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to higher microbiome diversity and long-term stability
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Amino acid auxotrophies are prevalent among bacteria. They can govern ecological dynamics in microbial communities and
indicate metabolic cross-feeding interactions among coexisting genotypes. Despite the ecological importance of auxotrophies,
their distribution and impact on the diversity and function of the human gut microbiome remain poorly understood. This study
performed the first systematic analysis of the distribution of amino acid auxotrophies in the human gut microbiome using a
combined metabolomic, metagenomic, and metabolic modeling approach. Results showed that amino acid auxotrophies are
ubiquitous in the colon microbiome, with tryptophan auxotrophy being the most common. Auxotrophy frequencies were higher
for those amino acids that are also essential to the human host. Moreover, a higher overall abundance of auxotrophies was
associated with greater microbiome diversity and stability, and the distribution of auxotrophs was found to be related to the human
host’s metabolome, including trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results suggest that
amino acid auxotrophies are important factors contributing to microbiome ecology and host-microbiome metabolic interactions.
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BACKGROUND

The metabolic processes performed by the human gut micro-
biota have a crucial impact on human metabolism and health
[1-3]. For instance, various human gut bacteria produce the
short-chain fatty acid butyrate. Butyrate is a primary energy
source for human colonocytes[1] and intersects with host
immunological processes by mediating anti-inflammatory
effects [4, 5]. Another notable metabolic interaction between
the human host and its gastrointestinal microbiota is the
microbial transformation of aromatic amino acids into various
metabolites. Recent studies suggest that aromatic amino acid-
derived metabolites such as indole-3-propionic acid and indole-
3-acetic acid can modulate the host immune system [6, 7]. Thus,
these and several further studies provide evidence that gut
microbial metabolites are essential factors in the pathophysiol-
ogy of inflammatory diseases and the efficacy of immunomo-
dulatory therapies [7-10].

The repertoire of molecules synthesized and eventually released
by individual gut microbes comprises metabolic by-products that
serve the dual purpose of energy metabolism and facilitating the
biosynthesis of essential metabolites necessary for cellular
maintenance and proliferation. However, often not all metabolites
required for growth and survival (i.e., nucleotides, vitamins, amino
acids) can be de-novo synthesized by gut-dwelling microorgan-
isms, rendering those organisms dependent (termed auxotrophic)

on the uptake of the focal metabolite from the microbial cell’s
nutritional environment. Several in silico studies have applied
genome-mining approaches, suggesting that most analyzed gut
bacteria lack biosynthetic pathways for producing at least one
proteinogenic amino acid [11, 12] or a growth-essential vitamin
[13, 14]. In addition, in vitro growth experiments have confirmed
specific amino acid and vitamin auxotrophies in common human
gut bacteria [13, 15, 16].

The prevalence of auxotrophs in the human gut microbiome
raises the question of the source of the required metabolites in
the gastrointestinal growth environment. There are three potential
sources of essential nutrients for microbial growth: (i) Required
metabolites could be diet-derived. However, amino acids and
vitamins are usually efficiently absorbed by the human host in the
small intestine [17], limiting the accessibility of diet-derived
essential nutrients for the majority of the gut microbial commu-
nity, which resides in the colonic region [18]. (i) Metabolites
required by auxotrophic microorganisms in the gastrointestinal
tract may be host-derived, e.g., from proteins and peptides
secreted by the gut epithelium into the gut lumen or from apical
proteins of the host epithelial cell layer accessible to gut
microorganisms [15]. (iii) Auxotrophic members of the gut
microbial community might obtain essential nutrients via cross-
feeding interactions with prototrophic organisms within their
microbial community [19, 20].
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While the exchange of electron donor metabolites (e.g., acetate-
or lactate cross-feeding) between different microorganisms is
well-documented for the human gut microbiome [21-23], the
extent of cross-feeding interactions via the exchange of essential
nutrients such as amino acids and vitamins remains still unknown.
However, in vitro experiments of synthetic microbial communities
suggest that co-cultured microorganisms, which are auxotrophic
for different compounds, can support each other's growth by
exchanging the focal metabolites [24]. Furthermore, theoretical
ecological models suggest that cross-feeding interactions
between auxotrophic organisms within complex communities
can increase community diversity through metabolic niche
expansion [25] and community robustness to ecological pertur-
bance [26], such as changes in the composition of the chemical
environment. Thus, cross-feeding of amino acids and vitamins
between different members of the human gut microbiota could
be crucial determinants of microbiome dynamics, resilience, and
the contribution of gut microbes to human metabolism and
health.

In this study, we applied genome-scale metabolic modeling to
predict the distribution and diversity of amino acid auxotrophies
in the human gut microbiome. The predictions were combined
with stool metagenomic sequencing and targeted serum meta-
bolomics from observational human cohort studies to estimate
auxotrophy frequencies and their impact on the human metabo-
lome. We found that amino acids that are essential to the human
host are also the most common auxotrophies in the human gut
microbiome. Intriguingly, a higher frequency of auxotrophies was
associated with long-term stability of the microbiome community
composition. Furthermore, a higher number of auxotrophies
among gut bacteria was associated with higher diversity of the
gut bacteria and increased levels of aromatic compounds of
putative microbial origin in the human serum metabolome.

RESULTS

Prediction and validation of auxotrophies with genome-scale
metabolic modeling

To estimate the overall distribution of amino acid auxotrophies in
the human gut microbiome, we predicted the amino acid
production capacities using genome-metabolic modeling for all
bacterial genomes (n=5414) from the ‘Human Reference Gut
Microbiome (HRGM)’ collection [27]. Auxotrophies were predicted
for the 20 proteinogenic amino acids by comparing the model’s
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growth with and without the amino acid using flux-balance
analysis. If the model was not able to grow without the amino
acid, then an auxotrophy was predicted (Fig. 1). To exclude an
overprediction of auxotrophies due to genome incompleteness,
we correlated the genome completeness and the number of
auxotrophies predicted. Results showed a negative relationship
between genome completeness and the number of auxotrophies
per genome (Supplementary Fig. S1, p=-0.50, p <2.2e-16). To
combat this, the genomes were filtered for completeness >85%
and contamination <2%. Only the filtered metabolic models
(n=3687) were used to predict auxotrophies and ongoing
analysis. All auxotrophies predicted for HRGM models are in the
supplementary material (Supplementary Table S1).

To validate our gapseg-based auxotrophy predictions, we
compared the predictions on strain level with in vitro experimen-
tally verified auxotrophies as reported in previous studies for a
total of 36 gut bacteria (Supplementary Table S2), of which most
were already summarized in a recent study [28]. If a genome
assembly of the experimentally tested strain was available on NCBI
RefSeq, we reconstructed the genome-scale metabolic model and
predicted the auxotrophies. In addition to auxotrophy predictions
using our gapseq model collection (Supplementary Table S1), we
also tested models from the AGORA2 collection (Supplementary
Table S3). Auxotrophy predictions using gapseq models had a
sensitivity of 75.5%, a specificity of 95.9%, and an accuracy of 93%.
The auxotrophies predicted by the AGORA2 models showed a
lower degree of agreement with the experimental data: sensitivity
(43.4%), specificity (92.3%), and accuracy (81.7%). In addition, we
reconstructed genome-scale metabolic models for 124 bacterial
genotypes known to be prototrophic for all 20 proteinogenic
amino acids [29] to further validate our auxotrophy predictions
(Supplementary Table S4). We note that the 124 prototrophic
genotypes are isolates from diverse isolation sources and not from
the human gut. However, the resource can be used to estimate
the rate of false auxotrophy predictions [29]. In total, 99.1% of all
predictions coincided with the known amino acid prototrophies of
the organisms, thus suggesting a false auxotrophy prediction rate
of less than 1%. In general, the frequency of auxotrophy
predictions among genomes from human gut bacteria is generally
higher compared to the collection of 124 prototrophic genomes
(Supplementary Fig. S2), indicating that the high frequency of
auxotrophies cannot be explained by a false-positive rate
associated with potential pitfalls in the model reconstruction
workflow.

Reference genomes from human gut microbiome
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Fig. 1 Workflow for the prediction of auxotrophies with genome-scale metabolic modeling. Gapseq was used to reconstruct genome-scale
metabolic models from genomes of the Human Reference Gut Microbiome (HRGM) catalog [27]. The workflow of gapseq to reconstruct
metabolic models consists of five steps: transporter/metabolic pathway prediction, draft metabolic network construction, growth medium
prediction, gap filling, final model reconstruction. Auxotrophy prediction was performed using flux-balance analysis and validated by
reconstructing gapseq models from experimentally verified auxotrophic strains. The predicted auxotrophies were compared on strain level
from gapseq and AGORA2 models to experimentally verified auxotrophies. QC reads of cohorts were mapped on HRGM. Auxotrophy
frequencies in cohorts were determined by mapping QC reads from the metagenomes of the cohorts to genomes from HRGM collection.
Icons are from www.flaticon.com (creators: photo3idea_studio, Freepik, surang, Eucalyp, Voysla, juicy_fish, smashingstocks, SBTS2018,

creative_designer).
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Amino acid auxotrophies are common in the human gut
microbiome

Auxotrophies for tryptophan were predicted to be the most
prevalent, at 63.9% of the genomes in the HRGM catalog (Fig. 2).
Isoleucine, leucine, and valine (BCAA, branched-chain amino acids)
auxotrophies were also estimated to be common (40.1%, 40%,
41.1%, respectively). No auxotrophies were predicted for alanine,
aspartate, and glutamate. We further analyzed the observed
auxotrophies at the taxonomy level by comparing the proportion
and number of auxotrophies on phylum and order level
(Supplementary Fig. S3). Actinobacteriota were predicted to have
a higher proportion of BCAA auxotrophies compared to proto-
trophies (Supplementary Fig. S3). For tryptophan, a higher
proportion of auxotrophic to prototrophic bacteria was estimated
in Firmicutes, Actinobacteriota, and Fusobacteriota. Based on our
computational analysis, Fusobacteriota had a higher auxotrophic
to prototrophic ratio for almost all amino acids, whereas the
opposite was predicted for Proteobacteria. This observation is
further supported by the number of auxotrophies predicted per
genome for Proteobacteria and Fusobacteriota (Supplementary
Fig. S4). Additionally, the results suggest that auxotrophic
genotypes have lost the genes for most of the enzymes required
for the biosynthesis of the corresponding amino acid (Supple-
mentary Fig. S5). Taken together, the results indicate that amino
acid auxotrophies are prevalent in the human gut microbiome.

Amino acid auxotrophies are associated with the profile of
fermentation products

Amino acid biosynthesis pathways and pathways producing
fermentation products share common precursor metabolites
(Fig. 3B). For example, pyruvate is a central metabolite that is
utilized for the biosynthesis of the BCAA as well as in some gut
bacterial species for lactate formation, underlining the intercon-
nection of amino acids and energy metabolism in the metabolic
network.

Here, we investigated whether bacteria that are auxotrophic for
specific amino acids are commonly associated with specific
profiles of fermentation products. Therefore, we predicted the
metabolic by-products of cell growth and compared those results
with the auxotrophy predictions for the corresponding organisms
(Fig. 3A). BCAA auxotrophic bacteria were more likely to produce
lactate in comparison to prototrophic bacteria (Fisher's exact test
for count data, log,(Odds Ratio (OR))=2.0-2.8, FDR-corrected
p value < 0.05). Propionate production was commonly predicted
for glutamine auxotrophic gut bacteria (log,(OR) =2.4, FDR-
corrected p value < 0.05) and by cysteine auxotrophs (log,(OR) =
1.9, FDR-corrected p value <0.05). Succinate is predominantly
produced by asparagine auxotrophic gut bacteria (log,(OR) = 2.2,
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o

FDR corrected p value < 0.05). For butyrate, there was a higher
association with glutamine auxotrophic bacteria (log,(OR) = 1.6,
FDR-corrected p value < 0.05).

The association of auxotrophic bacteria with the production of
organic acids might be explained by the distribution of reaction
fluxes through the metabolic network. For instance, pyruvate is a
metabolic precursor for the de novo biosynthesis pathways for
BCAA but also for lactate formation (Fig. 3B). Pyruvate not used for
BCAA biosynthesis in auxotrophic genotypes might be redirected
towards lactate production. Thus, our findings suggest a plausible
interplay in resource allocation between a microorganism'’s energy
metabolism strategy and its auxotrophy profile.

More diverse gut microbiomes are characterized by a higher
auxotrophy frequency

To estimate the frequency of auxotrophies in the gut microbiome
of individual persons, we quantified the relative abundance of gut
bacterial genotypes from the HRGM catalog using stool meta-
genomes of 185 healthy adults. As mentioned above, we found a
negative correlation between the number of auxotrophies and
genome completeness levels (Supplementary Fig. S1). To validate
that higher genome completeness levels do not affect the general
pattern in the auxotrophy distribution of individual microbiomes,
we determined auxotrophy frequencies with different cutoff
values for completeness (80-95%) of the reference genomes used
for quantification. Overall, the distribution of auxotrophy frequen-
cies remained robust to increasing genome completeness levels
(Supplementary Fig. S6). Therefore, we decided to keep the 85%
completeness level described above.

Auxotrophies for amino acids that are essential to the human
organism were more frequent than non-essential amino acids (Fig. 4A).
The highest percentage of bacteria were auxotrophic for tryptophan,
followed by isoleucine and histidine (median: 54%, 28.7%, 28%,
respectively). Auxotrophies for leucine, methionine, phenylalanine,
arginine, and valine were found with a median frequency of >20%
(Fig. 4A). The lowest frequencies were detected for serine, lysine,
asparagine, aspartate, alanine, and glutamate auxotrophies.

Additionally, we were interested in the relationship between the
proportion of auxotrophic bacteria in the human gut and the overall
microbiome diversity calculated as the Shannon index (Fig. 4B, C).
Overall, increasing frequencies of almost all amino acid auxotrophies
are accompanied by increasing microbiome diversity (Spearman
correlation, Fig. 4B). Further, we correlated the Shannon index with
the abundance-weighted average of the number of auxotrophies per
metagenome sample, which takes the relative abundance of each
genome and its total number of amino acid auxotrophies into
account. With an increasing number of auxotrophies, an increase in
the diversity was observed (Fig. 4C, p = 0.27, p = 0.00018). This result
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Fig. 2 Abundances of auxotrophies in 3687 genomes. The predicted amino acid auxotrophies in HRGM genomes were categorized into

human essential and non-essential amino acids.
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pathways occur in every gut bacterial genotype. The metabolic network shown displays pathways commonly found in human gut

metagenomes and linked to amino acid biosynthetic pathways.

may point towards a positive influence of auxotrophic bacteria on the
microbial diversity in the gut, presumably via a higher degree of
amino acid cross-feeding interactions between genotypes that are
auxotrophic for different amino acids. To test this, we calculated the
pairwise dissimilarity (Hamming distance) between the binary
auxotrophy profiles of genomes and the means of those differences

The ISME Journal (2023) 17:2370-2380

per metagenome sample as an indicator for potential cross-feeding in
the respective gut microbial community. An increasing average
Hamming distance was positively associated with increased gut
diversity (Fig. 4D, p = 0.32, p =0.00001). Overall, a higher number of
auxotrophies in the gut community is positively correlated with a
higher diversity.
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Fig. 4 Distribution of auxotrophies in human gut microbiomes from 185 healthy adults, their association with diversity, and serum
metabolite levels. A Boxplots display the abundance of amino acid auxotrophies in the human gut microbiome (n = 185 samples). B Partial
Spearman correlation between the frequency of auxotrophic gut bacteria and serum levels of health markers and microbiome Shannon index.
Dots indicate significant associations (FDR-corrected p values < 0.05, adjusted for the potential confounders age, sex, and BMI). C The
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Associations of gut bacterial auxotrophies for amino acids frequency of gut microbial amino acid auxotrophies. Our results
with host health markers and the serum metabolome showed that the summed relative abundance of bacteria that are
The involvement of microbial metabolism in host health has been auxotrophic for certain amino acids are inversely associated with
examined in several other studies [30, 31] but not yet for the the stool donor’s BMI (Fig. 4B, partial Spearman correlation). No

SPRINGER NATURE The ISME Journal (2023) 17:2370-2380



statistically significant associations with blood cell counts were
found (Fig. 4B). Additionally, we correlated targeted metabolomics
data from serum samples with the aggregate frequencies of
bacteria auxotrophic for specific amino acids (Fig. 4E, partial
Spearman correlation). Positive correlations were found between
the tryptophan-derived 3-indoleacetic acid (3-I1AA) as well as
3-indolepropionic acid (3-IPA) and tryptophan auxotrophic gut
bacteria. Additionally, several other amino acid auxotrophies
showed positive correlations with these metabolites. The total
frequencies of bacteria auxotrophic for specific amino acids
showed a positive correlation with P-cresol sulfate. Further, several
significant associations were detected with metabolites from bile
acid metabolism. Negative correlations were observed for
glycoursodeoxycholic acid (GUDCA), a conjugated secondary bile
acid metabolite, and several amino acid auxotrophies. Further,
negative correlations with the bile acid metabolite deoxycholic
acid (DCA) were found for the aggregate frequencies of bacteria
auxotrophic for tyrosine, threonine, and cysteine. Positive
associations were also observed for hippuric acid and TMAO with
several amino acid auxotrophies. No significant associations were
found for serum levels of amino acids and amino acid-related
compounds (Fig. 4E).

Taken together, the frequency of auxotrophic bacteria is related
to serum levels of several metabolites. The gut microbial
contribution to serum metabolite levels was predominantly found
for metabolites previously reported to be of microbial origin (e.g.,
3-IAA) or derived from gut microbially-produced compounds
(e.g., TMAO).

Analysis of longitudinal microbial composition data suggests
a positive influence of auxotrophies on gut microbiome
stability

So far, our results suggest an involvement of auxotrophic bacteria
on the gut microbial diversity. Based on this observation, we
further wanted to analyze whether the frequency of auxotrophies
also impacts the microbiome’s long-term stability using data from
two longitudinal studies. Therefore, we re-analyzed recently
published metagenomic data from two human cohort studies
[32, 33]. Troci et al. included two stool metagenomes from 79
healthy individuals each where stool samples were three years
apart [32]. The longitudinal study of Chen et al. involved two stool
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metagenomes from 338 individuals with a time difference
between samples of four years [33]. Microbiome stability over
the time periods was assessed by calculating the UniFrac distance
for the microbial composition between the two time points for
each participant. Since the UniFrac distance ranges between 0
(lowest possible dissimilarity) and 1 (highest dissimilarity), we
calculated the inverse values (1-UniFrac) as a microbiome stability
measure. The abundance-weighted average of auxotrophies per
genotype was positively correlated with microbiome stability in
both cohorts (Fig. 5A, Spearman rank sum correlation test, Troci
et al.. p=0.31, p =0.006, n =79; Chen et al.. p =0.14, p = 0.0094,
n=338). We also correlated individual amino acid auxotrophy
frequencies with microbiome stability to understand the impact of
individual amino acid auxotrophies on long-term stability. A
statistically significant positive correlation was found in both
cohorts for many amino acid auxotrophies, while no negative
correlation was observed (Fig. 5C).

Long-term microbiome stability was also tested for a statistical
association with the average Hamming distance with samples,
which represents a measure of the dissimilarity between the
auxotrophy profile of co-existing genotypes and a potential
indicator for the degree of amino acid cross-feeding in the
microbial community. A positive correlation was observed for the
average Hamming distance with microbiome stability in both
cohorts (Fig. 5B, Troci et al: p=0.33, p=0.0033, n=79; Chen
et al: p=0.21, p=0.00014, n=338), suggesting a potential
positive impact of amino acid cross-feeding among auxotrophy
genotypes on the long-term stability of microbiome composition.

Auxotrophic bacteria have a high dependence on their
nutritional environment. Here, we wanted to test if a higher
dietary intake of amino acids affects the relative abundance of
amino acid auxotrophic bacteria in the gut. Therefore, we used the
dietary intake data obtained from food frequency questionnaires
from Troci et al. [32]. For both study time points, the intake of
amino acids was tested for correlation with the frequency of
amino acid auxotrophies in the microbiomes. No significant
correlations between the frequency of auxotrophic bacteria and
the dietary intake of amino acids were observed (Supplementary
Fig. S7).

In sum, our findings hint at a potentially positive impact of
auxotrophies on the stability of the gut microbiome. Further, the
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Fig. 5 Influence of auxotrophies on long-term stability of the human gut microbiome. A The stability of the human gut microbiome
was calculated as 1 minus the UniFrac distance between the two time points in the longitudinal studies and correlated with the abundance-
weighted average of auxotrophies at the first time point to study a potential influence of auxotrophies on the long-term stability of the human
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investigate the influence of potential cross-feeding on long-term stability. C The contribution of individual amino acid auxotrophies on
the stability was calculated with the Spearman correlation between the 1-UniFrac values and individual amino acid auxotrophy frequencies.
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data suggest that amino acid cross-feeding may contribute to the
compositional stability of the gut microbiome. We found no
evidence of diet's effect on auxotrophy frequencies.

DISCUSSION

Auxotrophies are widespread among microorganisms [11, 34]. The
obligate nutritional requirements can have far-reaching conse-
quences for the auxotrophic strains and the entire microbial
community in the ecosystem [35]. Each auxotrophy for a specific
essential nutrient (e.g., amino acids) increases the organism’s
dependence on the nutritional environment, coupling the
organism’s survival and proliferation to the availability of the
specific compound [35]. Conversely, if the focal metabolite is
available, auxotrophic genotypes might gain a selective advan-
tage over prototrophic genotypes by saving metabolic costs [36].
In microbial communities, auxotrophies can affect the interactions
between microorganisms and their hosts, where auxotrophs could
act as recyclers of metabolites that other community members
release as by-products of their metabolism [37]. In addition,
organisms that are auxotrophic for different metabolites could
engage in cooperative cross-feeding interactions [38-40]. Despite
the ecological relevance of auxotrophies, their role in the human
gut microbiome is largely unknown. More specifically, previous
work showed that several human gut bacterial isolates are indeed
amino acid auxotrophs using genome analysis and a comprehen-
sive literature review of experimentally determined auxotrophies
and prototrophies [28]. Still, the overall distribution and variation
of auxotrophies in the human gut microbiome remain elusive.
Here, we systematically analyzed the distribution of amino acid
auxotrophies in the human gut microbiome using genome-scale
metabolic modeling. Moreover, we statistically assessed the
associations of inferred auxotrophy frequencies with overall
microbiome diversity, long-term stability, and microbial contribu-
tion to the human metabolome.

Ubiquity of auxotrophies indicates a high prevalence of cross-
feeding
Overall, high frequencies of auxotrophies were found in the
human gut microbiome. For instance, we found that 54%(median)
of organisms in the gut microbial communities of healthy adults
are auxotrophic for tryptophan. The most frequent auxotrophies
for amino acids in the human gut microbiome are also essential
nutrients for the human host (Fig. 4A). While auxotrophies in
human gut bacteria were reported before, the sources of amino
acids for auxotrophic genotypes remain unknown. One potential
source of amino acids might be dietary proteins [41]. However,
most diet-derived protein is broken down in the upper gastro-
intestinal tract, and amino acids are absorbed by the human host,
limiting protein and amino acid passage to the colon, where most
of the gut microbiome resides [41]. While most dietary free amino
acids do not reach the colon, some dietary proteins that escape
digestion in the small intestine can provide a nutrient source for
the auxotrophic colonic microbiome [42]. Our predictions are
based on genomes from stool samples, which predominantly
reflect the microbiome composition in the large intestine.
Therefore, we argue that the high frequency of amino acid
auxotrophies predicted for the colon microbiome in this study is
unlikely to be explained by dietary sources of amino acids alone.
Plus, we did not find any statistical associations between the
dietary intake of amino acids of 79 adults and the frequency of
auxotrophies in the microbiome (Supplementary Fig. S7), which
further indicates that auxotrophic genotypes acquire their amino
acids from other sources. Another study supports our conclusion,
as varying dietary concentrations of essential nutrients did not
alter the frequency of auxotrophy in the gut [43].

A second potential source of amino acids might be cross-
feeding interactions between auxotrophic and prototrophic
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genotypes. Cross-feeding between strains that are auxotrophic
for different amino acids has been demonstrated in synthetic [40]
and naturally occurring microbial communities [34]. Furthermore,
a recent study showed that amino acids synthesized by the
colonic microbiome stay in the gut and are not absorbed via the
mucosa [42]. Cross-feeding as a potential source of amino acids for
auxotrophic bacteria requires that prototrophic bacteria in the
microbial community secrete the respective amino acids. In fact,
amino acid biosynthesis and the release into their growth
environment have been reported for several gut bacterial species,
including members of the genus Bacteroides [44] and the species
Bifidobacterium longum [45]. Thus, cross-feeding enables the
growth of auxotrophic organisms even in environments where
the focal nutrient is unavailable. Our results suggest a wide
diversity of auxotrophic profiles between coexisting genotypes
(Fig. 4D), indicating metabolic complementarity and amino acid
cross-feeding in gut microbial communities.

Host-derived metabolites are the third potential source of
amino acids for auxotrophic gut microbes. Yet, evidence reported
in the scientific literature for gut microbial uptake of host-derived
amino acids is scarce [42, 46]. An interesting case where an
auxotrophic gut bacterium covers its demand for the focal amino
acid might be Akkermansia muciniphila. Our predictions show that
this bacterium is auxotrophic for threonine, which is in agreement
with previous cultivation experiments [15]. A. muciniphila is a
known degrader of host mucins and resides in the mucus layer.
Besides glycans, mucin consists of a core protein scaffold rich in
proline, threonine, and serine [47]. Thus, the threonine auxotrophy
of A. muciniphila may indicate that this species also utilizes host-
derived threonine.

Auxotrophies might promote ecological diversity and
microbiome stability

A major result of our study is the positive associations between
auxotrophies and diversity of the human gut microbiome. Earlier
studies that used theoretical approaches suggested that auxo-
trophies can increase and maintain diversity in microbial
communities by creating niches for different organisms to occupy
through metabolite cross-feeding [25, 37]. Thus, we conclude that
in communities with more auxotrophic members, more cross-
feeding may take place, which could promote diversity. Our
results support this theory since we observed a positive
association between microbiome diversity and auxotrophic profile
differences among coexisting genotypes.

Microbe-microbe interactions via metabolite exchanges may
also promote microbiome stability [48]. Here, we tested if having
more auxotrophies as an indicator for metabolite cross-feeding in
the gut microbiome is linked to greater stability in healthy adults
over three to four years. Indeed, our findings from two
independent cohorts indicate that microbiomes with a higher
average frequency of auxotrophies at the beginning of the study
period remained more stable throughout the duration of the
studies (Fig. 5). The association of auxotrophies with microbiome
stability was even more pronounced when considering the
dissimilarity of auxotrophy profiles of coexisting genotypes as a
proxy for amino acid cross-feeding. This result is in line with a
recent theoretical study, which demonstrates that cross-feeding
between auxotrophs can facilitate that the community structure
returns to equilibrium after ecological perturbance [26]. Moreover,
it was previously reported that B-vitamin auxotrophies in the
human microbiome are prevalent and suggest that cross-feeding
B-vitamins between prototrophic and auxotrophic genotypes
contributes to gut bacterial population dynamics [43]. The authors
also base their conclusion on experimental results, where
gnotobiotic mice were colonized by a human fecal microbial
community. In these experiments, varying dietary B vitamin intake
in mice did not result in appreciable changes in gut
microbial community structure, including the proportion of B
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Table 1. Cohort characteristics.

Cohort Age (years) BMI Female (%) Study participants
This study 47 [40-52] 24.5 [22.2-26.4] 449 185

Troci et al., 2022 53 [45.75-57.25]* 25.7 [23.5 -27.5]* 37.5*% 79

Chen et al,, 2021 47.5 [40-56] - 55.6 338

"Missing values/information: 7.

vitamin-auxotrophic subpopulations, which further suggests
cross-feeding as a source of essential nutrients for auxotrophic
bacteria in the gut environment and supports our hypothesis that
higher auxotrophy frequencies contribute to microbiome stability
(Fig 5AB).

Since a reduction in gut microbiome diversity has been
reported for several chronic diseases [49-51], our results and the
methodology to predict auxotrophy frequencies may guide the
development of novel personalized treatment strategies by
targeting ecological interactions between coexisting gut micro-
organisms. For instance, oral administration of microencapsulated
amino acids with delayed content release could be used to
specifically promote the growth of beneficial subpopulations of
the large intestine microbial community, which are auxotrophic
for the focal compound [52].

There is an ongoing debate about how different types of cell
interactions (i.e., cooperation and competition) contribute to the
stability of multi-species communities [20, 26, 53-55]. We want to
emphasize that we do not claim that cooperative interactions are
stronger than competitive interactions in stabilizing microbiomes,
also because we focused in this study on one type of interaction
(amino acid cross-feeding) and not on the prevalence of other
kinds of interactions or the exchange of other metabolites.
Instead, we argue that our results provide evidence that
auxotrophies and potential amino acid cross-feeding contribute
to maintaining microbiome composition.

Auxotrophy associations with the human metabolome
Pathways of amino acid biosynthesis and fermentation by-
product biosynthesis share common precursors. Therefore, the
loss of biosynthetic genes for amino acids might affect the flux
distribution in the metabolic network [36]. Fermentation by-
products such as the organic acids butyrate, acetate, and
propionate have implications for human physiology [1]. Hence,
we wanted to investigate whether specific amino acid auxo-
trophies are associated with the profile of fermentation products
released by gut bacteria. Comparison of the fermentation by-
product profile of auxotrophic and prototrophic bacteria
revealed statistically significant associations (Fig. 3A), which
may be due to the structure of the metabolic network. For
example, BCAA auxotrophic bacteria are more likely to be lactate
producers, which might be attributed to the fact that the
common precursor of BCAA synthesis and lactate synthesis,
pyruvate, is no longer used for BCAA synthesis in BCAA
auxotrophic bacteria but can be used for lactate formation.
The altered fermentation profile in auxotrophic bacteria may,
therefore, indicate the importance of the nutritional require-
ments of gut bacteria for the microbiome’s contribution to the
human metabolome.

Indeed, when we tested for associations of the relative
abundance of amino acid auxotrophs with compounds of the
human metabolome, we found several significant correlations
(Fig. 4E). In particular, the frequencies of several auxotrophies
were correlated with phenylic and indolic metabolites, namely
hippuric acid, p-cresol sulfate, 3-indole acetic acid (IAA), and
3-indole propionic acid (IPA). These compounds were previously
reported to be of microbial origin or are derived from gut
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microbially-produced metabolites [56]. For instance, hippuric acid
and p-cresol sulfate levels were reported to strongly correlate with
the microbiome alpha diversity in a large human cohort study [57].
P-cresol is known to be produced by gut bacteria that metabolize
tyrosine [58], and we found an association with tyrosine
auxotrophic gut bacteria. Moreover, the tryptophan-derived IAA
is a known agonist of the epithelial human aryl hydrocarbon
receptor, an important regulator of intestinal immunity [59]. In
summary, our results suggest that the contribution of phenylic
and indolic compounds to the human metabolome is linked to
metabolic processes performed by amino acid auxotrophic gut
bacteria.

Limitations

The method of our study is subject to certain limitations. In our
study, auxotrophies were predicted with reconstructed genome-
scale metabolic models. Discrepancies between metabolic
modeling-based predictions and results from vitro assessments
have been reported and discussed previously [13, 29, 60]. Thus,
it is crucial to validate in silico prediction with in vitro results of
auxotrophies. Here, we compared our in silico results with
in vitro results for 36 gut bacterial strains and found a sensitivity
of 75% for auxotrophy predictions with gapseg- reconstructed
genome-scale metabolic models. In addition, we performed
auxotrophy prediction for 124 genomes from bacterial strains
that are not human gut bacteria but known from cultivation
experiments to be prototrophic for all 20 proteinogenic amino
acids. This test showed that 99.1% of our prototrophy
predictions are in line with the experimental data, suggesting
that the high prevalence of predicted auxotrophies among the
human gut bacterial genomes is not due to a potential technical
bias in the in silico approach.

CONCLUSION

Our study demonstrates the prevalence and potential impact of
auxotrophs in the human gut microbiome. Auxotrophies are
common in the human gut microbiome, and interestingly, amino
acids essential to the human host are also commonly essential for
large fractions of the gut microbiome. Furthermore, human gut
microbiomes with high frequencies of auxotrophies were char-
acterized by higher alpha diversity and were more stable over
time. Since gut microbial communities commonly display reduced
diversity during chronic diseases, auxotrophy frequencies in the
human gut microbiome could indicate a healthy gut microbiome.
In addition, our results suggest that metabolite cross-feeding
networks in gut bacterial communities may be an important factor
for stability and maintaining diversity. From a more technical point
of view, previous studies have suggested a cautious interpretation
of in silico-predicted auxotrophies. Therefore, we validated our in
silico results with experimentally determined auxotrophies
reported in scientific literature. This validation indicated the high
predictive performance of our method, which used automatic
genome-scale metabolic network reconstruction without the need
for manual curation of individual genotypes. Thus, the approach
can also be applied to microbial communities other than the
human gut microbiome.
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MATERIAL AND METHODS

Reconstruction of genome-scale metabolic models
Genome-scale metabolic models were reconstructed for bacterial genomes
from the Human Reference Gut Microbiome (HRGM) genome collection
[27, 61]. The HRGM collection combines isolate and metagenome-
assembled genomes (MAGs) from several data sources to summarize
genome sequences obtained from human fecal samples. Metabolic models
were reconstructed using gapseq version 1.2 [62]. gapseq is a command-
line tool for automated reconstructions of genome-scale metabolic
networks, that utilizes pathway, reaction, and metabolite entries from
the databases MetaCyc [63] and ModelSEED [64]. A detailed description of
the genome-scale metabolic model reconstruction workflow can be found
in the Supplementary Information and Supplementary Table S6.

Prediction of amino acid auxotrophies

Amino acid auxotrophies were predicted with flux balance analysis [65], where
the objective function was set to the flux through the biomass formation
reaction. In detail, each model was tested for its ability to form biomass under
two different environmental conditions: First, with the growth medium predicted
with gapseq (see Supplementary Information), and second, with the same
medium but where the amino acid of interest was removed. An organism was
defined as auxotrophic for a specific amino acid if the organism was able to form
biomass in the original medium but not in the medium without the amino acid
of interest. Flux balance analysis was performed in R (v4.1.2), the R package sybil
v2.20 [66], and IBM ILOG CPLEX optimizer as linear programming solver. We
validated our auxotrophy predictions for 150 organisms (36 from the human gut,
124 known prototrophs from different environments), for which experimental
data for amino acid auxotrophies and prototrophies were available in scientific
literature (see Supplementary Information for details).

When assessing the distribution of amino acid auxotrophies in sampled
individual microbiomes, it is important to consider the relative abundance
of different genotypes. To this end, we combined the estimated relative
abundances of reference genomes (see “Metagenome data processing”)
and predicted auxotrophies in the corresponding genomes to calculate the
relative auxotrophy abundance y;, of amino acid k in sample j using the
equation:

Yik = Zpi.jbi.k

ieM

Where M is the set of all reference genomes, p; the relative abundance
of genome i in sample j, and b;x the auxotrophy prediction with “1” if
genotype i is auxotrophic for amino acid k and “0” otherwise.

Prediction of metabolic by-products

For comparison of auxotrophic to prototrophic bacteria, the production
rates of fermentation by-product formation were predicted. We undertook
this analysis based on the demonstrated accuracy of gapseq in predicting
fermentation products of anaerobically cultured gut bacteria [62]. Given
the potential correlation between auxotrophies and the generation of
metabolic by-products, investigating auxotrophy distributions could offer
new insights into gut microbial metabolism and ecology. Metabolic by-
products were predicted with flux-balance-analysis [65] using the flux
through the biomass reaction as objective function (i.e.,, maximization) and
subsequently analyzing the fluxes through exchange reactions. Metabolite
production rates (mmol*gDW '*hr™") were normalized by growth rates
(hr ™, resulting in the unit mmol/gDW. Production rates >1 mmol/gDW
were considered as microbial production. The production of the two
enantiomers, D- and L-lactate, were combined since their production rates
were interchangeable in the FBA solution.

Cohorts
Data from three human population cohorts were analyzed for the present
study (Table 1). The first cohort comprised paired stool metagenomes and
serum metabolomes from 185 participants. This cohort was recruited at
the University Hospital Schleswig Holstein, Campus Kiel 2016, and included
detailed phenotypic and health-related data. The study was approved by
the local ethics committee in Kiel (D441). None of the participants had
received antibiotics or other medication two months before inclusion.
The second cohort (Troci et al., 2022) comprised longitudinal stool
metagenomes from 79 study participants. Data from this cohort were
already part of a previous study [32], which were reanalyzed in the present
study. For each participant from this cohort, two metagenomes were
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sequenced from stool samples that were three years apart. In addition, for
each sampling time point, data from food frequency questionnaires were
available. In brief, the questionnaire, originally designed and validated for
use in the German EPIC study [67], comprised 112 food items and aimed to
collect the intake frequency and amount of various types of foods. The
average energy intake and other nutrients per day were calculated with
data from the German Food Code and Nutrient Data Base (BLS version II.3
[66]). Further information about the sampling method, study design, and
sequencing method of this cohort study can be found in the original
publication [32].

The third cohort integrates fecal metagenomes from the 2021
publication by Chen et al, involving 338 Dutch study participants [33].
Like the second cohort, the Chen et al. cohort is designed longitudinally,
incorporating two fecal metagenomic samples per participant over a four-
year interval.

Metagenome sequencing

DNA of stool samples was extracted using the QlAamp DNA fast stool mini kit
automated on the QlAcube (Qiagen, Hilden, Germany) with a prior bead-
beating step as described earlier [68]. DNA extracts were used for
metagenomic library preparation as described previously [32] using lllumina
Nextera DNA Library Preparation Kit (Illumina, San Diego, CA) and sequenced
with 2 x 150 bp paired-end reads on a NovaSeq platform (lllumina).

Metagenome data processing

Metagenomic reads were quality filtered using the ‘qc’ workflow from the
metagenome-atlas pipeline tool v2.9.0 [69] with default parametrization if
not stated otherwise in the Supplementary Information. Quality-controlled
(QCQ) reads were used to estimate the relative abundance of genomes from
the HRGM catalog [27] using coverM v0.6.1 [70]. Across all three analyzed
metagenome data sets, a median of 76% QC reads mapped to HRGM
reference genomes (Supplementary Fig. S8).

Targeted metabolomics of blood samples

Metabolite quantification for serum was performed by liquid chromato-
graphy tandem mass spectrometry (LC-MS-MS) using the MxP Quant 500 kit
(Biocrates Life Sciences AG, Innsbruck, Austria) according to the manufac-
turer’s instructions. Please refer to the Supplementary Information document
for blood sample preparation and metabolite quantification details.

Statistical data analysis

All data analysis steps and statistical tests were performed using R (v4.1.2).
Flow charts (Fig. 1. and 3A) were created and rendered using Flowchart
Designer 3. p values were corrected for multiple testing using the
Benjamini and Hochberg method [71]. In all statistical tests, an adjusted
p value of <0.05 was considered as significance threshold. UniFrac
distances [72] were calculated using relative abundances of genomes
using the R-package abdiv, v0.2.0 [73].

Alpha diversity was calculated using the Shannon index as implemented
in the R-package vegan v2.6-2 [74]. The average pairwise Hamming distance
between auxotrophic profiles of co-occurring genomes was calculated per
sample to study the effect of metabolic dissimilarity on diversity. In other
words, the Hamming distance is the number of amino acids for which the
two genotypes had different auxotrophy predictions. In addition to the
Hamming distance, we also calculated the abundance-weighted average of
auxotrophies per genome y; for each sample j using the equation:

Vi = Zaipij

ieM

Where M is the set of all genomes, ag; the number of auxotrophies in
genome J, and p; the relative abundance of genome i in sample j.

For the longitudinal cohorts, the UniFrac distance was correlated with the
abundance-weighted average of auxotrophies per genome at the first time
point using the Spearman correlation. Further, the Spearman correlation was
used to determine the association between the UniFrac distance and the
Hamming distance. With food frequency questionnaires, the total dietary
intake of amino acids per day was summed up for every individual, and the
energy percentage was then calculated based on the total energy intake
per day. The Spearman correlation was used to study an association between
the total dietary intake of amino acids relative to the total consumed energy
(E%) and the frequency of amino acid auxotrophic bacteria. The correlation
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between the intake of amino acids and frequencies of amino acid
auxotrophic bacteria was studied separately for both time points.

DATA AVAILABILITY

The reconstructed genome-scale metabolic models from the HRGM catalog are
available via Zenodo [75]. Further, metabolic model reconstructions for 124
prototrophic genotypes and 36 gut bacterial genotypes with amino acid
auxotrophy/prototrophy status known from laboratory experiments are available
via Zenodo [76, 77]. Metagenome sequencing data are provided via the European
Nucleotide Archive ‘ENA’ for our study cohort and the cohort from Troci et al. (this
study accession: PRIEB60573, Troci et al.: PRIEB48605). Metagenome sequencing data
from Chen et al. 2021 [33] are available upon request via the European Genome-
Phenome Archive (accession: EGAD00001006959).

CODE AVAILABILITY

The code for analysis of the data can be found in the GitHub repositories https://
github.com/SvBusche/Auxo_manuscript_2023 (main results) and https://github.com/
Waschina/AGORA2_auxotrophies (for auxotrophy predictions from AGORA2 meta-
bolic models).
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