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Formation and function of multiciliated cells
Qian Lyu1*, Qingchao Li1*, Jun Zhou1,2, and Huijie Zhao1

In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and
reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow
across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies,
such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential
for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies,
and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism
underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC
and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their
implications.

Introduction
Cilia are microtubule-based hair-like structures that protrude
from the cell surface. Each cilium comprises a basal body (BB)
converted from a mature centriole, a centriolar microtubule-
extended axoneme, and a ciliary membrane. The BB anchors
the cilium to the plasma membrane, and the axoneme coor-
dinates with the ciliary membrane to execute ciliary functions.

Based on their motility, cilia can be categorized into non-
motile and motile cilia. Non-motile cilia are commonly termed
primary cilia or sensory cilia and function as a signaling hub to
transduce external stimuli into cellular responses (Goetz and
Anderson, 2010). Most mammalian cells possess a singular
non-motile cilium except for olfactory neurons and choroid
plexus epithelial cells, which contain multiple non-motile cilia
(Falk et al., 2015; Narita and Takeda, 2015). By contrast, motile
cilia can move and are present in large numbers on terminally
differentiated cells (multiciliated cells, MCCs) in epithelial tis-
sues of the brain ependyma, airway, and reproductive ducts.
Motile cilia also occur as solitary structures such as sperm fla-
gella and embryonic node cilia (Jain et al., 2010). The beating of
motile cilia creates fluid flow on the cell surface to expel mucus
or power cellular movements (Del Bigio, 2010; Dirksen, 1971;
Sorokin, 1968). In addition to the well-appreciated role in mo-
tility, motile cilia of airway epithelia can perform sensory
functions like primary cilia (Mao et al., 2018; Nordgren et al.,
2014; Shah et al., 2009) and also facilitate SARS-CoV-2 infection
in airway epithelia (Wu et al., 2023).

Structurally, in contrast to the typical 9+0 axoneme ar-
rangement of primary cilia, most motile cilia display a 9+2

axoneme arrangement with nine peripheral doublet micro-
tubules (DMTs) surrounding the central apparatus (CA) that
consists of a central pair of microtubules (CP) and CP-
associated projections (Spassky and Meunier, 2017; Zhao
et al., 2020b). The DMTs are decorated with motility related
structures, including axonemal dyneins (outer dynein arm
[ODA] and inner dynein arm [IDA] complexes), radial spokes
(RSs), and nexin–dynein regulatory complexes (N-DRCs;
Ishikawa, 2017). Besides the typical 9+2 motile cilia, the motile
nodal cilia in the embryonic ventral node have a 9+0 axoneme
structure and the motile cilia on the rabbit embryonic noto-
chordal plate display a 9+4 arrangement (Feistel and Blum,
2006; Nonaka et al., 1998).

In primary ciliated cells, cilia are assembled through a com-
plex multistep process referred to as ciliogenesis, which has
been extensively reviewed elsewhere (Ishikawa and Marshall,
2011; Santos and Reiter, 2008; Zhao et al., 2023a). The corre-
sponding process of multiple motile cilia formation in MCCs is
termedmulticiliogenesis, which followsMCC fate determination
and generally includes centriole amplification, migration and
docking, and axoneme assembly. Recent advances in imaging,
structural biology, genomics, and proteomics have revealed
significant insights into multiciliogenesis, especially in mam-
malian brain and airway epithelial MCCs. Here, we discuss the
results of recent studies conducted in ex vivo MCCs and animal
models, present an overview of the proteins and associating
networks that regulate the formation of multiple motile cilia,
and focus on recent progress in the process of multiciliogenesis.
Along with a synthesis of our current knowledge regarding the
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molecular mechanisms of multiciliogenesis, we present poten-
tial routes for future studies.

MCC cell fate acquisition and the transcriptional control
of multiciliogenesis
The extrinsic cues and intrinsic properties that determine the
specification of MCC cell fate during development have been
extensively studied. MCC progenitor cells respond to particular
environmental cues by stimulating the expression of MCC-
specific genes. In this section, we highlight the signaling path-
ways that lead to MCC differentiation and summarize associated
regulators that govern the MCC-specific gene expression
(Table S1).

Signaling pathways. MCCs in the brain ventricles arise pri-
marily during development and persist for many years. Al-
though radial glia and subventricular zone astrocytes possess the
ability to generate new ependymal MCCs (Luo et al., 2008;
Spassky et al., 2005), limited replacement of ventricular MCCs
only occurs under pathological conditions or in aging mice (Luo
et al., 2008). Meanwhile, MCCs in the airway and reproductive
organs can regenerate continuously throughout life (Kessler
et al., 2015; Rock et al., 2009; Spassky and Meunier, 2017). The
airway epithelium contains multiple cell types such as multi-
ciliated, basal, neuroendocrine, and club cells (previously named
Clara cells). Lineage tracing analysis suggests that basal and club
cells can differentiate into MCCs (Rawlins et al., 2009;
Ruysseveldt et al., 2021). Single-cell transcriptomics of Xenopus
organoids has recently revealed that basal cell differentiation
requires a multipotent “early epithelial progenitor” (Lee et al.,
2023). During MCC differentiation, different cell types exclu-
sively express distinct markers. Undifferentiated stem cells
(SOX2 and/or SOX3) undergo maturation to generate epithelial
progenitors (HAS1), which further differentiate into basal cells
(P63). The basal cells can form multiple cell types such as MCCs
(FOXJ1) during embryonic development and act as adult stem
cells to replenish MCCs upon regeneration (Daniely et al., 2004;
Lee et al., 2012, 2023; Liu et al., 2013).

In general, the differentiation of progenitor cells into MCC
precursor cells requires the crosstalk of multiple signaling
pathways. The bone morphogenetic protein (BMP) and Notch
signaling pathways are both involved in the MCC cell fate de-
termination (Cibois et al., 2015; Deblandre et al., 1999; Liu et al.,
2007; Ma and Jiang, 2007; Marcet et al., 2011b; Morimoto et al.,
2010; Omiya et al., 2021). Inhibited Notch signaling promotes
MCC differentiation, but constitutive activation conversely de-
creases the MCC population (Lewis and Stracker, 2021). While
Notch receptors (NOTCH1/2/3/4) and their ligands (Delta-like
and Jagged: DLL1/3/4, and JAG1/2) coordinate differentiation of
multiple cell types during lung development, Jagged family li-
gands may exclusively regulate the differentiation program that
produces MCCs (Stupnikov et al., 2019). Similarly, the BMP
signaling pathway negatively regulates the differentiation of
progenitor cells into MCCs. Overactivation of BMP signaling
decreases the number of MCCs, while BMP inhibition promotes
the MCC differentiation in Xenopus epidermal, mouse ventricu-
lar, and human airway epithelia (Cibois et al., 2015; Nishimura
et al., 2010; Omiya et al., 2021). In addition, inhibitory Smad

proteins negatively regulate the canonical SMAD2-dependent
transforming growth factor-β (TGF-β) signaling pathway,
which however is not required for the MCC cell fate determi-
nation but essential for the ciliary length control (Tözser et al.,
2015). Moreover, the Hippo pathway also plays a role in MCC
differentiation via its transcriptional coactivator YAP. Disrup-
tion of YAP in airway epithelial progenitors prevents multi-
ciliogenesis (Mahoney et al., 2014; van Soldt and Cardoso, 2020;
van Soldt et al., 2019). Recent studies also demonstrate a re-
quirement of the dynamically modulated Wnt/β-catenin sig-
naling in cell fate specification of multiciliated and secretory
cells (Brechbuhl et al., 2011; Hou et al., 2019; Huang and Niehrs,
2014; Malleske et al., 2018; Schmid et al., 2017). In basal cells,
Wnt/β-catenin signaling activates P63, which promotes basal
cell proliferation and prevents its differentiation into MCCs.
However, in MCCs, Wnt/β-catenin signaling positively regu-
lates the expression of FOXJ1, a master transcriptional factor for
multiciliogenesis. Disturbance of Wnt/β-catenin signaling thus
also inhibits MCC differentiation (Haas et al., 2019).

Gene expression regulators. MicroRNAs are a group of small
non-coding RNAs regulating gene expression at the posttrans-
criptional level. The miR-34/449microRNA family is involved in
multiciliogenesis, as miR-34/449 deficient mice exhibit fertility
and respiratory dysfunction (Lizé et al., 2010; Marcet et al.,
2011a, 2011b; Song et al., 2014; Wu et al., 2014; Yuan et al.,
2019). The miR-34/449 family contains six homologous
miRNAs (miR-34a/b/c and miR-449a/b/c), which redundantly
regulate MCC cell fate determination by targeting Notch sig-
naling (Marcet et al., 2011a, 2011b). Consistently, a significant
reduction in FOXJ1-positive cells is seen in the efferent ductular
epithelia of miR-34/449 deficient mice (Wu et al., 2021). These
studies demonstrate the crucial role of the miR-34/449 family in
MCC cell fate acquisition (Fig. 1).

Geminin coiled-coil domain-containing protein 1 (GEMC1)
and Multicilin (also known as MCIDAS) are the most upstream
transcription regulators specifically required for MCC differ-
entiation. Upon inhibition of Notch signaling by the miR-34/449
microRNAs, the expression of GEMC1 and MCIDAS is activated,
indicating that both transcription regulators function as down-
stream effectors of the Notch signaling pathway (Arbi et al.,
2016; Ma et al., 2014; Stubbs et al., 2012; Terré et al., 2016).
GEMC1 acts upstream of MCIDAS since GEMC1 depletion pro-
hibits the MCIDAS expression in zebrafish kidney tubules (Zhou
et al., 2015). GEMC1 directly regulates the expression of several
transcription regulators critical for MCC differentiation, in-
cluding MCIDAS, FOXJ1, RFX2, and RFX3, whereas MCIDAS
governs the expression of genes required for centriole amplifi-
cation, including Ccno, Cdc20b, and Deup1 (Fig. 1; Lu et al., 2019).
In addition, MCIDAS regulates the expression of C-MYB, which
is required for centriole amplification during multiciliogenesis
(Fig. 1; Tan et al., 2013). C-MYB has been proposed to function
upstream of FOXJ1 (Pan et al., 2014; Tan et al., 2013), although
the expression of FOXJ1 is surprisingly unaffected in Mcidas
mutant MCCs (Lu et al., 2019).

Due to the lack of a DNA binding domain,MCIDAS is reported
to associate with E2F4 or E2F5 transcription factors and
their cofactor DP1 to form the E2F4/E2F5-DP1-MCIDAS (EDM)
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complex, which cooperates to promote the transcription of
essential genes required for multiciliogenesis (Ma et al., 2014).
Despite the structural similarities between GEMC1 and MCI-
DAS, GEMC1 preferably interacts with E2F5 via its distinct
C-terminal domain (Arbi et al., 2016; Lu et al., 2019). Consis-
tently, E2F4 and E2F5 have also been linked to MCC differen-
tiation in the murine brain, airway, and germline (Danielian
et al., 2007, 2016; Lindeman et al., 1998; Ma et al., 2014). In
addition to E2F4 and E2F5, a proximal proteomic analysis re-
vealed distinct interactions with SWI/SNF subcomplexes:
GEMC1 and MCIDAS substantially interact with the ARID1A-
containing BAF complex and the BRD9 containing ncBAF
complex, respectively, interactions required for the transcrip-
tional activity of GEMC1 and MCIDAS during MCC formation
(Lewis et al., 2023). Moreover, the transformation/transcription
domain-associated protein TRRAP acts downstream of the Notch
signaling to regulate the transcription of Mcidas and many other
MCC genes (Fig. 1; Wang et al., 2018). It is interesting as TRRAP
can also not bind DNA and both TRRAP and MCIDAS that are
needed to form a complex with the E2F family proteins for
transcriptional activity (Ma et al., 2014; Wang et al., 2018). Fu-
ture studies are needed to explore how TRRAP, E2F, andMCIDAS
are linked together to control MCC differentiation.

P53 family transcription factors also regulate multicilio-
genesis. As aforementioned, P63 is essential for the identity and
maintenance of epithelial basal progenitor cells (Fig. 1). Loss of
P63 leads to severe epidermal and craniofacial abnormalities in
mice and impairs the differentiation of multipotent cells into
airway epithelial cells (Bilodeau et al., 2021; Yang et al., 1999).
P73, another P53 family transcription factor, has been linked
to MCC differentiation as a direct regulator of motile cilia–
associated genes such as Foxj1, Rfx2, and Rfx3 (Fig. 1; Marshall
et al., 2016; Nemajerova et al., 2016). The p73-deficient mice
exhibit congenital hydrocephalus, sterility, chronic lung in-
flammation, and sinus (Yang et al., 2000). While P73 is essential
for multiciliogenesis in the airway and reproductive ducts
(Marshall et al., 2016; Nemajerova et al., 2016; Wildung et al.,
2019), the function of P73 in ventricular multiciliogenesis is
compensated by the miR-449a/b/c microRNAs (Wildung et al.,
2019), indicating tissue-specific molecular circuits for MCC cell

fate determination (Fig. 1). Moreover, the signal of P73 was gone
in Gemc1 knockoutMCCs but steadily existed inMcidas knockout
cells (Terré et al., 2019), suggesting p73 as a downstream target
gene of GEMC1 (Fig. 1). The P53-P21 pathway also functions
downstream of GEMC1 to induce cell cycle arrest, allowing ep-
endymal progenitors to differentiate into MCCs (Fig. 1; Ortiz-
Álvarez et al., 2022).

FOXJ1 and RFX family transcription factors are important for
controlling ciliary gene expression (Fig. 1). FOXJ1, a forkhead
domain-containing transcription factor, is exclusively necessary
for motile cilia formation. In vertebrates, FOXJ1 is highly ex-
pressed in multiciliated tissues. FOXJ1 loss of function causes
left-asymmetry defects and hydrocephalus in mice and humans
(Brody et al., 2000; Hou et al., 2023; Shapiro et al., 2021;
Wallmeier et al., 2019). Leucine-rich repeat-containing protein 6
(LRRC6) can regulate the nuclear translocation of FOXJ1. The
absence of LRRC6 causes the mislocalization of FOXJ1 in the
cytoplasm, downregulating the transcriptional levels of motile
cilia–related genes (Kim et al., 2023). As for RFX transcription
factors, they play roles in both primary ciliogenesis and multi-
ciliogenesis by regulating a set of proteins involved in ciliary
transport and BB anchoring (Thomas et al., 2010). RFX2 and
RFX3 appear to function redundantly in the control of multi-
ciliogenesis in mice ependymal cells (Lemeille et al., 2020). In-
terestingly, FOXJ1 and RFX3 have been proposed to regulate the
expression of ciliary proteins cooperatively (Didon et al., 2013).

Multiple motile cilia formation
Once the MCC cell fate is determined, these cells have to exit the
cell cycle and create a permissive environment for massive
centriole production, a process involving multiple cell cycle
regulators and MCC-specific cellular structures, including fi-
brogranular materials and deuterosomes (Levine and Holland,
2017; Sorokin, 1968). The newly nucleated centrioles sequen-
tially undergo migration to the apical surface, docking to the
plasm membrane, and eventually templating the ciliary axo-
neme. In this section, we will introduce the current knowledge
on these cellular events, discuss the controversies in the field,
and particularly focus on recent advances in understanding
axoneme assembly.

Figure 1. Regulation of MCC cell fate determination. The
Notch signaling pathway inhibits the differentiation of MCC
progenitor cells that express P63 and SOX2. Upon the activation
of MCC differentiation, miR-34/449 can inhibit the Notch sig-
naling pathway, which leads to the expression of key regulators,
including TRRAP, GEMC1, and MCIDAS. GEMC1 induces cell
cycle exit through the P53-P21 pathway and acts upstream of
MCIDAS and C-MYB to control the expression of centriole
amplification-related regulators such as DEUP1, CCNO, and
CDC20B. On the other hand, GEMC1, C-MYB, and P73 can
regulate the expression of motile cilia-related master regulators
such as FOXJ1, RFX2, and RFX3.
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Centriole amplification. A key feature of MCC is that each cell
contains multiple motile cilia extending from the apical surface.
However, MCC precursor cells only possess a centrosome con-
sisting of two parental centrioles (a maturemother centriole and
an immature daughter centriole). Intriguingly, electron mi-
croscopy imaging of differentiating MCCs has revealed that
upon the initiation of MCC differentiation, each parental cen-
triole can produce more than one procentriole, and the majority
of the total centrioles are nucleated via unique cytoplasmic or-
ganelles called deuterosomes (Mahjoub et al., 2022; Sorokin,
1968; Yan et al., 2016). Therefore, this raises questions regard-
ing how the MCC precursor cells gain the ability to break the
strict centriole-duplication rule that only one new centriole
is produced per parental centriole and how those cells gen-
erate the specific deuterosome organelle for massive centriole
amplification.

In most cycling cells, new centrioles are assembled in the
proximal vicinity of the parental centrioles through stepwise
recruitment of a series of protein complexes (Loncarek and
Bettencourt-Dias, 2018; Nigg and Holland, 2018; Vasquez-
Limeta and Loncarek, 2021). Based on the current literature,
CEP57 (centrosomal protein of 57 kD), which localizes to the
centriole via binding centriolar microtubules, functionally co-
operates with its paralog CEP57L1 to recruit CEP63, which in-
teracts with CEP152 to ensure its centriolar loading (Brown et al.,
2013; Lukinavičius et al., 2013; Zhao et al., 2020a). Then CEP152
interacts with the serine/threonine-protein kinase PLK4, a
master regulator of centriole biogenesis (Hatch et al., 2010),
which further recruits CPAP, STIL, SASS6, and other proteins to
initiate the procentriole assembly (Fig. 2 A; Cizmecioglu et al.,
2010; Moyer et al., 2015; Tang et al., 2011). It remains unclear
how the parental centrioles in MCC precursor cells generate
multiple procentrioles. In cycling cells, the control of centriole
numbers depends on the protein levels of key duplication pro-
teins such as PLK4, SASS6, and STIL (Bauer et al., 2016). Indeed,
overexpression of either key centriole duplication protein can
induce the production of random supernumerary centrioles
(Arquint et al., 2012; Bettencourt-Dias et al., 2005; Strnad et al.,
2007). Consistently, the expression of these factors is strikingly
elevated in MCCs undergoing centriole amplification compared
with the low abundance in proliferating cells (Kim et al., 2018;
Zhao et al., 2013). Thus, it is plausible that the ability of parental
centrioles to generate multiple new centrioles is attributed to
the highly elevated protein levels of these key duplication
factors.

During MCC differentiation, about 90% of newly assembled
centrioles are produced by the deuterosome structure, which
is formed through DEUP1 oligomerization or condensation
(Yamamoto et al., 2021; Zhao et al., 2013). DEUP1, like its pa-
ralogue CEP63, can interact with CEP152 and trigger the
downstream cascade of canonical centriole biogenesis at the
deuterosome (Fig. 2 B; Zhao et al., 2013). Based on the obser-
vation of deuterosome preferably associating with the daughter
centriole, it has been proposed as the primary nucleation site for
deuterosome formation and centriole amplification (Al Jord
et al., 2014). Recent studies reveal that in the absence of pa-
rental centrioles, deuterosomes can form normally in the cytosol

of MCCs (Mercey et al., 2019a; Nanjundappa et al., 2019; Zhao
et al., 2019), indicating that the daughter centriole is dispensable
for deuterosome formation. The unique accumulation of DEUP1
at the daughter centriole increases the local concentration of
DEUP1, which further promotes its self-assembly into macro-
molecular deuterosomes in the vicinity of the daughter centriole
(Fig. 2 B). Similarly, fibrogranular materials (FGMs) in MCCs
have been proposed to be deuterosome precursors (Anderson
and Brenner, 1971; Dirksen, 1971; Sorokin, 1968). However, af-
ter the disruption of FGMs by depleting PCM1, a core FGM
component, deuterosomes are still formed but extensively dis-
persed in the cytosol, and the deuterosome size is significantly
reduced (Zhao et al., 2021), suggesting that FGMs function in the
regional enrichment of deuterosome components as well (Fig. 2
B). Analysis of Pcm1 knockout mice further reveals that the lack
of PCM1 does not affect the number of centrioles but causes a
delay in centriole biogenesis (Hall et al., 2023). These findings
indicate that the daughter centriole and the FGMs may enrich
the local deuterosome proteins, greatly facilitating deuterosome
assembly (Fig. 2 B).

Interestingly, the parental centriole-dependent and the
deuterosome-dependent centriole amplification pathways are
interconnected. In mouse tracheal MCCs in vitro, transient
depletion of DEUP1 enhances CEP63-mediated parental centriole-
dependent centriole amplification and causes ciliogenesis defects
in the early stage of multiciliogenesis (Zhao et al., 2013). Further
analysis of the whole process of centriole amplification in DEUP1-
depleted MCCs reveals a dramatic compensation for the loss
of DEUP1 from the parental centriole-dependent pathway. In
DEUP1-depleted MCCs, each parental centriole can nucleate tens
of procentrioles in the early stage of centriole amplification, and
those newly formed procentrioles/centrioles can further template
the second round of centriole duplication. In addition, the cilio-
genesis defects can be rescued in the later stage of multicilio-
genesis, suggesting that the lack of DEUP1 causes a delay in
centriole biogenesis. However, MCCs of the Deup1 and Cep63
double-mutant mice can generate comparable centrioles to the
wild-type MCCs (Mercey et al., 2019b). This finding is interesting
regarding the difference between the in vitro and in vivo systems.
Future work will be needed to investigate how these centrioles
are nucleated in the absence of DEUP1 and CEP63, and whether/
how the centriole duplication proteins such as CEP152 are in-
volved in centriole amplification in Deup1 and Cep63 double-
mutant MCCs.

In addition to the core component DEUP1, other structural
proteins relative to the deuterosome have been identified in the
past decade, including E2F4, CCDC78, and CDC20B. The tran-
scription factor E2F4 not only transcriptionally regulates the
expression of DEUP1 but also forms the cytoplasmic E2F4-PCM1
granules for deuterosome assembly (Mori et al., 2017). CCDC78
is reported to mediate the deuterosome distribution of CEP152
and is essential for centriole amplification in Xenopus epidermal
MCCs (Klos Dehring et al., 2013). CDC20B localizes to the peri-
deuterosomal region and cooperates with PLK1 to mediate cen-
triole release from the deuterosome (Fig. 2 C; Revinski et al.,
2018). Despite the argument about the necessity of the deutero-
some for centriole amplification in MCCs, the deuterosome-
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Figure 2. Formation of multiple motile cilia. (A) Parental centriole dependent centriole amplification. The CEP57–CEP63–CEP152 cascade mediates the
initiation of parental centriole-dependent centriole amplification. In differentiating MCCs, both parental centrioles can generate multiple procentrioles. Note
that the daughter centriole of parental centrioles can accumulate DEUP1 and promote the deuterosome assembly. (B) Deuterosome-dependent centriole
amplification. DEUP1 and CEP152 mediate the initiation of deuterosome-dependent centriole amplification. PCM1 and other fibrogranular material (FGM)
components form fibrous granules, which can similarly enrich DEUP1. Regional concentrated DEUP1 can self-assemble into macromolecular deuterosomes.
Both centriole amplification pathways utilize common downstream regulators such as PLK4, SASS6, and STIL to generate procentrioles. (C) Centriole dis-
sociation and deuterosome disassembly. As procentrioles grow and mature, CDK1-cyclin B phosphorylates SASS6, which in turn destabilizes the cartwheel
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dependent pathway is extensively adopted in many multiciliated
tissues and species. It will be important to fully elucidate the
deuterosome composition and explore the role of the deuterosome
during evolution.

How the centriole number is controlled in different types of
MCCs remains unclear. The centriole number has been reported
to be correlative with the surface area of MCCs in mouse trachea
systems (Nanjundappa et al., 2019). The correlation between
apical area and centriole number has also been confirmed in
Xenopus, where the mechanosensitive cation channel PIEZO1 is
essential for calibrating the centriole number in proportion to
the apical area (Fig. 2 D; Kulkarni et al., 2021). In addition, the
apical surface area expansion in mouse trachea MCCs requires
appropriate centriole amplification. In PLK4- or CPAP-depleted
MCCs, where centriole amplification is blocked, the apical sur-
face area expansion is inhibited (LoMastro et al., 2022). Future
studies are needed to explore thoroughly how centriole am-
plification and apical surface area expansion are mutually
interconnected.

Interestingly, MCCs of Xenopus epidermis are specified in the
basal epithelia and produce procentrioles as they migrate and
intercalate into the outer epithelial layer, a process called MCC
intercalation (Kulkarni et al., 2021). Their centrioles are pro-
duced in two waves: half of the centrioles are synthesized before
intercalation and the remaining half are from the second round
of centriole amplification during/after the apical expansion of
the MCCs (Kulkarni et al., 2021). By contrast, similar radial in-
tercalation does not occur and demanded centrioles are gener-
ated in a single round of amplification during the mammalian
MCC differentiation (Al Jord et al., 2014; Yan et al., 2016).
Therefore, it is worth exploring the details of centriole ampli-
fication during Xenopus MCC formation (the intercalation and
apical expansion stages) by analyzing the role of these two
centriole amplification pathways, which would provide addi-
tional information on the centriole amplification in different
species.

Centriole dissociation and polarized migration. As procen-
trioles grow and form distal and subdistal appendages (Zhao
et al., 2013, 2021), the matured centrioles start to dissociate
from the parental centriole and deuterosome platforms, a pro-
cess similar to the centriole disengagement during the centriole
duplication cycle. Each newly assembled daughter centriole in
cycling cells is tightly associated with its parental centriole
through mitosis. As cells enter G1, the centriole pairs lose their
tight configuration and disengage. Centriole disengagement is
licensed by activation of the anaphase-promoting complex/cy-
closome (APC/C) and mediated by separase and PLK1 (Tsou
et al., 2009). CDK1-cyclin B phosphorylates SASS6, which suc-
cessively disrupts its binding to STIL and further promotes

cartwheel disassembly and centriole disengagement (Fig. 2 C;
Huang et al., 2022). Interestingly, inhibition of the CDK1-APC/C
or PLK1 in MCCs can lead to decelerated centriole dissociation
from deuterosomes and trigger cell cycle re-entry (Al Jord et al.,
2017; Krasinska and Fisher, 2018). Consistently, overexpression
of EMI2, a potent inhibitor of the APC/C, also causes cell cycle
re-entry in XenopusMCC progenitors, similar to the effect of the
APC/C inhibitor treatment in mouse brain MCC progenitors (Al
Jord et al., 2017; Kim et al., 2022). However, depletion of EMI2
severely prohibits centriole dissociation from the parental cen-
triole and deuterosome platforms (Fig. 2 C). The findings suggest
that the activity of APC/C needs to be finely tuned for the reg-
ulation of centriole dynamics during MCC differentiation.

Additionally, in mouse and Xenopus MCCs, CDC20B located
in deuterosomes is involved in separase-dependent centriole
dissociation from deuterosome via the interaction with PLK1
(Revinski et al., 2018). In Xenopus MCCs, the dual specificity
tyrosine phosphorylation regulated kinase 1A (DYRK1A) can
phosphorylate CEP97, a centriolar distal end protein, which in
turn recruits PLK1 and cooperates with separase to promote
centriole dissociation (Lee et al., 2022). These studies further
confirm that the activity of PLK1 and separase is indeed required
for the centriole dissociation during MCC differentiation, indi-
cating a general mechanism by which newly formed centrioles
are separated from their nucleation platforms (Fig. 2 C). How-
ever, it remains unclear how PLK1 is activated and modulated
during MCC differentiation.

Following centriole dissociation from the deuterosome, this
structure is observed to break into pieces and the remnants lose
the capacity to nucleate procentrioles (Kim et al., 2018; Zhao
et al., 2013). In contrast to the deuterosome assembly process,
the disassembly of the deuterosome remains poorly understood,
although the signal that terminates the transcription of Deup1
has started to be identified. CCNO is an MCC-specific cyclin,
depletion of which in mice can result in severe hydrocephalus
andmucus congestions in the respiratory tract (Funk et al., 2015;
Núnez-Ollé et al., 2017). Further analysis of Ccno-deficient mice
revealed that CCNO depletion inhibits the transcriptional
downregulation of multiple factors for the deuterosome-
dependent centriole amplification, including Deup1, Cep152, and
Mcidas, which leads to an increase in deuterosome size (Funk
et al., 2015). Interestingly, these enlarged deuterosomes in MCCs
of Ccno-deficient mice remain intact even at the late stages of
MCC differentiation (Funk et al., 2015), suggesting that CCNO is
required for deuterosome disassembly or clearance. In addition,
the EMI2-APC/C-PLK1 axis also functions in turning off the
transcription of Deup1 (Fig. 2 C; Kim et al., 2022). Future studies
are needed to explore how CCNO and EMI2-APC/C-PLK1mediate
the on-off cycle of Deup1 transcription for deuterosome

structure, and Separase cooperates with other regulators such as PLK1 and CDC20B to release the maturing centrioles from their nucleating platforms, in-
cluding parental centrioles and deuterosomes. Meanwhile, CCNO downregulates the expression of centriole amplification-related genes and collaborates with
EMI2 and PLK1 to accomplish the deuterosome disassembly or clearance. (D) Assembly of multiple motile cilia. As centrioles gain the distal and subdistal
appendages (DAs and SDAs), they conduct polarized migration with the help of IFT and the actin–myosin network. MCCs may adopt either extracellular or
intracellular pathways to form motile cilia, although CBY1-mediated distal appendage vesicle (DAV) accumulation is involved in multicilia formation. Once
docked to the plasm membrane, basal bodies converted from mature centrioles are fastened to the actin network by a ciliary adhesion complex. The centriole
number in MCCs is calibrated to the apical surface area via PIEZO1.

Lyu et al. Journal of Cell Biology 6 of 18

Mechanisms of multiple motile cilia formation https://doi.org/10.1083/jcb.202307150

https://doi.org/10.1083/jcb.202307150


disassembly. Testing whether posttranslational modifications
regulate DEUP1 stability and degradation for deuterosome dis-
assembly will be interesting.

Upon dissociation from the centriole nucleation platforms,
centrioles migrate to the cell surface along the basal–apical axis,
allowing centrioles to dock at the apical surface, a process de-
pendent on various proteins and the cytoskeleton. The actin–
myosin network is essential for centriole migration in MCCs as
inhibition of actin polymerization or myosin function prevents
centriole migration (Boisvieux-Ulrich et al., 1987, 1990). Con-
sistently, in the ctenophores, the long-striated rootlet of newly
formed centrioles in the cytoplasm closely associate with the
parallel bundles of actin microfilaments oriented toward the cell
surface (Tamm and Tamm, 1988). In support of the roles of the
actin network in centriole apical migration, the small GTPases
RHOA and CDC42 that directly regulate actin cytoskeleton dy-
namics are indeed required for directing centriole apical mi-
gration and docking in mouse trachea MCCs (Fig. 2 D; Pan et al.,
2007). The Wnt/planar cell polarity (PCP) signaling pathway
is essential for the apical positioning of centrioles. The PCP
signaling proteins Dishevelled (DVL), Inturned (INTU), Fuzzy
(FUZ), and DAAM1 mediate the RHO GTPase activity to regulate
the actin network for the polarized migration of centrioles in
MCCs (Gray et al., 2009; Park et al., 2008; Yasunaga et al., 2015).
In addition, the intraflagellar transport (IFT) machinery also
mediates the directional centriole migration. Interestingly,
many of the actin dynamics regulators and IFT components are
distributed to the migrating centrioles in Xenopus epidermal
MCCs (Fig. 2 D; Park et al., 2008; Zhao et al., 2022), suggesting
that the migrating centriole itself coordinates actin assembly
for its apical movement.

Centriole transformation and docking. Following centriole
migration, the mature centriole integrates into the apical cyto-
skeleton network and ultimately converts itself to a BB to initiate
ciliary axoneme outgrowth. The mature centriole and ciliary BB
possess distal and subdistal appendages (also known as basal
feet), which are critical for BB anchoring. Interestingly, each
motile cilium in MCCs has a cone-like basal foot on the lateral
side of the BB, different from the presence of nine symmetrical
basal feet per primary cilium (Fewell and Dutcher, 2020). In
primary ciliated cells, cortical actin clearing and ciliary mem-
brane partitioning are essential for ciliogenesis (Jewett et al.,
2021; Smith et al., 2020; Zhao et al., 2023a). However, in Xen-
opus, cortical actin polymerization and subsequent actin net-
work formation are required for the apical MCC emergence and
centriole migration (Fig. 2 D; Sedzinski et al., 2016). It thus re-
mains unclear whether cortical actin clearing occurs before
centriole docking during multiciliogenesis.

Similarly, whether the formation of ciliary vesicles is in-
volved in multiciliogenesis as in primary ciliogenesis is elusive.
During primary ciliogenesis, small distal appendage vesicles
(DAVs) dock to the distal appendage of the mother centriole and
converge to form the ciliary vesicle (CV), which is regulated by
RAB small GTPases and other membrane trafficking and re-
modeling effectors (Shakya and Westlake, 2021; Zhao et al.,
2023a). Although small vesicles have also been observed dis-
tributed around the centrioles in MCCs (Dirksen, 1971; Sorokin,

1968), no membrane trafficking and remodeling effectors have
been proven critical for multiciliogenesis. In mouse trachea
MCCs, the ablation of CBY1, a binding partner of the distal ap-
pendage protein CEP164, leads to defective DAV accumulation
around the migrating centrioles in the cytoplasm and impaired
multiciliogenesis (Fig. 2 D; Burke et al., 2014; Voronina et al.,
2009), suggesting that the CV formation may also occur during
multiciliogenesis.

In primary ciliation, following the CV formation at the
mother centriole, a cap complex formed by CEP97 and CP110 is
removed from the centriolar distal end regulated by a variety of
centriole remodeling proteins including KIF24, MPP9, TTBK2,
ENKD1, and EHD1 (Goetz et al., 2012; Huang et al., 2018;
Kobayashi et al., 2011; Song et al., 2022; Xie et al., 2023), which
in turn allows the axoneme microtubule to extend (Zhao et al.,
2023a). However, the function of the centriolar cap complex in
MCCs has yet to be fully demonstrated. In contrast to findings
in culturedmammalian primary ciliated cells, depletion of CP110
in Xenopus prevents the apical transport of centrioles and causes
sequential defective cilia formation (Walentek et al., 2016),
consistent with the finding that cilia formation is compromised
in Cp110 null mice (Yadav et al., 2016). Interestingly, Cp110
knockdown can restore the defective centriole maturation and
docking induced by miR-34/449 deficiency in MCCs of mice and
Xenopus (Song et al., 2014). Thus, these studies suggest that the
involvement of CP110 in ciliogenesis is under more complicated
regulation in the animal in vivo systems. Considering the fun-
damental roles of other centriole remodeling proteins in pri-
mary ciliation, the tissue-specific knockout mouse model is
helpful to explore their contribution to the centriole-BB con-
version during multiciliogenesis.

Following completion of the cap complex removal, the tran-
sition zone, a region located at the proximal axoneme and ad-
jacent to the BB, is assembled as the axoneme grows. In
mammalian cells, CEP290 localizes to the centriolar satellites
before ciliation and accumulates at the transition zone in ciliated
cells (Tsang et al., 2008). The cap protein CP110 can interact
with CEP290, an interaction essentially required for the ability
of CP110 to suppress ciliogenesis (Tsang et al., 2008). Interest-
ingly, the loss of CEP290 leads to sparse motile cilia in each
ependymal MCC (Rachel et al., 2015), suggesting that CEP290
participates in multiciliogenesis. However, how CEP290 and its
associated transition zone assembly are coupled withmotile cilia
formation awaits further exploration.

The actin cytoskeleton influences the apical centriole docking
during multiciliogenesis. In Xenopus, WDR5, a core subunit of
chromatin modifier, localizes to migrating centrioles and sta-
bilizes the apical F-actin polymers for the apical MCC emergence
and centriole docking (Kulkarni et al., 2018). Furthermore, a
ciliary adhesion complex composed of focal adhesion proteins
bridges the BB with the actin cytoskeleton, ensuring the BB
anchoring (Antoniades et al., 2014). In Xenopus, the ciliary ad-
hesion complexes are formed at the striated rootlet and the basal
foot. The basal foot-located ciliary adhesion is assembled at the
distal region of the basal foot and is required for the intact apical
microtubule network (Chatzifrangkeskou and Skourides, 2022;
Nguyen et al., 2020). On the other hand, the rootlet-located
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ciliary adhesion complex is linked to the apical actin filaments
through the EZRIN-containing microridge actin-anchoring com-
plex, which facilitates the interaction with the actin network
(Walentek et al., 2016; Yasunaga et al., 2022).

In addition, FOXJ1 is implicated in centriole migration and
docking in mouse and Xenopus MCCs (Brody et al., 2000;
Gomperts et al., 2004; Stubbs et al., 2008; You et al., 2004).
Defective centriole docking has also been observed in respira-
tory MCCs isolated from individuals carrying FOXJ1 mutations
(Wallmeier et al., 2019). FOXJ1 promotes the activity of RHOA to
regulate the apical actin polymerization for proper centriole
migration and docking (Pan et al., 2007). Gene ontology (GO)
and enrichment analysis further suggest that the FOXJ1 regula-
tory network genes code not only proteins associated with cili-
ary structure andmotility but also factors for themaintenance of
epithelial cell polarity such as DLG4 and CDC42 (Mukherjee
et al., 2019).

Assembly of multiple motile cilia. After docking to the plasma
membrane, the A-tubule and its associated incomplete B-tubule
of the centriolar microtubule triplet extend to form the axone-
mal doublet microtubule (DMT; Ishikawa, 2017). Similar to the
centriolar microtubules, the α and β-tubulins of the DMTs un-
dergo several conserved posttranslational modifications such as
acetylation, glutamylation, and detyrosination, which contribute
to the stability and function of cilia (Wloga et al., 2017). Mean-
while, the DMT-associating structures, including axonemal dyn-
ein complexes, nexin-dynein regulatory complexes (N-DRCs), and
radial spokes (RSs), and axonemal inner central apparatuses (CAs)
are assembled during the DMT growth. In this section, we de-
scribe the elemental composition of these motility-related struc-
tures and summarize how they are assembled and incorporated to
form fully functional motile cilia.

To gain ciliary motility, axonemal dynein complexes (IDA
and ODA) assembled on the A-tubule generate sliding force
between two adjacent DMTs using ATP hydrolysis (Grotjahn and
Lander, 2019). The N-DRCs that extend from the junction be-
tween the A and B- tubule of the same doublet and project across
the inter-doublet space to connect with the B-tubule of the
neighboring doublet transform inter-doublet sliding into axo-
nemal bending (Heuser et al., 2009). In addition, T-shaped radial
spokes protrude from each DMT and bridge with CAs for coor-
dinating the ciliary motility (Grossman-Haham et al., 2021; Gui
et al., 2021b; Zheng et al., 2021). Cryo-electron tomography
(cryo-ET) and cryo-electron microscopy (cryo-EM) reveal that a
basic axonemal building block is 96 nm in length and each block
contains four ODAs (ODA1-4), one two-headed IDA (IDAf), six
single-headed IDAs (IDAa/b/c/e/g/d), three RSs (RS1-3), and
one N-DRC (Fig. 3; Osinka et al., 2019; Walton et al., 2023;
Zimmermann et al., 2023). Recent cryo-EM studies further
showed that an ODA docking complex links the ODA with the
doublet microtubule inner protein (MIP) network (Fig. 3; Gui
et al., 2021a, 2021b; Kubo et al., 2021; Walton et al., 2021).

A key question about multiciliogenesis is how those complex
structures are properly assembled. To form all the motile cilia-
specific structures mentioned above, hundreds of proteins need
to be synthesized in a short period and cooperate to establish a
precise and complicated arrangement. The IFT machinery is

responsible for the assembly of primary cilia via active protein
trafficking in and out of the cilia (Craft et al., 2015; Hao et al.,
2011; Lechtreck, 2015; Nachury et al., 2010; Zimmermann et al.,
2023). The IFT machinery comprises IFT-A and IFT-B com-
plexes, which mediate anterograde and retrograde protein
trafficking. The anterograde IFT delivers a variety of cargo
molecules from the cell body to the ciliary tip and the retrograde
IFT mediates turnover products from the tip to the cell body
(Nakayama and Katoh, 2018). In mouse tracheal MCCs, IFT
components are highly expressed during multiciliogenesis and
the IFT transport also occurs along the axoneme of Xenopus ep-
idermal motile cilia (Brooks and Wallingford, 2012, 2015; Xu
et al., 2015), suggesting that the IFT machinery also mediates
specific ciliary cargos for building the motile cilia of MCCs. Loss
of IFT88, an essential component of the IFT machinery, indeed
causes a reduced abundance of motile cilia in MCCs of mouse
ependyma and trachea MCCs (Banizs et al., 2005; Gilley et al.,
2014; Vladar and Stearns, 2007). Given that the IFT is essential
for the establishment of the apical centriole migration (Cao et al.,
2010; Zhao et al., 2022), the role of IFT in trafficking cargo for
building motile cilia in MCCs however remains unclear.

Bardet-Biedl syndrome (BBS) proteins have been linked
to the IFT machinery for transporting ciliary components
(Nachury et al., 2007; Tian et al., 2023). Interestingly, BBS
protein-deficient mice were observed to develop hydrocephalus
progressively (Davis et al., 2007; Shah et al., 2008; Zhang et al.,
2013). The loss of BBS proteins does not affect multiciliogenesis
but causes the abnormal accumulation of vesicles in the ciliary
shaft (Davis et al., 2007; Shah et al., 2008; Zhang et al., 2013),
indicating that BBS proteins are dispensable for multiciliogenesis
but required for themaintenance of ciliarymembrane dynamics.
In addition, some ciliary proteins or peptides have been proposed
to be locally synthesized within the motile cilia of mouse epen-
dymal MCCs. Inhibition of ciliary local translation resulted in
motile cilia degeneration (Hao et al., 2021). This finding suggests
that besides the IFT-mediated protein trafficking into the cilia,
MCCs have adopted other strategies for simultaneously building
multiple motile cilia.

Axonemal dynein arms are multiprotein complexes. An im-
portant aspect of axonemal dynein formation is the appropriate
assembly of individual components synthesized in the cyto-
plasm. Given the huge amount and inherent complexities of
axonemal dynein motors, many cytoplasmic factors such as
RUVBL1, RUVBL2, WDR92, and ZMYND10, have been charac-
terized as axonemal dynein assembly factors (DNAAFs), facili-
tating the preassembly of axonemal dynein arms in the
cytoplasm (Fig. 3; King, 2021; Liu et al., 2019; Mali et al., 2018;
Patel-King et al., 2019; Smith et al., 2022; Wang et al., 2022; Zur
Lage et al., 2018). In vertebrateMCCs, the cytoplasmic axonemal
dynein assembly was proposed to occur in the dynein assembly
particle (DynAP), a cytoplasmic liquid-like compartment gen-
erated via phase separation of DNAAFs (Fig. 3; Horani et al.,
2018; Huizar et al., 2018). Further analysis of this new MCC-
specific organelle revealed that ODA and IDA are assembled in
different subregions within DynAPs (Lee et al., 2020). This ob-
servation indicates dynein components are spatially restricted
and this organelle is not in a liquid-like state. The concept of
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phase separation-mediated axonemal dynein assembly in MCCs
thus needs further verification.

The presence of the central apparatus (CA) distinguishes
motile cilia from primary cilia. The CA consists of a pair of
central microtubules (C1 and C2) and their associating projec-
tions of interconnected complexes (Samsel et al., 2021). Unlike
peripheral axonemal DMTs, the central pair (CP) microtubules
do not originate from the BB. The observation that the minus-
ends of CP microtubules attach a structure called basal plate or
CP foot at the distal end of the transition zone (Dute and Kung,
1978; Gilula and Satir, 1972; Ringo, 1967; Zhao et al., 2021) raises a
hypothesis that this structure may support the CP microtubule
nucleation. Although trypanosome Basalin, Chlamydomonas
Centrin and γ-Tubulin, and mouse Centrin and CEP131 have
been located in this region (Fig. 3; Dean et al., 2019; Geimer and
Melkonian, 2005; Silflow et al., 1999; Zhao et al., 2021), only the
trypanosome Basalin depletion appears to cause the CA-loss
defect (Dean et al., 2019). Thus, the role of the basal plate or
CP foot in CA formation remains unclear. In mouse MCCs,

WD40 repeat-containing protein 47 (WDR47) can enrich Cam-
saps, a family of microtubule minus-end binding proteins, at the
proximal end of the CP microtubules (Buijs et al., 2021; Liu et al.,
2021; Ren et al., 2022). Depletion of either WDR47 or CAMSAP3
causes the loss of CA in MCCs, resulting in symptoms reminis-
cent of primary ciliary dyskinesia in animals (Chen et al., 2020;
Liu et al., 2021; Robinson et al., 2020; Saito et al., 2021). These
findings suggest that the CP microtubules are nucleated on the
scaffold formed by WDR47 and Camsaps in the proximal axo-
nemal lumen (Fig. 3). In addition, several other proteins, in-
cluding SPEF1, JHY, STK36, and KIF7, are essential for CA
formation, but the detailed mechanism needs further explo-
ration (Appelbe et al., 2013; Muniz-Talavera and Schmidt,
2017; Nozawa et al., 2013; Zheng et al., 2019). Moreover, the
CP microtubules have numerous projections that share evo-
lutionarily conserved structure and composition (Fig. 3; Han
et al., 2022; Samsel et al., 2021). Although more CP-related
proteins are being identified and characterized (Dai et al.,
2020; Zhao et al., 2020b), how the functionally active CP

Figure 3. Structure of the motile cilia axoneme. A motile cilium comprises a basal body (BB), a transition zone (TZ), a centriolar microtubule extended
axoneme, and a ciliary membrane. Compared with primary cilia, motile cilia display a 9+2 axonemal architecture with a central pair (CP) of microtubule-singlets
(C1 and C2) surrounded by nine doublet microtubules (DMTs). The central apparatus (CA) distinguishes motile cilia from primary cilia, which includes the CP
microtubules and their associating proteinaceous projections. The CP foot or basal plate is located at the proximal end of the CP and adheres to the distal end
of the basal body, where WDR47 and Camsaps form a scaffold to nucleate the CP microtubules. The DMTs of motile cilia are decorated with T-shaped radial
spokes (RSs), the nexin-dynein regulatory complexes (N-DRCs), and rows of axonemal dynein complexes (IDA and ODA). The dynein complexes are proposed
to be preassembled in a cytoplasmic compartment (dynein assembly particle; DynAP) with the help of axonemal dynein assembly factors (DNAAFs) and
transported into cilia via the IFT machinery. Structural biology studies reveal that a basic axonemal building block is 96 nm in length and each contains four
ODAs (ODA1-4), one two-headed IDA (IDAf), six single-headed IDAs (IDAa/b/c/e/g/d), three RSs (RS1-3), and one N-DRC. These motility-related complexes
may be anchored to the DMT through the interplay with microtubule inner proteins (MIPs).
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projections are assembled as the CP microtubules grow in
MCCs remains unclear.

In addition, RSs and N-DRCs must be precisely assembled
during multiciliogenesis. As for the N-DRC, a recent study
demonstrated the structural interdependency of the N-DRC
components in mouse sperm flagella (Zhou et al., 2023), indi-
cating a stepwise assembly of N-DRC via protein–protein
interactions. By virtue of high-resolution cryo-ET and EM,
structures of microtubule-bound RSs and N-DRCs are resolved
(Gui et al., 2021b; Walton et al., 2023). In each periodic axonemal
building block, RSs (RS1-3) are located to the docking adaptor
formed by CCDC39-CCDC40 along the DMT with their head
facing the CP projections (Gui et al., 2021b; Zheng et al., 2021),
while the N-DRC occupies the junction between the bases of RS2
and RS3 in each periodic repeat, adjacent to several IDAs (Walton
et al., 2023). The spatial interconnections of docking adaptors,
RSs, IDAs, and N-DRCs indicate a complex assembly of these
structures, which needs more comprehensive studies.

Establishment of anatomically directed ciliary motility
The polarization of multiple motile cilia is essential for effi-
ciently generating directional fluid flow over the epithelia of
multiciliated organs (Fig. 4, A and B). Although newly developed
motile cilia beat in random directions (Spassky and Meunier,
2017), the directions of cilia movements within each MCC are

progressively aligned (the rotational polarity) and cilia move-
ments of neighboring MCCs are also polarized along the tissue
axis (tissue-level polarity; Fig. 4 B; Arata et al., 2022). Ciliary
orientation is generally measured in terms of the BB orientation
and the axonemal orientation, which are respectively defined by
the direction from the center of the BB to the tip of the basal foot
(BB orientation) and by the line connecting the CP microtubules
(CP plane; Schneiter et al., 2021). Interestingly, the axonemal
orientation is orthogonal to the CP plane and aligned with the
beat direction of motile cilia, while the BB orientation is aligned
with the tissue axis (Fig. 4 C; Schneiter et al., 2021). In addition,
the distribution of BBs differs in MCCs originating from differ-
ent tissues. In mammalian airway MCCs, BBs are evenly dis-
tributed throughout the entire apical surface, whereas BBs of
mature ependymal MCCs are regionally clustered toward the
cell–cell boundary along the plane polarity axis (the translational
polarity; Fig. 4 B; Herawati et al., 2016; Mirzadeh et al., 2010;
Vladar and Stearns, 2007). In this section, wewill introduce how
MCCs establish different polarities in ciliary beating.

PCP core proteins and downstream effectors coordinate to
define and establish the tissue polarity axis. Interestingly, the
PCP core proteins, including Frizzled (FZD), Disheveled (DVL),
Prickle (PRIC), and VANGL2, are asymmetrically distributed
along the planar axis with the proximal (VANGL2 and PRIC) and
distal (FZD and DVL) complexes segregated to opposite sides of

Figure 4. Different types of polarities in multiciliated tissues. (A) Planar cell polarity (PCP). The PCP is established before the formation of multiple motile
cilia, a process relying on external mechanical forces and the apical microtubule network. Core PCP proteins such as Disheveled (DVL), Frizzled (FZD), Prickle
(PRIC), and VANGL2 are asymmetrically distributed along the planar axis. The proximal (VANGL2 and PRIC) and distal (FZD and DVL) complexes segregate to
opposite sides of the cell and interact with the opposite complex of the neighboring cell. CELSR1, a center component of the PCP system, is symmetrically
distributed to both sides to stabilize the PCP complexes. (B) Rotational and translational polarities. The beat of newly developed motile cilia is in random
directions and progressively aligned within each MCC (the rotational polarity). Different from the even distribution of basal bodies in MCCs of Xenopus ep-
idermis and mammalian airway and reproductive tracts, basal bodies in matured ventricular MCCs are unidirectionally aligned within each cell (the rotational
polarity) and uniquely clustered on one side of the apical surface (the translational polarity). (C) Axonemal and basal body (BB) orientations. Axonemal and BB
orientations are used to assess the relationship between cilia movement and tissue axis. As shown, the nine ciliary doublet microtubules (DMTs) are numbered
(D I-IX) and a unique structural feature exists between D V and D VI. The axonemal orientation is orthogonal to the CP plane defined by the line connecting the
CP singlets, which runs through D I and across the space between D V and D VI. In MCCs, a cone-like basal foot is formed on the lateral side of the BB, which
can occupy three of the nine triplet microtubules. The BB orientation is defined by the direction from the center of the BB to the tip of the basal foot. The
axonemal orientation is aligned with the beat direction of motile cilia, while the BB orientation is aligned with the tissue axis.
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the cell, where they interact with the opposite complex of the
neighboring cell (Fig. 4 A; Peng and Axelrod, 2012). This mo-
lecular asymmetry is established before cilia formation, which
requires a polarized apical microtubule cytoskeleton (Fig. 4 A;
Vladar et al., 2012). However, establishing intracellular rota-
tional polarity is PCP-independent (Vladar et al., 2012). Loss of
CELSR1 disrupts the asymmetry of PCP core proteins and the
tissue-level BB alignment but has no effects on the intracellular
polarized BB orientation in individual MCC (Boutin et al., 2014;
Shi et al., 2014; Usami et al., 2021). By contrast, PCP signaling is
essential for the tissue-level polarity (Guirao et al., 2010; Vladar
et al., 2012). In ependymal MCCs of Vangl2 knockout mice, al-
though motile cilia can normally form and possess the beating
ability, their BBs fail to establish the tissue-level alignment ac-
cording to the external flow (Guirao et al., 2010).

Besides its role in the apical migration of centrioles, the actin
network is also essential for coordinating cilia movement. In
fully polarized MCCs, cytochalasin D treatment-induced actin
depolymerization caused a disturbed BB alignment (Herawati
et al., 2016; Werner et al., 2011). In addition, establishing
BB orientation also requires the apical microtubule network.
Treatment of MCCs with nocodazole leads to microtubule de-
polymerization and affects BB polarization (Herawati et al.,
2016; Werner et al., 2011). In mice, loss of ODF2 disrupts the
basal foot and the apical microtubule network, resulting in
disorganized BB orientation in airway MCCs (Kunimoto et al.,
2012). Furthermore, microtubule minus-end-binding proteins,
γ-tubulin and CAMSAP3, have been shown to regulate the BB
orientation via the apical microtubule network (Hagiwara et al.,
2000; Robinson et al., 2020; Usami et al., 2021).

Previous studies have demonstrated that cilia motility and
external hydrodynamic force contribute to the BB orientation
(Fig. 4 B). In Xenopus MCCs, disruption of cilia motility resulted
in disoriented BBs (Mitchell et al., 2007). In mice, loss of HYDIN
or DNAAF2 impairs the motility of ependymal motile cilia and
causes misoriented BBs (Lechtreck et al., 2008; Matsuo et al.,
2013). Human nasal epithelial cells isolated from a patient
bearing GAS2L2 mutations consistently displayed defective cilia
motility and severely randomized BB distribution (Bustamante-
Marin et al., 2019). In addition, an external hydrodynamic effect
also contributes to the unidirectional BB orientation. In Xenopus
and mouse MCCs, the external fluid flow can redirect the BB
orientation (Guirao et al., 2010; Mitchell et al., 2007). The
alignment of BB can bemore easily achieved in immature mouse
ependymal MCCs at early stages than those at the later fully
matured stage (Pellicciotta et al., 2020). Thus, the intracellular
BB orientation requires proper cilia motility and external fluid
flow, although the corresponding mechanism remains unclear.

Multiple motile cilia-related ciliopathies
After years of scientific investigations, cilia have emerged as a
critical cellular structure in organism development and ho-
meostasis, dysfunctions of which can lead to a variety of genetic
diseases, collectively referred to as ciliopathies (Fliegauf et al.,
2007; Goetz and Anderson, 2010; Nigg and Raff, 2009; Zhao
et al., 2023b). Given the confined distribution of multiple mo-
tile cilia in human organ systems, their defects may affect the

airway, brain ventricular system, and male and female repro-
ductive systems. Consistently, failure of motile cilia causes
a genetic disorder, primary ciliary dyskinesia (PCD). Clinical
features of PCD include neonatal respiratory distress, chronic
sinopulmonary infection, laterality defects, infertility, and hy-
drocephalus in rare cases (Hyland and Brody, 2021; Wallmeier
et al., 2020).

In the airway, motile cilia lining the respiratory tracts beat in
a coordinated manner to facilitate the clearance of inhaled
pathogens and particles by propelling mucus continuously from
the lower airway. Abnormalities in the structure or function of
the airway cilia impairmucociliary clearance and lead to chronic
respiratory infections. In neonates, defective airway motile cilia
impair mucociliary clearance during the transition from fetal to
neonatal life, resulting in atelectasis and lobar collapse and
causing neonatal respiratory distress (Machogu and Gaston,
2021). Consistent with the functional importance of axonemal
dyneins in motile cilia, mutations of DNAH5 and DNAI1 together
account for about 40% of PCD patients (Kurkowiak et al., 2015).

Multiple motile cilia in the brain ependyma facilitate the flow
of cerebrospinal fluid, which is crucial for cell communication
and neuron homeostasis (Kompanı́ková and Bryja, 2022). Dis-
turbance of CSF flow by motile cilia impairment can cause sei-
zure disorders, developmental delay, and hydrocephalus. While
genetic mouse models of PCD frequently develop hydrocephalus,
patients with PCD hydrocephalus are sporadic, except those
with mutations in FOXJ1, CCNO, P73, and MCIDAS (Duy et al.,
2022), indicating developmental differences between rodents
and humans.

The multiple motile cilia in the efferent ducts of the testes
beat in a whip-like rotary motion to prevent sperm aggregation
(Rosenfeld, 2019). Defective motile cilia in efferent ducts of
GEMC1, MCIDAS, or CCNO knockout mice cause rete testis dila-
tion, sperm accumulation in the efferent ducts, and sperm
missing in the epididymis, resulting in male infertility (Terré
et al., 2019). Consistently, a male patient withMCIDASmutations
is infertile due to the loss of multiple motile cilia in the efferent
ducts (Ma et al., 2021). In contrast, the fertility of females seems
less affected, although multiple motile cilia exist in the fallopian
of female reproductive tracts (Newman et al., 2023). A recent
study using a genetic mouse model revealed that only motile
cilia in the infundibulum are essential for female fertility but not
those in other parts of the oviduct (Yuan et al., 2021). The fer-
tility outcomes in women with PCD showed that about 40% of
female patients reported natural pregnancy, much lower than
the 90% in the general population, but the percentage of ectopic
pregnancies in PCD women is similar to the general population
(Newman et al., 2023), indicating an important role of multiple
motile cilia in the reproductive ducts.

Conclusion
In the past decade, great progress has been achieved in identi-
fying proteins and related networks required for multicilio-
genesis, determining the high-resolution structures of multiple
large macromolecular complexes in motile cilia, and under-
standing the complex mechanisms underlying the regulation of
multiple motile cilia formation. Considering the complexity and

Lyu et al. Journal of Cell Biology 11 of 18

Mechanisms of multiple motile cilia formation https://doi.org/10.1083/jcb.202307150

https://doi.org/10.1083/jcb.202307150


diversity of motile cilia, it remains a challenge to fully illustrate
the genetic and molecular basis of multiciliogenesis. With inte-
grative structural biology and efficient genetic tools, we will be
able to characterize more critical components of the process,
address the mechanism of multiciliogenesis in detail, and un-
derstand their roles in disease occurrence and progression.
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Lewis, M., B. Terré, P.A. Knobel, T. Cheng, H. Lu, C.S.O. Attolini, J. Smak, E.
Coyaud, I. Garcia-Cao, S. Sharma, et al. 2023. GEMC1 and MCIDAS in-
teractions with SWI/SNF complexes regulate the multiciliated cell-
specific transcriptional program. Cell Death Dis. 14:201. https://doi
.org/10.1038/s41419-023-05720-4

Lindeman, G.J., L. Dagnino, S. Gaubatz, Y. Xu, R.T. Bronson, H.B. Warren, and
D.M. Livingston. 1998. A specific, nonproliferative role for E2F-5 in
choroid plexus function revealed by gene targeting. Genes Dev. 12:
1092–1098. https://doi.org/10.1101/gad.12.8.1092

Liu, G., L. Wang, and J. Pan. 2019. Chlamydomonas WDR92 in association
with R2TP-like complex and multiple DNAAFs to regulate ciliary dyn-
ein preassembly. J. Mol. Cell Biol. 11:770–780. https://doi.org/10.1093/
jmcb/mjy067

Liu, H., J. Zheng, L. Zhu, L. Xie, Y. Chen, Y. Zhang, W. Zhang, Y. Yin, C. Peng,
J. Zhou, et al. 2021. Wdr47, Camsaps, and Katanin cooperate to generate
ciliary central microtubules. Nat. Commun. 12:5796. https://doi.org/10
.1038/s41467-021-26058-5

Liu, K., B. Lin, M. Zhao, X. Yang, M. Chen, A. Gao, F. Liu, J. Que, and X. Lan.
2013. The multiple roles for Sox2 in stem cell maintenance and tu-
morigenesis. Cell. Signal. 25:1264–1271. https://doi.org/10.1016/j.cellsig
.2013.02.013

Liu, Y., N. Pathak, A. Kramer-Zucker, and I.A. Drummond. 2007. Notch
signaling controls the differentiation of transporting epithelia and
multiciliated cells in the zebrafish pronephros. Development. 134:
1111–1122. https://doi.org/10.1242/dev.02806
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