be extracted from electronic
health records (EHRSs) [10] in order to build diverse systems such
as clinical decision support [11], patient monitoring, chatbots
and virtual assistants [12], and drug safety monitoring [13].

These use cases are built on top of different NLP tasks [14],
specific problems that involve processing and understanding
human language to be solved. These tasks include, for example,
named entity recognition, i.e. the identification and classifica-
tion of words in a text, such as medical conditions, medications
and anatomical locations. Topic modeling, text classification and
question answering provide ways to organize and categorize text
data, while language translation can facilitate patient engage-
ment and satisfaction by providing medical information in the
patient’s preferred language. Each task addresses different as-
pects of text analysis, allowing for a variety of applications in a
clinical setting.

USE OF AI FOR KIDNEY DISEASES
Diagnosis

Diagnosis is a critical component of medical practice, as it forms
the foundation for subsequent efforts in staging, treatment and
prophylaxis. Over the years, clinicians have relied on a variety of
tools, including analytical, imaging and histological studies, in
addition to semiology, to reach an accurate diagnosis. Further-
more, clinical practice should be based on the best available sci-
entific evidence for each patient.

In today’s world, where Al is ubiquitous, it would be a missed
opportunity not to utilize its potential in medicine. Al can help
clinicians make more accurate and timely diagnoses by analyz-
ing vast amounts of patient data and identifying patterns that
may not be visible to the human eye. This technology can also
assist in the interpretation of complex imaging studies and his-
tological findings, improving the accuracy of diagnoses.

By incorporating Al into clinical practice, clinicians can make
more informed decisions, leading to better patient outcomes.
However, it is crucial to ensure that the use of Al in diagnosis

is done ethically and transparently, and with appropriate safe-
guards in place to protect patient privacy and autonomy.

Overall, the use of Al in diagnosis has enormous potential
to improve medical practice, and it is important for clinicians
to embrace this technology and incorporate it into their daily
practice.

Different areas of diagnosis in nephrology have begun to
be influenced by the use of Al (Table 1). A random forest al-
gorithm has been developed that enables the early diagnosis
of chronic kidney disease (CKD) [15]. Using ML techniques, re-
searchers have identified metabolic signatures associated with
pediatric CKD by linking sphingomyelin-ceramide and plas-
malogen dysmetabolism with focal segmental glomerulosclero-
sis [16]. Researchers have also successfully mimicked the ability
of nephropathologists to extract diagnostic, prognostic and ther-
apeutic information from native or transplanted kidney biopsies
using image recognition [17].

An Al-based algorithm has been developed to estimate the
total renal volume of patients with autosomal dominant poly-
cystic kidney disease from magnetic resonance imaging scans.
This algorithm could aid in disease monitoring and prognos-
tic evaluation [18]. ML algorithms have been developed to iden-
tify pathogen-specific fingerprints in peritoneal dialysis patients
with bacterial infections. These algorithms can help clinicians
make informed treatment decisions and improve patient out-
comes [19]. Although tools have been developed to aid in the
diagnosis of glomerular diseases, such as ML-based algorithms,
the lack of validation in diverse populations has hindered their
translation into clinical practice [20].

A recent study demonstrated the potential of using deep phe-
notyping on EHRs to facilitate genetic diagnosis through clini-
cal exomes [21]. This approach could be particularly useful in
nephrology, where the diagnosis of hereditary diseases is still
an area that requires further exploration.

Prediction of outcomes

Prediction scores or scales, as we know, have been widely used
in the medical field to help clinicians establish criteria for man-
aging patients long before ML became this large in healthcare.
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In nephrology, various prognostic scores are used to estimate
the risk of developing end-stage CKD, with some scores being
developed for specific kidney diseases. In order to perform the
scoring, traditional statistical methods have been used up to the
present. However, the integration of clinical expertise with ML
experts opens up new possibilities to provide the best predic-
tions to the patient. When making use of ML tools, like XGBoost,
in conjunction with traditional statistical techniques, it becomes
more feasible to generate expansive predictive capabilities, even
when working with limited data.

Prediction scores typically incorporate both classic risk fac-
tors and additional variables such as histology or imaging tests.
Some examples of use of ML techniques in the development of
these scores (Table 1) include the IgAN-tool [22] and IBox [23].
Scores have also been developed to predict the risk of acute kid-
ney injury (AKI) in different patient populations, such as the
postop-MAKE score [24], which estimates the risk of AKI in pa-
tients with normal renal function undergoing cardiac surgery,
and AKI risk scores in patients with heart failure [25]. Even
neonatal patients can benefit from AKI risk assessment using
the STARZ score [26].

A common challenge in developing risk scores for kidney dis-
eases is the small size of the patient populations studied, which
limits the scope of validation. Moreover, many studies are con-
ducted within a single country, which can further limit valida-
tion across ethnicities. To address this issue, it is necessary to
conduct and promote multicenter studies with the goal of val-
idating algorithms that can accurately predict outcomes in the
future. By facilitating and encouraging collaborative research the
algorithms will be validated and tested for effectiveness and be-
come reliable.

Treatment aid

Throughout history, physicians have recognized the uniqueness
of each patient and have strived to provide tailored and person-
alized treatments to deliver the best possible care. This approach
emphasizes the importance of interindividual variability and is
commonly referred to as precision medicine. The goal of preci-
sion medicine is to develop treatment strategies that are specifi-
cally tailored to the individual patient, taking into account their
unique characteristics, including genetics, lifestyle and environ-
mental factors. By embracing precision medicine, physicians can
provide more effective and targeted treatments, leading to bet-
ter patient outcomes [27].

The large-scale applicability of this concept has been greatly
aided by the development of large-scale biological databases, the
use of genomics, proteomics and metabolomics, and computa-
tional tools that enable massive data analysis. The combination
of all these disciplines can guide us in adjusting medical treat-
ment to specific pathological processes and ultimately optimize
patient outcomes [27, 28]. Fields such as oncology have been pi-
oneering in the application of ML algorithms to predict response
to immunotherapy and to develop targeted therapies based on
molecular disease processes that improve outcomes for differ-
ent types of tumor [29]. Nephrology should be no less forward
looking, but there is a long way to go. Still today, targeted thera-
pies for specific etiologies are lacking as improvement of classi-
fications and more specific biomarkers to categorize kidney dis-
eases are needed.

How might we benefit? New therapeutic strategies based on
Al models may help us in guiding drug prescription, decreas-
ing variability, achieving a higher percentage of patients on tar-
get and avoiding error proneness. ML models may also con-

tribute to clinical trials by identifying high-risk patients who
may benefit from new therapies under study as well as those
who will not, thus avoiding unnecessary treatments. Some of
these objectives may be achieved by using the “digital twins”
approach. Health digital twins are defined as virtual represen-
tations (“digital twin”) of patients (“physical twin”) that are gen-
erated from multimodal patient data, population data and real-
time updates on patient and environmental variables [30].

Several ML therapeutic models have been developed in re-
cent years, although most of them are not yet validated for ap-
plication in daily clinical practice (Table 1). Dialysis is a par-
ticularly attractive field for Al application because of its large
volume of documented data in EHR [31]. ML models were
able to predict dialysis adequacy in chronic hemodialysis pa-
tients [32] and could lead to future personalized prescriptions.
Different models have been developed to optimize anemia
management [33]. Barbieri et al. [34]. developed an artificial
neural network which guided the prescription of iron and
erythropoietic-stimulating agent doses, resulting in a decrease
in hemoglobin variability and an increase in the percentage of
hemoglobin values on target. In AKI patients, Zhang et al. [35]
developed an XGBoost model that identified patients who would
and would not respond to volume-driving treatment strategies.

The IBox system, an accurate and validated algorithm for the
prediction of graft failure [23], has laid the groundwork for the
use of Al in kidney transplantation. Regarding immunosuppres-
sion therapy, achieving a perfect balance between graft survival
and chronic immunosuppression-associated complications (i.e.
opportunistic infections, malignancies and others) is still a chal-
lenge. Different algorithms based on tacrolimus pharmacokinet-
ics and pharmacodynamics [36, 37] have been developed in or-
der to decrease toxicity, but the perfect therapeutic model that
brings together genetics, pharmacokinetics and clinical param-
eters is yet to come.

CHALLENGES OF Al

It is important to carefully consider the risks and challenges as-
sociated with AI technology and to put systems in place to mit-
igate the risks. Some of the challenges are the following.

Data access and quality

Data sets for ML should come from a trusted source of relevant
data that is clean, accessible, well managed and secured. Data
scarcity is often a shortcoming in nephrology, as many diseases
are rare and kidney diseases are generally far less common than
other medical conditions.

Data privacy and security

Data protection is also a key concern when using Al in nephrol-
ogy. Patient data is sensitive and must be protected in accor-
dance with relevant laws and regulations, such as the General
Data Protection Regulation (GDPR) in the European Union (EU).
Patient data must be anonymized or pseudonymized prior to
analysis or storage somewhere other than where it was col-
lected. It is important to ensure that patient data is handled se-
curely and that patients are informed about how their data will
be used. Any Al tool or project should have a data management
environment for sensitive data.



Bias

The potential for bias in Al algorithms is a further risk that
should be considered. If an Al algorithm is trained on biased
data, it may perpetuate or even amplify existing biases in the
healthcare system. For example, if an Al algorithm is trained
on data from predominantly white patients with focal glomeru-
losclerosis, it may not accurately identify or classify the disease
in patients from other racial or ethnic groups. It is important to
ensure that Al algorithms are trained on diverse and represen-
tative data sets in order to minimize the risk of bias.

Trustworthiness

It is human nature to trust only things that are easy to under-
stand, and doctors are a perfect paradigm of this. One of the
critical challenges in implementing Al is the unknown nature of
how learning models and a set of inputs can predict the output
and provide guidance in a medical intervention. Explainability
in Al is needed to provide transparency in the decisions made
by Al, as well as in the algorithms that lead to those decisions.
This is essential in order to avoid the black-box feel common
to many Al tools. Multiple techniques can be used to try avoid
this feeling, though. Methodologies like feature importance rank
the variables used by an Al model based on their impact on
prediction results, revealing how each input contributes to the
decision-making process. Although this can shed some light, re-
cently, OpenAl has admitted its lack of full understanding of how
ChatGPT works, and the lack of tools to explore newer models’
decision-making process. This kind of lack of understanding has
prompted governments to put in place measures to control and
limit the expansion of unregulated Al One tool to improve trust-
worthiness in the kidney arena is education of the nephrological
community in this field.

Computing power

ML and DL are the stepping stones of Al but they require an ever-
increasing number of cores and GPUs to operate efficiently, and
these are not readily available everywhere. Achieving the com-
puting power to process the massive amounts of data needed
to build Al systems is the biggest challenge the industry has
ever faced. And it goes without saying that this computing power
comes with a significant environmental footprint. This is a real
hurdle for many research projects using Al and has raised con-
cerns in the Al community, leading to calls for more trans-
parency, optimization of training cycles and increased focus on
“green Al,” which aims for novel results without increasing com-
putational costs, and ideally reducing it [38].

Al integration

EHRs are relatively new to many healthcare providers. While the
EU is supporting efforts to harmonize them and the USA has
already introduced some shared patient information, the reality
is that interoperability is scarce and embedding Al tools in EHRs
is not always feasible in many hospitals.

Al specialists

The integration, deployment and implementation of Al require
a specialist, such as a data scientist or data engineer, with a cer-
tain level of skills and expertise. One of the main challenges in
implementing Al in hospitals or in a research environment is
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that these experts are expensive and currently quite rare; they
are often more willing to join a large company with high salaries
than to work in a public environment such as most hospitals or
research centers in Europe.

Legal issues

Another risk to consider is the potential for errors in Al algo-
rithms. While AI algorithms can process large amounts of data
quickly and accurately, they are not perfect and can make mis-
takes. Itis important to have systems in place to identify and cor-
rect errors in Al algorithms in order to ensure the safety and ef-
fectiveness of the technology. As mentioned above, for the time
being, Al tools will help nephrologists make decisions, but will
not replace expert professionals. Al algorithms may also vio-
late laws or regulations, exposing the organization to legal chal-
lenges.

EUROPEAN UNION FRAMEWORK

In 2021, the European Commission proposed a regulatory frame-
work that is expected to enter into force in 2023 as a transitional
period and in 2024 as a full deployment. It classifies Al technol-
ogy into four levels of risk: (i) unacceptable risk as a clear threat
to safety, (ii) high risk, including transport, health, administra-
tive and law enforcement, among other sectors, (iii) limited risk,
such as chatbots, where transparency is key, and (iv) minimal
risk, such as Al video games.

Most healthcare Al systems will be placed in the high-risk
category and will need to undergo a regulatory process including
conformity assessment and compliance specifics. High-risk Al
systems considered medical devices will have to be compliant
with the Medical Regulation (MDR) and will be registered in an
EU database and CE marking will be required.

The European Health Data Space (EHDS) is an initiative of-
ficially launched in 2018 by the EU to promote secure and
seamless access to health data across the EU. The aim of the
EHDS is to create a comprehensive and interoperable platform
for sharing health data while ensuring data privacy and pro-
tection. The EHDS facilitates the collection and exchange of
health data such as electronic health records, research data
and patient-generated data among healthcare professionals, re-
searchers and policymakers. It ensures the safety and confiden-
tiality of personal data by complying with the GDPR, which is an
extensive data protection regulation applicable to all EU mem-
ber states that establishes guidelines for the collection, handling
and retention of personal data.

Another important component of the EU framework is the
Ethical Guidelines for Trustworthy Al, which were formulated
by the High-Level Expert Group on Al of the European Commis-
sion. The guidelines outline a set of principles and requirements
for Al that align with fundamental human rights, ethical values
and social well-being. They emphasize the need for Al systems
to be transparent, accountable and explainable while respecting
data privacy and protection. Furthermore, the guidelines high-
light the significance of fairness, non-discrimination and sus-
tainability in the development and deployment of Al, serving as
a reference for developers, deployers and users of Al systems
across multiple sectors, including healthcare.

The abovementioned guidelines provide a comprehensive
framework for Al governance in nephrology and healthcare.
While Al algorithms offer significant potential, they are tools for
humans, created by humans, and the responsibility to ensure
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Figure 4: The future of nephrology: advancing precision medicine with Al The field of nephrology aspires to achieve precision medicine by taking into account
interindividual variability in prevention, diagnosis and treatment strategy. The use of Al is expected to greatly enhance achievement of this goal in the coming years.
Al has the potential to improve patient outcomes and revolutionize clinical management in nephrology. As such, it is a promising paradigm shift that will enable

healthcare professionals to provide more personalized and effective patient care.

the ethical and responsible use of these technologies remains
paramount.

CONCLUSIONS

Al has the potential to revolutionize healthcare in several ways,
including personalized medicine, early disease detection and
improved drug discovery techniques (Fig. 4). Economically, Al
can be used to predict patient outcomes, readmission rates and
length of hospital stays based on patient data. While Al can sig-
nificantly improve patient care, it cannot replace the patient-
doctor relationship, which is a critical aspect of healthcare.

In nephrology, the use of Al has the potential to bring about
significant benefits, but it is crucial to consider the risks and
challenges associated with the technology and to develop sys-
tems to mitigate these risks. Nephrologists will soon be inter-
acting with Al in their daily practice, making it essential for the
nephrology community to be educated about this technology.
Understanding the core concepts of Al and how models are cre-
ated is a prerequisite for effective use of the technology.

While Al will not replace nephrologists, those who can use it
effectively will likely become better professionals for their pa-
tients. However, it is important to recognize that the integra-
tion of Al into clinical practice will require a shift in the tradi-
tional roles of healthcare professionals, and that there will be a
need for ongoing training and education to ensure that Al is used
effectively and ethically.
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