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Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg)
production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments;
however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking.
Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20–100 cm)
showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0–20 cm). Regional-scale
investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of
Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the
candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic
environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood–Ljungdahl pathway but has unique
capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway
suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in
subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological
adaptations in mangrove sediments.
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INTRODUCTION
The production of neurotoxic methylmercury (MeHg) by micro-
organisms is mediated by the functional proteins encoded by the
two-gene cluster hgcA and hgcB [1]. The presence of the hgcAB
gene pair is a reliable indicator of a microbe’s ability to methylate
mercury (Hg) [2], and has previously been linked to sulfate-
reducing bacteria (SRB) [1], iron-reducing bacteria (IRB) [3],
methanogens [4], and other anaerobes [2]. The discovery of the
hgcAB gene pair has significantly expanded the known diversity of
microorganisms capable of producing MeHg [5]. For instance,
recent studies investigating the subsurface biosphere [6–8] have
identified Hg-methylating microbes from several phyla, including
Lokiarchaeota, Aminicenantes, Kiritimatiellaeota, Spirochaetes, Mar-
inimicrobia, and Actinobacteria, that were previously not thought
to be associated with MeHg production. The subsurface biosphere
is a major reservoir of phylogenetically and metabolically diverse
microorganisms that have largely yet to be characterized [9].
Despite the detection of bioaccumulated MeHg in this environ-
ment [2], the microbiota responsible for mediating MeHg cycling
in the subsurface biosphere remains an elusive “dark matter”.
Mangrove sediment is a crucial component in the global Hg

cycling, serving as ideal niches of microbial Hg methylation [10].
Previous research has primarily focused on MeHg biogeochem-
istry in the superficial sediments of mangroves, revealing the
presence of well-known Hg methylators [11]. Recent findings have
demonstrated that the subsurface microbial communities showed

apparent acclimation to Hg, and Hg methylation may be favored
by more reducing conditions (i.e., in the deeper layers) [10, 12].
However, whether the more anoxic and highly reducing condition
in mangrove subsurface sediments can lead to intensive MeHg
production remains unknown, as does the identity of the
subsurface microorganisms responsible for Hg methylation. Our
prior research, indicating that the more reducing conditions in the
subsurface layer favor anaerobes (i.e., SRB and methanogens) [13],
raises the possibility of a more diverse Hg-methylating microbial
community in the mangrove subsurface sediments.
Mangrove subsurface sediments have long been recognized as

energy-limited [14–16], since more recalcitrant organic matters are
trapped in deeper sediments with physical forces (i.e., hydro-
dynamics and gravity) [17]. However, owing to the lack of cultured
relatives, much remains unknown about the metabolic feature and
adaptive strategy of subsurface Hg methylators under such
energy-limited conditions. In recent years, high-throughput
culture-independent sequencing has provided a window into
the metabolic novelty of subsurface-dwelling microorganisms
[18–20]. The discovery of novel methanogen genomes from the
terrestrial subsurface has uncovered their diverse ecophysiological
adaptations with unexpected metabolic features (i.e., the potential
for extracellular electron transfer) [21]. In energy-limited condi-
tions, syntrophic relationships have been proposed as a common
strategy for mediating biogeochemical cycles [22, 23]. A recent
study has provided evidence that the SRB-methanogen syntrophy

Received: 24 April 2023 Revised: 12 October 2023 Accepted: 13 October 2023
Published online: 25 October 2023

1Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Sun Yat-sen University, Guangzhou 510006, China. ✉email: wangcheng5@mail.sysu.edu.cn

www.nature.com/ismej

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01544-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01544-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01544-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-023-01544-4&domain=pdf
http://orcid.org/0000-0001-6340-246X
http://orcid.org/0000-0001-6340-246X
http://orcid.org/0000-0001-6340-246X
http://orcid.org/0000-0001-6340-246X
http://orcid.org/0000-0001-6340-246X
https://doi.org/10.1038/s41396-023-01544-4
mailto:wangcheng5@mail.sysu.edu.cn
www.nature.com/ismej


via interspecies electron transfer dramatically stimulated Hg
methylation in co-cultures [24]. However, the potential for
syntrophic relationships in energy-limited mangrove subsurface
sediments for Hg methylation remains uncertain. With the
continued advancement of high-throughput sequencing, the
integration of microbial genomic information into syntrophic
models will enhance our understanding of the adaptive strategies
of Hg methylators in the subsurface biosphere.
In this study, we used MeHg measurements, Hg isotope assays,

and metagenomic sequencing to examine the levels of MeHg,
phylogenetic diversity, and metabolic adaptations of Hg methy-
lators in 100-cm mangrove sediment columns. Our findings
indicate elevated diversity of Hg methylators in subsurface layers.
This prompted us to investigate the regional-scale distribution of
these subsurface-dwelling Hg methylators across southeastern
mangrove regions of China, spanning over 1500 km. Our most
significant discovery is the identification of the candidate phylum
Zixibacteria as a currently understudied Hg methylator in anoxic
subsurface environments, with unexpected metabolic and lifestyle
features, such as Hg methylation independent of the
Wood–Ljungdahl pathway but involved in methionine synthesis,
benzoyl-CoA, and syntrophic pathways. This study significantly
expands the diversity of subsurface-dwelling Hg methylators and
sheds light on their unique metabolic adaptations in mangrove
sediments.

MATERIALS AND METHODS
Mangrove sediment sampling
The sampling site is located at Qi’ao Mangrove Wetland Park (22° 26′ 12.28′′
N, 113° 38′ 26.12′′ E), Guangdong Province, China. The park was
characterized by a mean annual temperature of 22.4 °C and annual
precipitation range of 1700–2200mm. The tidal regime was irregular
semidiurnal, with average high and low tide levels of 0.17m and −0.14m,
respectively [25]. We collected partially air-exposed sediments from the
native mangrove species (Kandelia obovata) in the park, in August 2019. Five
replicate sediment cores were obtained using a 1-m long PVC sampling
column after ebb. The cores were sliced into 10 depth intervals (0–5, 5–10,
10–15, 15–20, 20–30, 30–40, 40–50, 50–60, 60–80, and 80–100 cm), yielding
50 samples in total. The sliced sediments were stored in a portable cooler at
4 °C and transported back to the laboratory within 24 h for further analysis.
Each sample was divided into two sub-samples for different purposes: one
for biogeochemical properties analysis, stored at 4 °C, and the other for DNA
extraction, stored at −80 °C.

Biogeochemical properties analyses
Sulfate anion in the sediments was analyzed using a Thermo Scientific
Dionex ICS-1100 Ion Chromatography System, which consisted of a guard
column (IonPac AG14A), an analytical column (IonPac AS14A), a suppressor
(Dionex ERS 500), and a column heater (Dionex ICS-1100 Column Heater).
CH4 measurement was carried out by placing the sediment samples in
20mL serum bottles containing 5 mL of 1 M NaOH-buffered deionized
water [26]. The porewater CH4 concentrations were then measured using
an online GC–Mass (GCMS-QP2010 SE). Fe (II) concentrations were
measured directly, whereas Fe (III) concentrations were calculated as the
difference between total Fe and Fe (II) concentrations. Total Fe and Fe (II)
were determined using iron-phenanthroline spectrophotometry, which
relies on the Fe2+-dependent optical absorbance of bathophenanthroli-
nedisulfonic acid (BPS) at 535 nm at pH 5.4 [27].

Mercury analysis
All analyses for Hg and MeHg concentration as well as total Hg (HgT) stable
isotope were performed as described in previous studies [28, 29]. The
homogenized and freeze-dried sediment samples were prepared for Hg
concentration and isotope analysis using a double-stage tube furnace in
conjunction with 40% anti-aqua regia trapping solution (HNO3/HCl= 2/1,
v/v) [30]. All digests were heated to 95 °C for 8 h. Standard reference
materials (GSS-5, Hg concentration: 290 ± 30 ng/g) and method blanks
were processed similarly to the samples. The former yielded Hg recoveries
of 109 ± 4% and the latter showed Hg concentrations lower than the
detection limit, precluding lab contamination. The HgT and MeHg contents

in the digested sample were measured by a MERX automated HgT
analytical system (Brooks Rand Laboratories, USA) and inductively coupled
plasma mass spectrometry (ICP-MS) according to USEPA standard methods
1631E and 1630, respectively [31, 32].
For HgT stable isotope analyses, the preconcentrated solutions were

diluted to 0.5 ng/mL with an acid concentration of 10–20% prior to Hg
isotope analysis using a Neptune Plus MC-ICP-MS. Hg isotope ratios were
reported following the convention proposed by Blum and Bergquist [33].
To ensure that pre-concentration processes did not induce fractionation
[34], the National Institute of Standards and Technology (NIST) 3133 was
also run before and after each sample. The mass-dependent fractionation
(MDF) is expressed in δ202Hg notation in units of ‰ referenced to the
NIST-3133:

δ 202Hgð‰Þ ¼ ½ð202Hg=198HgsampleÞ=ð202Hg=198HgstandardÞ � 1� (1)

The mass-independent fractionation (MIF) is reported in Δ notation,
which describes the difference between the measured δxxxHg and the
theoretically predicted δxxxHg value in units of ‰:

Δ xxxHg ¼ δ xxxHg� δ202Hg´ β (2)

β is 0.252 for 199Hg, 0.5024 for 200Hg, and 0.752 for 201Hg. NIST-3177
secondary standard solutions, diluted to 0.5 ng/mL Hg with 10% HCl, were
measured before and after each sample. The overall average and
uncertainty values of NIST-3177 (δ202Hg: −0.53 ± 0.06‰; Δ199Hg:
−0.15 ± 0.01‰; Δ200Hg: 0.02 ± 0.03‰; Δ201Hg: 0.00 ± 0.03‰; 2 SD, n= 8)
and GSS-5 (δ202Hg: −1.76 ± 0.03‰; Δ199Hg: −1.60 ± 0.02‰; Δ200Hg:
0.03 ± 0.03‰; Δ201Hg: −0.29 ± 0.03‰; 2 SD, n= 8) agree well with
previous results [28, 29]. The larger values of 2-SD between NIST-3177
and GSS-5 are used to reflect maximum analytical uncertainties.
For Hg isotope fractionation, the previous study summarized the

research published up until the year 2011, with the aim of providing a
basic framework for understanding MDF and MIF in the environment [35].
Nearly all kinetic reactions involving Hg produce products with lower
δ202Hg (i.e., isotopically lighter) and leave a residual pool of reactants with
higher δ202Hg (i.e., isotopically heavier). In contrast, microbial reactions do
not produce significant MIF (i.e., Δ199Hg does not differ between products
and reactants). As these reactions proceed, the ratio of Δ199Hg to δ202Hg
can be diagnostic of the type of reaction. The overview of the general
patterns in isotope fractionation is detailed in Supplementary Table S1.

DNA extraction
The whole community DNA was extracted from 5.0 g mangrove sediment
and purified using a combined protocol of sodium dodecyl sulfate
extraction method [36] and Power Soil DNA Isolation Kit (Mo Bio
Laboratories, Carlsbad, California, USA) according to the manual. The
DNA purity was checked by NanoDrop ND-2000 Spectrophotometer
(Thermo Fisher Scientific, MA, USA), and ratios of 260/280 and 260/230
were about 1.80 and 1.70, respectively. The DNA concentrations were
quantified using a fluorescent method (Qubit 4 Fluorometer, Thermo
Scientific, USA).

Metagenomic sequencing and processing
For metagenomic sequencing, 1.0 μg of DNA from each sample was
prepared using the NEBNext DNA Library Prep Kit. Samples were individually
sequenced with the NextSeq550 platform (Illumina, San Diego, CA, USA),
resulting in 2 × 150 bp paired-end reads with an average of 12.47 Gbp per
sample. Low-quality (quality score ≤ 38, base N > 10 bp, the overlap length
between adapter and reads >15 bp) paired-end reads were filtered. After
trimming the raw sequencing reads using BBDuk (https://jgi.doe.gov/data-
and-tools/bbtools/, parameters: ktrim= r k= 28 mink= 12 hdist= 1 tbo= t
tpe= t qtrim= rl trimq= 20 minlength= 70), genome assembly and
binning were performed according to the MetaWRAP pipeline v1.3.0 [37].
The sequences were assembled with MEGAHIT (v1.1.3; parameters: -m 500)
to generate contigs [38]. Genome binning of assembled contigs was done
using MetaBAT2 (v2.12.1) [39] and MaxBin2 (v2.2.6) [40], and the resulting
metagenome-assembled genomes (MAGs) were consolidated with the
Bin_refinement module. The Reassemble_bins module further improved the
consolidated bin sets to generate MAGs (parameters: -m 800). The quality of
MAGs was evaluated with CheckM v1.0.12 [41]. Only MAGs with a
completeness of over 50% and a contamination level below 10% were
analyzed further. Representative MAGs were chosen using dRep (v3.4.0,
parameters: dRep dereplicate -sa 0.99 -nc 0.1) [42]. The abundance of each
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MAG was expressed as genome copies per million reads and calculated
using CoverM v0.6.1 genome mode (https://github.com/wwood/CoverM).
Taxonomic assignments of the MAGs were performed using the GTDB-Tk
v1.3.0 [43].

Search for hgcAB genes
In this study, we utilized the Hg-MATE-Db [44], an up-to-date database of
Hg methylators from pure culture and environmental datasets, to search
for hgcAB genes. The search was conducted using HMMER v3.3.2 [45], and
the results were further confirmed by examining the presence of
conserved motifs (N(V/I)WCA(A/G) in hgcA and (CX2CX2CX3C) in hgcB,
respectively. The hgcAB sequences were clustered at 100% identity using
CD-HIT to remove redundancy [46].

Relative and normalized hgcA abundance calculation
To quantify the relative abundance of hgcA gene, we calculated the
average number of aligned reads that overlapped each position on the
contig. The hgcA index was built using the Salmon v0.8.1 index mode [47].
Reads were mapped to the hgcA using Salmon in the quant mode. To
analyze the normalized hgcA abundance, we needed to estimate total cell
counts, whereas sequencing data can generate only relative abundance
values (in the absence of an internal standard). We began with the general
equation:

normalized abundance of hgcA genes

¼ relative abundance in total sequencing reads´microbial load
(3)

This approach has been discussed and tested in-depth previously [48],
where DNA yield was utilized as an estimate of microbial load in a sample.
DNA yield is not a perfect estimate of microbial load due to potential
ploidy [49] and bias in sequencing representation depending on the DNA
extraction method [50]. But in this study, all samples were extracted using
the same DNA extraction kit, and DNA yield was measured using a
fluorometry-based method (Qubit 4 fluorometer dsDNA HS Assay), making
it the best available measurement of microbial load (Supplementary
Fig. S1).

Phylogenetic analyses
Hg methylator genomes and hgcA genes recovered in this research were
analyzed and compared with reference sequences from Hg-MATE-Db.
MAFFT (--auto) [51], trimAl (v1.4.rev15) [52], and IQ-TREE 2 (parameters: -st
AA -alrt 1000 -bb 1000) [53] were used for sequence alignment, trimming,
and construction of phylogenetic trees, respectively. The phylogenetic trees
for Hg methylator genomes were inferred by a concatenated set of specific
single-copy marker genes in the GTDB (https://gtdb.ecogenomic.org/).
The orthologs of these marker genes in the Hg methylator and the reference
genomes were identified using GTDB-Tk based on HMMER. The results were
edited and modified using iTOL [54] and Adobe Illustrator, respectively.
The pairwise genomic ANI values were calculated by FastANI (v1.33,
https://github.com/ParBLiSS/FastANI) with default parameters based on the
assemblies [55]. FastANI was targeted to estimate ANI in the 70–100%
identity range.

Functional characterization of genomes
Gene prediction for all MAGs was performed using Prodigal v2.6.3 (default
settings) [56]. The predicted genes were characterized using McycDB [57],
SCycDB [58], and FeGenie [59]. MAGs and reference genomes were also
annotated using the KEGG-based annotation program METABOLIC v4.0
[60], and custom databases were searched using DIAMOND v2.0.15 [61]
and HMMER. Hydrogenases were identified using METABOLIC, consisting
of NiFe-, FeFe-, and Fe-hydrogenase catalytic subunits [62]. Putative
hydrogenase sequences identified in the search were then uploaded to the
HydDB webserver [62] to identify and remove non-hydrogenases.
Anaerobic hydrocarbon degradation genes were identified using a HMMER
database (hmmbuild, hmmpress, and hmmsearch modes) of reference
sequences from the anaerobic hydrocarbon degradation database [63].
Prokaryotic Hg resistance genes (merAB) were identified using publicly
available homologs of merAB [64] and the search custom-markers function
using HMMER v3.3.2. The distribution of biogeochemically important
genes identified using these methods is shown in Supplementary Data 1.
To detect multi-heme cytochromes, we utilized the Python script
“cytochrome_stats.py” available for download at https://github.com/
bondlab/scripts [65]. This script counts the occurrence of the heme-

binding motif, CXXCH, in protein sequences. Proteins with more than three
CXXCH motifs were considered as multi-heme cytochromes, following the
established criteria [65, 66]. The detailed information of multi-heme
cytochromes is shown in Supplementary Data 2. The annotation of Wood-
Ljungdahl pathway, methionine synthesis, and benzoyl-CoA reduction was
based on previous studies [67–70]. The typical cobalamin-dependent
methyltransferases were predicted using KofamKOALA (release 106.0,
https://www.genome.jp/tools/kofamkoala/, parameters: E‐value ≤ 1e−5)
[71, 72].

Protein AlphaFold2 modeling
The three-dimensional structures of the putative HgcAB and MetH protein
sequences found in this study were built and refined upon the official
release of the source code and monomer neural network models of
AlphaFold2 (version 2.0.1) [73]. The transmembrane regions in HgcA were
predicted by CCTOP [74]. Multiple structure alignment for different taxa
was performed using mTM-Align [75]. The cofactor cobalamin was placed
in the binding pocket by superposing the HgcA and CFeSP (PDB entry
4DJF) [76]. Consistent with the expected Cys coordination patterns from
other dicluster ferredoxins, such as that from Clostridium acidurici (PDB
entry 2FDN) [77], preliminary de novo models of HgcB with coevolution
restraints suggest that one [4Fe-4S] cluster was bound to Cys20, Cys23,
Cys26, and Cys60 and another was bound to Cys50, Cys53, Cys56, and
Cys30. The preliminary models of the HgcAB complexes were generated by
PyMOL 2.5.2 (www.pymol.org), and complexes were energy minimized
using the Schrodinger Suite 2021-4 (Schrödinger, LLC, Portland, OR) energy
minimization server. The C-terminal tail of HgcB was also introduced at this
step. The alignment of HgcA AlphaFold2 models between Zixibacteria and
six confirmed Hg-methylating bacterial strains was performed by
PyMOL 2.5.2.

Regional-scale distribution of Hg methylators in mangrove
subsurface sediments along southeastern coastal China
A total of 27 samples were collected in mangrove sediments along
southeastern coastal China, with 7 samples from Hainan (5 replicates for
30–40 cm, 2 replicates for 80–100 cm), 10 samples from Fujian (5 replicates
for both 30–40 cm and 80–100 cm), 10 samples from Zhejiang (5 replicates
for both 30–40 cm and 80–100 cm). The sampling sites were located at
Bamen Bay Mangrove National Wetland Park (19°33′25.2“N, 110°50′20.40″
E) with a mean temperature of 26.5 °C in Hainan Province, Zhangjiang
Estuary Mangrove National Nature Reserve (23°55′17.18″N, 117°25′11.04″E)
with a mean temperature of 28.5 °C in Fujian Province, and Ximen Island
(28°20′45.15′′N, 121°10′58.27′′E) with a mean temperature of 27.0 °C in
Zhejiang Province, China, respectively. The methods for DNA extraction
and initial metagenomic analysis to obtain MAGs were conducted as
described above. Also, we performed a series of analyses, including
prodigal, hgcAB genes annotation, and conserved motifs examination, on
the MAGs obtained from these three sampling points to examine the
presence of Hg methylators, following the methods described above.

Global distribution
The distribution of representatives of the Zixibacteria lineage across various
environments was estimated following the methodology outlined in [78].
In brief, the longest 16 S rRNA gene sequence in Zixibacteria MAGs
obtained from this study was utilized for a homology-based search against
the 16 S rRNA Public Assembled Metagenomes database of the Integrated
Microbial Genomes and Microbiomes (IMG/M v7) system [79], employing
the IMG BLAST Tool. BLAST hits with sequence identity greater than 75%
(phylum threshold) [80], and the associated metadata (longitude, latitude,
and habitat type) were subsequently retrieved from IMG for further
analysis.

HgcA-MetH protein interaction simulation and analysis
The HDOCK server (https://hdock.phys.hust.edu.cn/) was utilized to predict
a binding conformation between HgcA and MetH [81]. The HDOCK
algorithm incorporates both template-based and free approaches, provid-
ing cross-validation [81]. This method involves an attempt to sample all
conceivable binding modes between two separate protein structures.
Given the typical absence of binding site information, a global docking
approach is employed to sample assumed binding modes, involving six
degrees of freedom (three rotational and three translational).
Subsequently, a scoring function, comprising docking and confidence

scores, was applied to rank the sampled binding modes based on the
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sampling process and the resulting binding conformations [82, 83]. The
docking score signifies the likelihood of a binding model, with more
negative scores indicating a higher probability of binding models. The
confidence score was computed using the formula:

Confidence score ¼ 1:0=ð1:0þ e^ð0:02�ðDocking scoreþ 150ÞÞÞ (4)

A confidence score exceeding 0.70 indicates a strong likelihood of
binding between the two molecules. The confidence score between 0.50
and 0.70 suggests a potential binding interaction between the two
molecules. A confidence score below 0.50 indicates a lower probability of
binding between the two protein molecules. To generate a 2D residue-
residue interaction plot depicting the entire interface of a protein-protein
complex, we inputted the complex into LigPlot [84].

Co-occurrence analysis
The co-occurrence network was based on the full-length 16 S rRNA
amplicon sequencing data. For full-length 16 S rRNA amplicon sequencing,

both the forward and reverse primers were tailed with sample-specific
PacBio barcode sequences to allow for multiplexed sequencing. The KAPA
HiFi Hot Start DNA Polymerase (KAPA Biosystems) was used to perform 20
cycles of PCR amplification, with denaturing at 95 °C for 30 s, annealing at
57 °C for 30 s, and extension at 72 °C for 60 s. Post-amplification quality
control was performed on a Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). Amplified DNA from the sediment samples was then pooled in
equimolar concentration. SMRTbell libraries were prepared from the
amplified DNA by blunt ligation according to the manufacturer’s
instructions (Pacific Biosciences). Purified SMRTbell libraries from the
mangrove sediment bacterial communities were sequenced on PacBio
Sequel cells. The DADA2 method is an algorithm for the inference of the
amplicon sequence variants (ASVs) present in a sample from the library of
noisy reads generated by amplicon sequencing [85]. The standard
processing steps in the DADA2 workflow include quality filtering,
dereplication, learning the dataset-specific error model, ASV inference,
chimera removal, and taxonomic assignment against a SILVA138 database
[86]. After processing the full-length 16 S rRNA amplicon sequencing data,
we investigated the co-occurrence network using FastSpar (v1.0) algorithm
[87]. All p values were corrected using the Benjamini–Hochberg multiple
correction method. Afterward, all the statistically significant correlated taxa
(p < 0.001) were used to infer the network and visualized using Gephi
(version 0.10.1, https://gephi.org/) [88].

Statistical analysis
Statistical analysis and plotting were performed using R software version
4.2.1 (www.r-project.org) and associated packages, including vegan, spaa,
ggtrendline, gggenes, ggmsa, mapchina, ggcor, and ggplot2 [89–92].
Richness was calculated using the spa package. The analysis of the non-
metric multidimensional scaling (NMDS) was performed using the vegan
and ggcor packages. Correlations were evaluated by a linear fit and
Spearman test using the ggtrendline and vegan packages. Alignments of
the hgcAB amino acid sequences were plotted using the ggmsa package,
while the genomic context was visualized with the gggenes package. The
map of China was produced using the mapchina package.

RESULTS AND DISCUSSION
Microbial Hg methylation in mangrove sediments
We investigated the variations in HgT and MeHg across five
mangrove sediment columns (0–100 cm) collected in Guangdong
Province, China. Across the mangrove sediment columns, the
average HgT concentration was 420.06 ± 95.49 ng/g, and an
increase in the concentration of HgT was observed from the
surface to 20–30 cm (Fig. 1A). However, the concentration of
MeHg was found to peak at 0–15 cm (3.27 ng/g), followed by a
gradual decrease towards the bottom of the sediment columns.
The MeHg/HgT ratio, a proxy for the potential HgT available for
MeHg production [93], showed a constant decrease with
increasing sediment depth, with an average value of
0.67 ± 0.09% (Fig. 1A). This falls within the typical range of
0.11−7.13% observed in natural mangrove ecosystems [10]. The
in-depth profiles of sulfate, CH4, and iron (referring to the iron (III)/
iron (II) ratio) were found to reflect that of MeHg across the
mangrove sediment columns (Supplementary Fig. S2), which are
key factors involved in Hg methylation [94].
Through Hg isotopic analyses, we investigated Hg sources in

mangrove sediments by analyzing surface (0–5 cm), medium
(40–50 cm), and deep (60–80 cm) sediment layers (three replicates
each). The Δ199Hg, Δ200Hg, Δ201Hg, and δ202Hg values were
determined using mass-independent fractionations (MIF) and
large mass-dependent fractionations (MDF) [95]. Our data showed
that the sediment across different depths exhibited similar δ202Hg
ranges (−1.52 to −0.67‰, Fig. 1B and Supplementary Table S2),
which were ~14 times larger than the 2 standard deviations
(±0.06‰) analytical uncertainty for δ202Hg. This distinctive
negative MDF of 202Hg in mangrove sediments was likely due to
the mixture of δ202Hg sources in the land-ocean connection [13].
To further support this finding, we compared our results with 247
reported isotope values [96–102] of Δ199Hg and δ202Hg from
terrestrial soil (177), marine sediments, and seawater (70), and
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found that the isotope values of mangrove sediments were in
between the values from terrestrial soil and seawater (Fig. 1B). This
result indicates that mangrove sediments received terrestrial- and
marine-sourced Hg probably due to complex hydrodynamic
(either surface runoff or tides and waves) [103].
Our dataset showed a limited MIF of 200Hg (−0.09 to 0.07‰;

Supplementary Table S2), which is close to the analytical
uncertainty for Δ200Hg (±0.03‰). As microbial Hg methylation
does not result in odd-MIF shifts [104], the near-zero odd-MIF
values detected suggest that the Hg methylation in mangrove
sediments is predominantly driven by microbial reactions. To
verify this hypothesis, we determined the Δ199Hg/δ202Hg ratio,
which serves as a diagnostic of Hg methylation reaction types [35],
with values of ~1.2–2.4 and ~0 expected for photochemical and
microbial reactions, respectively (Supplementary Table S1). Our
analyses revealed a strong correlation between Δ199Hg and
δ202Hg in the studied samples (R2= 0.47, p < 0.05), and the
sediment Δ199Hg/δ202Hg ratio was −0.16 (Fig. 1B), indicating a
substantial contribution of microbial actions to Hg methylation in
mangrove sediments.

Composition and distribution of Hg methylators in mangrove
subsurface sediments
Through metagenomic analysis, we identified 432 distinct hgcA
sequences with conserved motifs (N(V/I)WCA(A/G)) in mangrove
sediment columns and quantified their normalized abundance.
We observed a notable pattern where the total normalized
abundance of hgcA sequences was comparatively elevated above
20 cm and decreased below this depth (as depicted in Fig. 2A).
Correlation analyses confirmed a strong association between the
total normalized abundance of hgcA sequences and the concen-
tration of MeHg in the sediments (Supplementary Fig. S3;

Spearman ρ= 0.79; p < 0.0001). This finding further supports the
significant role of microbial Hg methylation in mangrove
sediments.
We found that hgcA sequences in the subsurface sediments

(below 20 cm) displayed a higher species richness than those in the
surface (above 20 cm) (Fig. 2A, B), pointing to an elevated diversity
of Hg methylators in the mangrove subsurface sediments. To verify
this observation, we conducted a detailed analysis of the
composition and variation of Hg methylators across the mangrove
sediment columns. Our metagenomic study identified 65 medium-
and high-quality MAGs with conserved hgcA (N(V/I)WCA(A/G),
Supplementary Fig. S4) and hgcB (CX2CX2CX3C, Supplementary
Fig. S5) motifs in the samples collected from all mangrove sediment
layers. These MAGs represented a diverse range of taxa (Fig. 2B and
Supplementary Data 3), including Acidobacteria (5), Anaerolineae (9),
Bacteroidales (2), candidate division Zixibacteria (6; hereafter
referred to as Zixibacteria throughout the manuscript), Desulfobac-
terales (6), GWC2-55-46 (4), Methanomicrobia (6), MBNT15 (7),
Nitrospirae (8), Phycisphaerae (6), and Syntrophobacterales (6). We
also observed a clear divergence in the distribution pattern of Hg
methylators at the partition depth of 20 cm (Adonis test, R2= 0.19,
p < 0.001; Anosim test, R= 0.58, p < 0.001; Supplementary Fig. S6),
with most of these MAGs exhibiting elevated occurrence frequen-
cies in subsurface sediments (Fig. 2B).
To assess the regional-scale distribution of these Hg methyla-

tors, we collected and analyzed 27 additional mangrove subsur-
face sediment samples from three other provinces (Zhejiang,
Fujian, and Hainan) along the southeastern coast of China,
covering a distance of more than 1500 km (Fig. 2C). In addition
to 65 MAGs recovered in Guangdong, metagenomic analyses of
these 27 samples also generated 30, 15, and 38 hgcA-carrying
MAGs in Zhejiang, Fujian, and Hainan, respectively. Three types of
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Hg methylators (Desulfobacterales, Anaerolineae, and Syntropho-
bacterales) were detected in all four sampling provinces (Fig. 2C).
These members were the dominant Hg methylators in mangrove
subsurface sediments, with the cumulative relative abundance of
26.5–91.2% (Supplementary Fig. S7). Owing to their dominance
and environmental adaptability [105, 106], these Hg methylators
may largely contribute to the ecological interception effect of
mangrove sediments on terrestrial- or marine-sourced Hg by
microbial methylation [10]. However, hgcA-carrying Zixibacteria,
Dehalococcoidia, and GWC2-55-46 were only detected in man-
grove subsurface sediments from Guangdong, Hainan, and
Guangdong, respectively (Fig. 2C). Together with a recent
discovery of Zixibacteria MAGs with hgcA in another mangrove
sediment area of Guangdong [8], our findings point toward the
geographic selectivity of specific Hg methylators across mangrove
sediments.

Metabolic adaptation of Hg methylators in mangrove
subsurface sediments
The adaptation of Hg methylators to mangrove subsurface
sediments requires tolerance to intermittent low levels of O2

and energy exposure [16]. Our functional annotation revealed that
the hgcA-carrying MAGs in mangrove sediments contained
multiple terminal oxidases (Fig. 2D; Supplementary Data 1). Nearly
all hgcA-carrying MAGs except Methanomicrobia contained the
complete operon encoding the cytochrome bd complex, which
has a high affinity for O2 and supports adaptation to low-oxygen
environments [107]. Furthermore, most members in the GWC2-55-
46 and MBNT15 groups contained genes encoding cytochrome c
cbb3-type (ccoPQNO) oxidase (Supplementary Data 1), which
could exhibit high affinity for O2 and enable bacteria to respire O2

under both oxic and suboxic conditions [108]. The presence of
genes involved in anaerobic hydrocarbon degradation, such as
those encoding putative anaerobic benzene carboxylase (abcA)
and phenylphosphate carboxylase (ppcAB), provides additional
evidence for the anaerobic lifestyle of Hg methylators in
mangrove subsurface sediments.

Consistent with the previously documented feature of Hg
methylators [109], the diverse Hg methylators prevailing in
mangrove subsurface sediments can also use versatile electron
acceptors (Fig. 2D). First, most MAGs belonging to Zixibacteria,
Nitrospirae, Syntrophobacterales, and Desulfobacterales contained
the key genes involved into the complete sulfate-reducing
pathway (i.e., sat, aprAB, and dsrABD), which has been previously
shown to support Hg methylation in mangrove sediments [93].
Second, consistent with the traditional view [4], the hgcA-carrying
Methanomicrobia MAGs encoded functional genes responsible for
CO2 reduction to CH4. Third, the GWC2-55-46, MBNT15, Nitrospirae,
and Desulfobacterales MAGs harbored genes encoding nitrate/
nitrite reductase to support Hg methylation potentially. Last, the
Nitrospirae and Syntrophobacterales MAGs also contained porin-
cytochrome modules (mtrAB), suggesting iron as an alternative
terminal electron acceptor in these Hg methylators.

Phylogenetic diversity of Hg methylators in mangrove
subsurface sediments
A meta-omic study has recently provided an updated catalog of
Hg methylators, the Hg-MATE-Db, using both pure culture and
environmental datasets [44]. This has expanded our under-
standing of the phylogenetic diversity of Hg methylators. Nine
microbial groups were identified as having the highest diversity of
Hg-methylating microorganisms across different environments
[44], including paddy soils, brackish water, lake water, and
reservoir and lake sediments. These groups belong to Acidobac-
teria, Bacteroidetes, Desulfobacterales, Chloroflexi, Euryarchaeota,
Firmicutes, Nitrospirae, Spirochaetes, and PVC lineages.
To uncover the phylogenetic diversity of Hg methylators in

mangrove sediments, a phylogenetic tree was constructed by
integrating our detected hgcA sequences into Hg-MATE-Db (Fig. 3).
Results showed that 65 hgcA-carrying MAGs in mangrove
sediments were affiliated with seven microbial groups with the
highest diversity (excluding Firmicutes and Spirochaetes lineages),
as well as two additional groups (GWC2-55-46 and MBNT15
lineages). The number of microbial groups with the highest

Planctomycetes
Phycisphaerae
(ANI < 70.0%)

Nitrospirae
(ANI < 99.4%)

Chloroflexi
Anaerolineae
(ANI < 70.0%)

Proteobacteria
Syntrophobacterales

(ANI < 79.7%)

Euryarchaeota
Methanomicrobia

(ANI < 83.4%)

Acidobacteria
(ANI < 77.8%)

Proteobacteria
Desulfobacterales

(ANI < 70.0%)

Bacteroidetes
Bacteroidales
(ANI < 70.0%)

Zixibacteria

0.5

Source
Mangrove sediments (this study)

Brackish water

Lake water

Reservoir sediments

Paddy soils

Lake sediments

Putative methylator
Unreported putative methylator

MBNT15
(ANI < 84.5%)

Proteobacteria
GWC2-55-46
(ANI < 78.0%)
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diversity in mangrove sediments was found to be second only to
paddy soils, but higher than in brackish water, lake water, and
sediments from reservoirs and lakes (Fig. 3 and Supplementary
Table S3). These findings, together with more than 90% of these
hgcA-carrying MAGs with a high occurrence frequency below
20 cm (Fig. 2B), point to a high phylogenetic diversity of Hg
methylators in mangrove subsurface sediments.
To assess the taxonomic novelty of these Hg methylators, we

performed comparative genome analyses of average nucleotide
identity (ANI) using our hgcA-carrying MAGs and the reference
sequences in the Hg-MATE-Db (Fig. 3 and Supplementary
Figs. S8–S17). Our results showed that Nitrospirae MAGs in our
dataset and Hg-MATE-Db were largely syntenic and shared up to
99.4% ANI, suggesting the conservation of Hg-methylating
Nitrospirae across different environments. On the other hand,
our Methanomicrobia, GWC2-55-46, MBNT15, and Acidobacteria
MAGs shared around 80% ANI with reference genomes, implying
that these MAGs could be previously unreported species with Hg-
methylating capacity. Notably, the Anaerolineae, Phycisphaerae,
Desulfobacterales, and Bacteroidales MAGs shared less than 70.0%
ANI against their reference genomes, indicating that they form
distinct subfamilies and differ from previously known ones when
following the proposed guidelines [110, 111]. These findings
suggest that mangrove subsurface sediment is a promising source
for identifying novel microorganisms and broadening the
repertoire of Hg methylators.

Candidate phylum Zixibacteria is an understudied Hg
methylator in diverse anoxic environments
Based on our phylogenetic analyses against the Hg-MATE-Db, we
discovered a surprising finding: the Zixibacteria lineage, located
between Bacteroidales and Phycisphaerae in the phylogenic tree
(Fig. 3), has not been included in the updated catalog of Hg
methylators. However, we found that the relative abundance of
Zixibacteria MAGs ranked among the top 9 Hg-methylator taxa
across all depths, and even ranked 5th at 30–50 cm depths (up to
9.1%, Supplementary Fig. S7) by mapping all the metagenomic
reads against the genomic assemblies. Previous study has also
identified subsurface-dwelling Zixibacteria lineage as a crucial hub
member in mangrove sediment microbial communities, not only
interacting frequently with Deltaproteobacteria but also providing
metabolites for Bacteroidetes and Chloroflexi [112]. The latter three
phyla have been often classified as the microbial taxa of putative
Hg methylators in mangrove sediments [8]. Especially for the
Syntrophobacteraceae members in Deltaproteobacteria, a recent
cultivation study showed that they could enhance Hg methylation
by interacting with their syntrophic partners [24]. Thus, we
endeavored to decipher whether and how the “hub” Zixibacteria
members methylate Hg in mangrove sediments, which is crucial
for expanding the diversity of Hg methylators and understanding
the microbial mechanism of Hg methylation in the subsurface
biosphere.
As no cultivated representative of Zixibacteria is currently

available for functional assays, we firstly investigated its potential
in Hgmethylation by comparing the HgcAB protein sequences from
six Zixibacteria MAGs (average completeness 86.7%, average GC
counts 53.2%; Supplementary data 4) against six confirmed Hg-
methylating bacterial strains isolated from anaerobic environments
(Supplementary Table S4) [113–117]. Our results showed that the
genetic context of HgcAB sequences and the conservation of
respective orthologous gene clusters in six Zixibacteria MAGs were
all consistent with the confirmed Hg-methylating bacterial strains
(Fig. 4A). The alignment of the HgcA protein sequences has revealed
that HgcA is a cobalamin-dependent protein with a highly
conserved motif in the CfsA subunit of CFeSP. Aside from HgcA,
HgcB is also required for methylation activity [1], and its protein
sequence alignment revealed the presence of two CXXCXXCXXXCP
motifs, which are known to bind [4Fe-4S] clusters [1].

We constructed AlphaFold2 models of the putative HgcA and
HgcB proteins in Zixibacteria. Our analysis of the putative HgcA
protein structure in Zixibacteria revealed a globular domain at the
N-terminus and five transmembrane spanning helices at the
C-terminus (Fig. 4B). By superposing the cobalamin onto the HgcA
AlphaFold2 model in Zixibacteria, we found a strong H-bonding
network between HgcA protein and cobalamin (Fig. 4B), which
was thought to be bound with HgcA protein for catalytic
methylation activity [6]. Importantly, the HgcA AlphaFold2 models
in Zixibacteria and six confirmed Hg-methylating bacteria were
aligned with a striking level of structural concordance (Supple-
mentary Fig. S18). In addition to the HgcA, our analysis of the
HgcB protein structure in Zixibacteria also revealed the binding of
its protein with 2[4Fe-4S] clusters at the N-terminal by molecular
stacking (Fig. 4C), showing a high similarity with the functionally
validated Hg-methylating strain [1]. Together, our results provide
genomic and structural support for the functional potential of
Zixibacteria lineage in Hg methylation.
In an effort to understand the extent of Hg-methylating

capacity in Zixibacteria lineage, we conducted a broader search
of the NCBI SRA metagenomic datasets and obtained 135
medium- and high-quality Zixibacteria MAGs belonging to eight
described orders (Fig. 5, Supplementary Data 4, 5). Among all
these currently available Zixibacteria MAGs, 18 MAGs were
identified to carry hgcA with conserved motifs and were
distributed within six different orders, with the exception of DG-
27 and MSB-5A5 orders. Our functional annotation showed that
more than 70% of hgcA-carrying MAGs contained genes encoding
sulfate reduction, while DG-27 and MSB-5A5 orders contained no
MAGs with the potential for sulfate reduction. These results
suggest that the Zixibacteria members primarily perform sulfate
reduction to support Hg methylation in anoxic environments, as
hgcA-carrying MAGs in Zixibacteria did not possess the capability
to utilize other commonly reported electron acceptors such as
iron, NO3

−, NO2
−, or CO2 (Supplementary Data 6).

The environmental distribution of Zixibacteria was thoroughly
investigated by screening homologous 16 S rRNA gene sequences
against all available metagenomes within the IMG/M database.
This search generated a total of 710 unique occurrences. The
categorization of sampling locations revealed a broad environ-
mental distribution of the Zixibacteria lineage, spanning 17
different types of environments and including natural, host-
associated, and engineered systems (Supplementary Fig. S19). Of
them, the hgcA-carrying Zixibacteria were mainly recovered from
natural environments, including mangrove sediment, marine
sediments, cold seep, hydrothermal vent, estuarine sediment,
groundwater, microbial mat, and deep mine (Fig. 5). In addition to
mangrove sediment (this study and Zhang et al.) [8], the
Zixibacteria lineage in other environments have not been reported
to carry hgcA gene, highlighting its currently understudied roles in
Hg methylation across most anoxic environments. However, no
clear environment-specific distribution was observed across the
six different orders (Fig. 5), suggesting that hgcA-carrying
Zixibacteria are well adapted to diverse anoxic environments.

Unique metabolic and lifestyle features of candidate phylum
Zixibacteria in Hg methylation
During Hg methylation, the methyl group (as CH3

+) in MeHg is
widely thought to be transferred to HgcA by a cobalamin-
dependent methyltransferase (i.e., CFeSP methyltransferase from
the Wood-Ljungdahl pathway) [1, 118, 119]. However, we found all
Zixibacteria MAGs lacking genes for the entire Wood-Ljungdahl
pathway (Fig. 6A and Supplementary Data 7). To investigate the
putative CH3

+ transfer within the Zixibacteria lineage, we
conducted a search for typical cobalamin-dependent methyl-
transferases [72, 119–127]. Our results revealed that the Hg-
methylating Zixibacteria lineage only encoded the cobalamin-
dependent methyltransferase involved in the methionine
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synthesis pathway, rather than the Wood-Ljungdahl pathway,
coenzyme M pathway, or one carbon folate cycle (Supplementary
Data 8). In particular, all six different orders in Zixibacteria
consistently encoded the MetH (Fig. 6B), a cobalamin-dependent
methyltransferase catalyzing CH3

+ transfer from 5-methyl-
tetrahydrofolate to homocysteine during the methionine synthesis
pathway [128]. Considering that CH3

+ in MeHg is traditionally
obtained from 5-methyl-tetrahydrofolate by cobalamin-
dependent methyltransferase [1, 118, 119], we hypothesized that
the MetH in Hg-methylating Zixibacteria may have the potential to
transfer CH3

+ from 5-methyl-tetrahydrofolate to HgcA, forming
CH3-cob(III)alamin-HgcA (Fig. 6B). To validate this hypothesis, we
performed docking predictions for HgcA and MetH. For the most
reliable docking model of HgcA and MetH (confidence score: 0.93),
the interaction interface was defined as those amino acid residues
within 5.1 Å of the surface volume encapsulating the atom
positions (Fig. 6C and Supplementary Data 9). The docking score
of −280.66 kcal/mol indicates a strong interaction of HgcA and
MetH, which is mediated by 26 hydrogen bonds, 7 hydrophobic
interactions, and 1 salt bridge (Fig. 6C and Supplementary
Fig. S20). Among them, Arg in MetH exhibited the highest binding
activity to HgcA, and the closest atom distance between MetH and

HgcA was 1.4 Å in a hydrogen bond between Arg156 and Ser83
(Supplementary Data 9). These observations suggest that hydro-
gen bonding interactions associated with Arg side chains are likely
important for HgcA and MetH protein binding.
Furthermore, Zixibacteria MAGs encoded the benzoyl-CoA reduc-

tase, which was reported to be structurally similar to the CODH/acetyl-
CoA synthases in Wood-Ljungdahl pathway and showed a strong
correlation with HgT and MeHg levels [129, 130]. The benzoyl-CoA
reduction enables the Hg methylators to adapt to environments
contaminated by hydrocarbons [131], which is of particular significance
as hydrocarbons are frequently found in mangrove sediments, as a
result of industrial discharge, shipping activities, and urban runoff [132].
These findings indicate that the Zixibacteria lineage has the potential to
play a role in Hg methylation, with the added benefit of removing
hydrocarbons from contaminated mangrove sediments.
Energy limitation of mangrove subsurface sediments has been

widely acknowledged [14–16], but the provision of energy is
essential for Hg methylation [109]. To address this issue, the
researchers have proposed syntrophic microbial interaction as a
major energy source for Hg methylation in energy-limited
environments [24]. Through an examination of microbial syn-
trophic features, our study found evidence for the presence of
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these partnerships in mangrove subsurface sediments. The
Zixibacteria MAGs, which carry the hgcA gene and have the
sulfate-reducing capacity, were found to contain genes involved in
interspecies electron transfer (including multi-heme cytochromes,
conductive filaments and molecular hydrogen; Supplementary
Data 10), the significant features for a syntrophic lifestyle [22, 133].
Also, we here recovered several Syntrophobacterales MAGs, which
not only possessed genes involved in interspecies electron
transfer (Supplementary Data 10), but also were dominant in
mangrove subsurface sediments (up to 13.1% in the Hg-
methylating genomic assemblies, Supplementary Fig. S7). In
addition, our 16 S rRNA gene-based microbial network inference
and metagenomic-based linear regression revealed the positive
co-occurrence between the Syntrophobacterales and Zixibacteria
lineages (Supplementary Figs. 21, 22), further supporting the
potential for syntrophic partnerships in the mangrove subsurface
sediments.

Further evidence for their potential syntrophic relationship was
the absence of cobalamin biosynthetic genes in the Hg-methylating
Zixibacteria. This was inconsistent with our AlphaFold2 model
(Fig. 4A; indicating the participation of cobalamin in Hg methyla-
tion) and metabolic predictions (Fig. 6; with cobalamin-dependent
methyltransferase involved in methionine synthase). However, the
syntrophic Syntrophobacterales lineage contained all relevant genes
for cobalamin biosynthesis (Supplementary Data 11), potentially
leading to its interactions with Hg-methylating Zixibacteria [134].
Finally, both the co-occurrence pattern and the paired genomic
analyses suggest that the Zixibacteria lineage has a unique
metabolic strategy for Hg methylation in mangrove subsurface
sediments, dependent on a syntrophic relationship with another
organism in energy-limited conditions. Future cultivation experi-
ments with Hg methylators isolated from mangrove sediments will
help to verify this hypothesis and further clarify the nature of their
syntrophic interactions.
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