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Abstract

Objective: The performances of popular genome-wide association study (GWAS) models have not been examined yet in a consistent
manner under the scenario of genetic admixture, which introduces several challenging aspects: heterogeneity of minor allele frequency
(MAF), wide spectrum of case–control ratio, varying effect sizes, etc.
Methods: We generated a cohort of synthetic individuals (N = 19 234) that simulates (i) a large sample size; (ii) two-way admixture
(Native American and European ancestry) and (iii) a binary phenotype. We then benchmarked three popular GWAS tools [generalized
linear mixed model associated test (GMMAT), scalable and accurate implementation of generalized mixed model (SAIGE) and Tractor]
by computing inflation factors and power calculations under different MAFs, case–control ratios, sample sizes and varying ancestry
proportions. We also employed a cohort of Peruvians (N = 249) to further examine the performances of the testing models on (i) real
genetic and phenotype data and (ii) small sample sizes.
Results: In the synthetic cohort, SAIGE performed better than GMMAT and Tractor in terms of type-I error rate, especially under severe
unbalanced case–control ratio. On the contrary, power analysis identified Tractor as the best method to pinpoint ancestry-specific
causal variants but showed decreased power when the effect size displayed limited heterogeneity between ancestries. In the Peruvian
cohort, only Tractor identified two suggestive loci (P-value ≤ 1 ∗ 10−5) associated with Native American ancestry.
Discussion: The current study illustrates best practice and limitations for available GWAS tools under the scenario of genetic admixture.
Incorporating local ancestry in GWAS analyses boosts power, although careful consideration of complex scenarios (small sample sizes,
imbalance case–control ratio, MAF heterogeneity) is needed.
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INTRODUCTION
Genome-wide association studies (GWAS) have successfully
identified risk and protective loci in many complex human traits.
Among these, binary traits have dominated the pool of explored
outcomes, e.g. type 2 diabetes or Alzheimer’s disease (AD). Linear
mixed models (LMM), extensively used in GWAS with binary
traits, violate the assumption of constant residual variance,
leading to inflated type I error. The generalized LMM associated
test (GMMAT) [1] builds logistic mixed models and constructs
a score test for the binary traits in GWAS while accounting for
population stratification and relatedness via a kinship matrix.
Although GMMAT has been shown to be more robust than other
LMM approaches with well-controlled type I error rates, it did
not address other common limitations, such as imbalanced

case–control ratios, a common scenario in the GWAS—especially
in population-based studies where affected cases are usually
far rarer than controls. Other limitations, such as rare variants,
also lead to P-value inflation. To address such limitations, Zhou
et al. [2] proposed the scalable and accurate implementation of
generalized mixed model (SAIGE), which includes Saddlepoint
approximation (SPA) [3] in the fitting of generalized LMM, in order
to calibrate the score test accounting for imbalanced case–control
ratios and rare variants. Through simulation study and real-data
analysis, SAIGE shows well-calibrated P-values even under these
extreme scenarios.

Another pressing issue in GWAS is the under-representation
of admixed populations, whose genomes contain segments
inherited from multiple ancestral groups. Few GWAS tools have
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been specifically designed for such complex genetic architecture.
Tractor [4] is a scalable framework that incorporates the genetic
structure of admixed individuals into large-scale genomics efforts
through local ancestry inference, which has been shown to be
capable of detecting and modeling ancestry-specific effect sizes.
The impact of the local ancestry on association models has
also been investigated in a recent publication [5], where the
authors compared the performances of Tractor versus other
methods based on the Armitage trend test. However, the latter
are fixed-effect models that do not consider random effects
such as the genetic relatedness between individuals. The paper
also did not account for imbalanced case control ratio, rare
variants, etc. Therefore, the performances of Tractor have yet
to be systematically examined to their full extent.

While there have been previous benchmarking efforts [6, 7],
these studies primarily focused on the challenges posed by rare
variants or heterogeneous studies without considering the com-
plexities introduced by genetic admixture. In general, there is a
lack of standardized criterion for benchmarking popular GWAS
methods and their results under a variety of key factors, such
as minor allele frequency (MAF) heterogeneity, imbalanced case–
control ratio, admixture, etc. In this study, we present a bench-
mark investigation that fills the gap by systematically examining
the performances of three popular GWAS models, GMMAT, SAIGE
and Tractor, conditional on the factors stated previously. We also
applied these tools in an AD study of admixed Peruvians from the
‘Genetics of Alzheimer’s disease In Peruvian Populations study’
(GAPP) study.

METHODS
Data process
We employed a large synthetic dataset using HAPNEST [8], a
recently developed software that enabled the generation of a
diverse synthetic datasets (using publicly available reference
datasets) of 1 008 000 individuals from six different ancestral
groups. We used the Admixed American (AMR) group from
HAPNEST and performed phasing using the 1000 Genome project
[9] (1000G) as reference haplotype panel and Shapeit [10] (2.r837).
We then used RFMix2 [11] (v2.0.3), a discriminative approach that
estimates both global and local ancestry using random forests,
to inference global ancestry assuming a three-way admixed
scenario, i.e. Native-American (NAA), European (EUR) and African
(AFR) ancestry, employing the Human Genome Diversity project
(HGDP) [12] as reference panel. We then filtered out individuals
with significant African global ancestry (i.e. the African global
ancestry ≥ 10%) in order to retain a two-way admixed sample.
We again used RFMix2 to estimate local ancestry assuming a two-
way admixture (NAA-EUR) on the remaining 19 234 individuals.
We used 19 081 independent genetic variants on Chromosome
20, limiting the analyses to variants with minor allele count
(MAC) > 10 to investigate the performances of the testing methods
along the whole spectrum of allele frequency (i.e. from ultra-rare
to common causal variants). The major ancestry of the two-way
admixed individuals simulated in HAPNEST is EUR, and the minor
ancestry is NAA.

To apply our methods and perform real-data analyses, we
leveraged the GAPP study, a recently established cohort of
Peruvian mestizos from Lima and indigenous groups from South-
ern Peru (Aymaras and Quechuas). Genotyping was conducted
on the Infinium Global Screening Array-24 BeadChip, which
combines multi-ethnic genome-wide content, curated clinical
research variants and quality control (QC) markers for precision

medicine research, extensively detailed in previous publications
from our group. Ultimately, our GWAS analysis incorporated a
total number of 5 279 846 variants. We conducted the same
procedures as previously described, by first phasing the genetic
data, then estimating global ancestry and finally (after excluding
three individuals with high African global ancestry) inferencing
local ancestry assuming a two-way admixture (NAA and EUR)
on the remaining 249 individuals. Variants were filtered out
if MAC < 5.

Simulation setting
We conducted a series of simulations to evaluate the perfor-
mances of the testing methods under a variety of different
scenarios. We evaluated the performances of the testing
methods from two perspectives, i.e. the control of type I error
rates and the empirical power for detecting the true effect
sizes.

(i) Control of type I error. For testing the control of type I error
rates, the binary phenotypes were generated by a logistic mixed
model,

logit (μ) = α0 + b + X1 + X2 + G ∗ β,

where G is the genotype, β is the genetic log odds ratio and b
is the random effect simulated from a normal distribution N
(0, ϕ) with the relatedness matrix ϕ. Two covariates, X1and X2,
were drawn from Bernoulli (0.5) and standard normal distribu-
tion, which represents the discrete and quantitative predictors.
The intercept alpha was chosen to represent the corresponding
probability of the disease. Under the scenario of the control of
type I error, the phenotypes were simulated with = 0 . We also
simulated three case–control ratios as 1:1, 1:9 and 1:99, denoted
as ‘balance’, ‘imbalance’ and ‘extreme-imbalance’ scenarios. We
then computed and compared the inflation factor lambda for each
testing method. We also computed the total numbers of the P-
values smaller than the genome-wise significance (i.e. P-values ≤
5 ∗ 10−8) to examine the control of the type I error for each testing
method.

(ii) Power analysis. In this scenario, we investigate perfor-
mances of the methods under the scenario of the ancestry-
specific effect on the phenotype. Phenotypes were simulated
under the alternative hypothesis, i.e. β of the causal variant is
not equal to 0. To facilitate the admixture scenario, we simulated
that the risk allele was only associated with the NAA ancestry.
First, we randomly selected a risk variant conditional on the pre-
determined thresholds of MAF. Then, we simulated the phenotype
through the probability of disease, which is set to,

logit (μ) = α0 + b + X1 + X2 + GNAA ∗ βNAA,

MAF
We categorized the results of the testing causal variants accord-
ing to the corresponding MAF, such as ‘ultra-rare’ (MAF < 0.001),
‘rare’ (0.001 < MAF < 0.01), ‘uncommon’ (0.01 < MAF < 0.05) and
common (MAF > 0.05).

Varying effect size
We simulated 100 replicates of simulated genotypes with
a logistic model for each allelic effect sizes of the causal
ancestry NAA (βNAA) set at 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5
and 3.0, whereas the effect size of the null ancestry EUR is 0
(βEUR = 0).
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Case–control ratio
We again considered three case–control ratios: 1:1, 1:9 and 1:99,
denoted as ‘balance’, ‘imbalance’ and ‘extreme-imbalance’ sce-
narios.

(iii) Impact of sample sizes. To assess the effect of sample size
on power and false positives, we repeated the analyses described
in (ii) with progressively increasing sample sizes: 500, 1000, 2000,
5000 and 10 000. Within each specific scenario of MAF, case–
control ratio and sample size, synthetic individuals were sampled
from the datasets described in point (ii). Additionally, 100 repli-
cates were generated under each scenario to ensure robustness
of the findings. The effect sizes for ‘ultra-rare,’ ‘rare,’ ‘uncommon’
and ‘common’ MAF were set at 3.0, 2.0, 1.0 and 0.5, respectively.

(iv) Impact of heterogeneity of effect sizes between ancestries.
To investigate the impact of the heterogeneity of effect sizes when
the causal variants have non-zero causal effect sizes in both
ancestries, we conduct a secondary analysis assuming βEUR = 0.15
and −0.50 ≤ βNAA ≤ 0.65 increasing by 0.05. The case–control ratio
was set at 1:3 to represent real-world situation [13], and the MAFs
of the causal variants of both ancestries were set between 0.1
and 0.2. We measured the testing methods’ performance through
power as defined previously in (ii). We also explored a scenario
where each ancestry has distinct causal variants. In this setup,
the causal variant for the EUR ancestry remained consistent with
our previous simulation, while the causal variant for the NAA
ancestry was selected based on the highest linkage disequilibrium
(LD) with the EUR ancestry’s causal variant.

GWAS methods
For simulations described in (i) and (ii), we fitted the three GWAS
tools, GMMAT, SAIGE and Tractor. We generated the genomic
relatedness matrix (GRM) through PLINK/2.01 and provided it to
GMMAT, whereas SAIGE creates a sparse relatedness matrix with
a default threshold at 0.125 and Tractor does not include the relat-
edness matrix in its association test. We included the first three
principal components to account for population structure. The
simulated covariates, X1 and X2, were also provided to the testing
models. Tractor (version 0.0.1) fits a logistic regression model
including the two ancestry-specific genotypes (while accounting
for covariates and local ancestry) then returns the estimated
ancestry-specific P-values (in this experiment, we obtained two
statistics for EUR and NAA). When computing the false positives
for SAIGE, we excluded variants flagged by the software when the
SPA algorithm did not converge. For simulations described in (iii)
and (iv), we only fitted and compared results from GMMAT and
Tractor. In fact, assuming a case–control ratio = 1:3, and the causal
variants set as common variants, we did not observe any differ-
ence between GMMAT and SAIGE (data not shown). In simulation
(iv), we applied GMMAT to the local ancestry and compared the
results with Tractor.

We further compare the run times of the testing methods,
where the experiments were conducted on a system with Debian
GNU/Linux 10 as its operating system. The machine’s architecture
is x86_64, with CPU op-modes for 64-bit. It is powered by an 8-core
Intel(R) Xeon(R) CPU E5-2620 v4, operating at a base frequency of
2.10GHz, and frequencies of 1200.392 MHz. For each job executed
on this setup, a memory allocation of 20 GB was designated.

For the real-data analysis from GAPP, we again only fitted
and compared the performances of GMMAT and Tractor, since
the case–control ratio was not simulated but derived from real
diagnostic status, i.e. 1:3 (58 cases versus 190 controls). We also
restricted our analyses to common variants only. Therefore,

GMMAT and SAIGE produced again overlapping results (data not
shown). The first three principal components, age and sex were
also used as fixed affects and the GRM as random effect. The
local ancestry dosage generated by RFMix was used to implement
Tractor as described previously.

RESULTS
Global ancestries in the synthetic cohort and in
GAPP
Figure 1 shows the global ancestry distribution for the two cohorts
employed in this project, i.e. the synthetic admixed cohort from
HAPNEST and the Peruvians from GAPP. The major and minor
ancestry of the Peruvian cohort are NAA and EUR, respectively,
whereas the major and minor ancestry of HAPNEST are EUR and
NAA, respectively.

Type I error rates
All three methods attained acceptable inflation factors with a
well-balanced case–control ratio (1:1, Figure 2). SAIGE showed
well-calibrated inflation factors compared to GMMAT when the
case–control ratio shifted to 1:9, whereas Tractor started to show
decline in P-values calibration, especially for P-values associated
with the minor local ancestry (i.e. NAA). SAIGE and GMMAT
both exhibited small inflation in extremely imbalanced case–
control ratio (1:99), whereas Tractor showed problematic P-values
calibration with severe deflation for both major and minor global
ancestries. As shown in Supplementary Table 1, GMMAT and
Tractor produced genome-wide significant results when the case–
control ratio is extremely unbalanced. False positive rates (FPR)
were strongly correlated with low MAFs, with GMMAT’s false pos-
itives associated with the ultra-rare variants, whereas Tractor’s
false positives extend in the range of rare variants as well. On
the other hand, SAIGE was the only method that did not produce
false positives under any case–control scenario, and ultimately
confirmed the conclusions reached by their authors in its pub-
lished manuscript. The deflation of Tractor’s P-values in Figure 2
is conditional of variants’ MAF (Supplementary Table 2 and Sup-
plementary Figure 1), where variants with P-values < 0.99 show
MAFs higher than those variants with P-values ≥ 0.99.

Power analysis
Under large sample sizes (such as the HAPNEST cohort, Figure 3),
Tractor showed superior performance in terms of power, whereas
the performances of GMMAT and SAIGE were virtually similar.
For ultra-rare and rare causal variant, Tractor also performed
better, although required large true effect sizes. For uncommon
or common MAF, Tractor again performed better than GMMAT
and SAIGE in identifying causal variants with smaller effect sizes
under different scenarios of case–control ratio. Tractor also suc-
cessfully identified the ‘causal ancestry’ (green line in Figure 3),
i.e. the ancestry that harbors the causal variants (non-zero effect
sizes).

As reported in Table 1, under a balanced case–control ratio
Tractor controls well FPR as we did not observe any false positive
results associated with the ‘null ancestry’, i.e. the ancestry that
does not harbor the causal variant. However, Tractor retrieved
concerningly higher rates of false positives under extremely
imbalanced case–control ratio, compared to GMMAT and SAIGE.
These false positives were again associated mainly with ultra-rare
variants.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
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Figure 1. Global ancestries of the individuals included in the HAPNEST and GAPP Peruvians.

Figure 2. The density function of the inflation factors of the three testing methods over 100 replicates in the simulation scenario of type-I error control.

Table 1: Average number of genome-wide significant variants (‘GWV’, P-value ≤ 5 ∗ 10−8) (and their median MAF) averaging over all
2400 replicates stratified by case–control ratio. The median MAF for variants identified by Tractor are computed based on local
ancestry dosage. We excluded the true causal variants when computing numbers shown in this table

2400 replicates GMMAT SAIGE Tractor

Major/Null ancestry Minor/Causal ancestry

Balanced # GWV 0.24 0.18 0 0.16
Median MAF 0.033 0.033 NA 0.14

Imbalanced # GWV 0.4 0.26 0.032 0.23
Median MAF 0.04 0.034 0.00078 0.014

Extremely # GWV 1.18 0.2 2.03 4.93
Imbalanced Median MAF 0.018 0.047 0.0026 0.0062

Impact of sample size
Consistent with the power analysis results, Tractor consistently
outperformed GMMAT and SAIGE in terms of power by detecting
true causal variants even at smaller sample sizes and maintaining
substantial higher power as sample size increases. Supplemen-
tary Figure 2 illustrates the performance of GMMAT, SAIGE

and Tractor under varying sample sizes. Tractor successfully
identified the causal ancestry at smaller sample sizes, while
SAIGE showed limited ability to identify causal variants unless
the sample size exceeded N = 10 000. GMMAT exhibited non-zero
power in the scenario of ultra-rare causal variants and extremely
imbalanced case–control ratios; however, this was attributed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
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Figure 3. Power calculation of the three methods based on the 19 234 synthetic individuals from HAPNEST. The significance threshold of P-value is set
at genome-wide significance (P < 5e-8). The causal ancestry, i.e. the corresponding effect size is non-zero, is NAA.

to a large number of false positives associated with low MAFs
(which included the ultra-rare causal variants). GMMAT and
Tractor tend to generate false positives associated with low MAF
(Supplementary Table 3); conversely, SAIGE demonstrated robust
performances across a range of scenarios, including different
sample sizes and case–control ratios, but only when we filtered
out a large number of testing variants with non-converge SPA
algorithm. Supplementary Table 4 shows that the mean and
median of MACs of the testing variants with non-converged SPA
algorithm is smaller than the MACs with converged SPA algorithm
in SAIGE.

Heterogeneity of effect sizes between ancestry
GMMAT/SAIGE (which employ the genotype data without any
deconvolution by local ancestry), are consistently more powerful
than Tractor when the effect sizes of the two ancestries are in
same direction, i.e. with limited heterogeneity between major
(EUR) and minor (NAA) ancestry’s effect sizes (Figure 4). On the
other hand, when the effect sizes of major and minor ancestry are

in opposite directions, i.e. βEUR = 0.15 while βNAA < 0, GMMAT/-
SAIGE display low power due to the cancelation of opposite effect
sizes. On the contrary, Tractor picks up the causal variants when,
for example, the effect size associated with the minor ancestry is
large enough to overcome the opposite effect size associated with
the major ancestry. Further, when GMMAT/SAIGE were applied
to the ancestry-specific genotype, they exhibited similar perfor-
mances to the results obtained by Tractor in terms of (i) increased
power when the heterogeneity between the effect sizes is large
and (ii) reduced power when the heterogeneity is small.

In Supplementary Figure 3, we observe that Tractor still demon-
strates greater power with the ancestry-specific genotype matrix
compared to traditional GWAS methods when causal variants
differ between the two ancestries. The performance of Tractor in
this scenario is largely consistent with its performance when the
causal variant is identical across ancestries. In contrast, GMMAT’s
power is nearly halved compared to the previous scenario. This
reduced power is attributed to GMMAT’s difficulty in detect-
ing the small-scale effect size associated with the EUR ances-
try. Consequently, the observed power of GMMAT predominantly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
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Figure 4. Power calculations for one causal variant with heterogenous
effect sizes between the two ancestries (i.e. NAA and EUR). The effect size
of causal variant within the minor ancestry (βNAA) ranges from −0.5 to
0.65 by 0.05, whereas the effect size of the causal variant within major
ancestry (βEUR) is fixed at 0.15.

arises from the detection of causal variants within the NAA
ancestry.

Real-data analysis
Figure 5 shows no genome-wide significant results achieved in
GAPP using GMMAT and Tractor, likely due to the relatively small
sample size (N = 249). Nevertheless, only Tractor identified three
variants with suggestive significance at P-value ≤ 1 ∗ 10−5, as
shown in Supplementary Table 5. There was no evidence of P-
value inflation for GMMAT or Tractor (GMMAT: λ= 0.97; Tractor
NAA: λ= 1.02; Tractor EUR: λ=1.04).

Computational time
Supplementary Table 6 indicates that SAIGE outperformed
GMMAT and Tractor significantly.

DISCUSSION
In this study, we employed large and small admixed cohorts of
synthetic and real-data individuals, and benchmarked the results
obtained by three popular GWAS methods, GMMAT, SAIGE and
Tractor under various scenarios.

When studying the type-I error control, SAIGE generated well-
calibrated P-values even under extreme situations, such as rare
variants or imbalanced case–control ratios. GMMAT showed
small P-values inflation and produced false positives only under
extreme scenarios. On the other hand, Tractor showed severe
P-values deflation under the scenarios associated with extreme
case–control ratios, while still producing false positives at global-
wise significant level. Therefore, we concluded that Tractor’s
calibrations of P-values are greatly affected by imbalanced case–
control ratios, even when sample sizes are large, particularly
for the minor ancestry, which is equivalent to the reduction on
sample size. Tractor’s severe deflation observed in the density
plot depicted in Figure 2 is likely due to a large proportion of rare
variants generated by the deconvolution operated at the local
ancestry estimation. The extreme phenotypic variance caused
by the extreme case–control ratio could also contribute to the
deflated P-values, as demonstrated previously [14].

When testing power calculations, we observed optimal perfor-
mances by Tractor in identifying and modeling the causal effect

sizes, compared to the GMMAT and SAIGE. The superiority of
Tractor was particularly evident when large heterogeneity existed
in terms of effect sizes between ancestries. Supplementary Fig-
ure 3 further demonstrates the advantages of applying Trac-
tor on the ancestry-specific genotypes when the causal variants
were associated with distinct ancestries. Our conclusion is in
line with results reported in the original paper [4] and other
recently published benchmark papers, e.g. [5]. In the latter, the
authors reported a loss of power of ∼70% from Tractor when
compared to the traditional GWAS methods. The authors attribute
Tractor’s loss of power to (i) differences in ancestry-specific allele
frequencies of the causal variants and (ii) the penalty from an
additional degree of freedom in the association test (e.g. βNAA =
0 and βEUR = 0 simultaneously) [5]. We replicated this loss of
power by simulating two distinct causal variants harboring within
the two ancestries (Supplementary Figure 3) as opposed to the
scenario where the same causal variant harbors in both ancestries
(Figure 4). As for the degree of freedom, the latest version of
Tractor provides the marginal test for the effect size of each
ancestry with the same degree of freedom of the association test
used by GMMAT/SAIGE. Therefore, we conclude that Tractor’s loss
of power is likely due to deconvolution of the genotype matrix,
which is analogous to reducing the sample size, especially when
the heterogeneity across effect sizes is not large enough. This
has been clearly depicted in Figure 4 by showing that similar
power was reached by GMMAT/SAIGE and Tractor when exe-
cuted on the ancestry-specific genotype matrix, which indicates
that the loss of power should not be solely attributed to the
difference in the association tests of the additional degree of
freedom.

Given HAPNEST large sample size and balanced case–control
ratio, GMMAT and Tractor shows well-controlled FPR, but pro-
duced false positive results associated with the rare variants and
extreme case–control ratio in both simulation studies (type I error
control and power analysis). We confirmed the mishandling of
rare variants analyses when we tested the impact of sample size
on power calculations: indeed, GMMAT produced a large number
of false positives associated with low MAF at small sample sizes
(N ≤ 1000) and extremely imbalanced case–control ratio, while
Tractor reported moderate FPR. SAIGE did not generate false
positives across simulated sample sizes, although this optimal
performance was achieved only after filtering out a substantially
large number of variants flagged by failed convergence of the SPA
algorithm (mostly associated with low MAF and MAC under the
extreme imbalanced scenarios). In other words, SAIGE can only
provide reliable results for common variants under the extreme
imbalanced scenario and small sample sizes. As noted in SAIGE’s
manual, its performance in small sample size scenarios has not
been thoroughly examined, and our finds from the simulation
addressed this gap.

Surprisingly, Tractor displayed lower power under balanced
case–control ratio compared to (extremely) imbalance case–
control ratio for ultra-rare and rare causal variants. This is likely
due to the genotype vector of ultra-rare (or rare) causal variant
(GNAA) being a nearly sparse vector and having limited impact
on the random sampling of the binary phenotypes under a
balanced scenario, which is largely controlled by the intercept
that is universal to all subjects. On the other hand, under the
(extreme) imbalanced scenario, the small number of cases are
mostly associated with the (ultra) rare causal variant with large
effect size. This resulted in Tractor showing higher power under
(extreme) imbalance case–control and (ultra) rare causal variant
scenarios.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad437#supplementary-data
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Figure 5. Manhattan plots of AD GWAS produced by GMMAT (A) and Tractor (B: NAA and C: EUR) in the GAPP cohort. The total number of tested variants
is 4 492 989.

It should be noted that Tractor may not be suitable for ana-
lyzing related samples, as Tractor does not account for kinship,
which could lead to inflated P-values/false positives.

SAIGE outperformed the other two methods significantly in
terms of run times. This advantage can be attributed in part to
SAIGE’s use of the preconditioned conjugate gradient approach,
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which solves linear systems for extensive cohorts, coupled with
its efficient memory utilization during model fitting. In con-
trast, Tractor lags both methods, primarily because it employs
two ancestry-specific genotype matrices and conducts an extra
hypothesis test during its model fitting process.

We purposely employed a small real-data study (GAPP) to
show the software’s performance under this scenario. Admixed
populations are traditionally underrepresented in genetic studies.
Similarly to other studies conducted in non-White populations,
the size of our Peruvian GWAS is comparable to many other
previously published GWASs (with the additional value of this
being the first ever GWAS of AD in Peruvians). For example, one
of the largest and most cited non-White GWAS for AD [15] is in
reality obtained by meta-analyzing 14 independent studies, 12 of
which are small (five of those are N < 200; Supplementary Table 3).
Our results will have an impact not only on small-sized studies,
but also on large GWAS derived from meta-analyses of small
datasets.

Within the GAPP cohort analysis, despite a limited sample
size of N = 249, no genome-wide significant results were observed
using either GMMAT or Tractor. The absence of P-value inflation
for both methods (GMMAT: λ = 0.97; Tractor NAA: λ = 1.02; Tractor
EUR: λ = 1.04) confirms that both models were well-calibrated
when the case–control ratio is balanced. Moreover, Tractor iden-
tified three variants associated with the NAA ancestry with sug-
gestive significance, a finding not mirrored by GMMAT. This result
in real-data analysis complements the simulation results, where
Tractor consistently demonstrated superior power, particularly in
balanced scenarios with common variants. While this does not
serve as direct validation, it subtly implies a consistent trend
in Tractor’s efficacy, both in simulated and real-data contexts.
As suggested in [5], in real analysis standard GWAS tools and
Tractor often prioritize distinct loci, therefore considering both
methodologies could be effective when working with real-world
data of admixed population.

In summary, we acknowledge the improvement achieved by
Tractor in identifying ancestry-related causal variants, by lever-
aging the unique genetic structure of admixed populations. How-
ever, we want to caution the usage of Tractor under extreme
circumstances, especially in small sample sizes and when the
deconvolution of genotype matrix introduces additional issues
in terms of allele frequency. This study demonstrates the impor-
tance of considering imbalanced case–control ratio, rare variants
and varying sample size, and ultimately addresses the major chal-
lenges for the development of future GWAS methods in admixed
populations.

Key Points

• We benchmarked the performances of three popular
GWAS tools, GMMAT, SAIGE and Tractor, under a variety
of key aspects, such as minor allele frequency hetero-
geneity, effect size of causal variants, imbalanced case–
control ratio and admixture status.

• Tractor outperformed GMMAT and SAIGE when there
is a significant heterogeneity of effect sizes between
ancestries.

• GMMAT produced substantial false positives when case–
control ratio is imbalanced and sample size is small,
whereas SAIGE is resilient to that scenario. Tractor
reported moderate false positive rates.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
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