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Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. 
Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the dis
ease mechanism and improve therapeutic decision-making.
We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 var
iants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 
126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant 
pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches.
The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population var
iants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated 
with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we 
found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10−3, 95% confi
dence interval: 1.5–15.3).
In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and 
phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and re
search on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal. 
broadinstitute.org/).
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Introduction
SLC6A1 encodes for the GABA transporter protein type 1 (GAT1), a 
membrane protein responsible for GABA neurotransmitter re
uptake from the synaptic cleft in inhibitory synapses.1

SLC6A1-related developmental and epileptic encephalopathy 
(DEE) is an autosomal dominant genetic disorder. Clinical manifest
ation of SLC6A1 DEE is characterized by childhood onset seizures 
and mild-to-severe intellectual disability. Seizure types include ab
sence, myoclonic and atonic. Language impairment and behaviour
al problems have also been observed.2-4 Other frequently observed 
SLC6A1-related phenotypes include autism spectrum disorder 
(ASD) and motor dysfunction, encompassing stereotypies and atax
ia. A fraction of patients have shown intellectual disability or ASD 
without epilepsy (3%).2 Recent GAT1 analyses support complete 
or partial loss-of-function (LoF) as the primary disease-associated 
molecular pathology, which disrupts the reuptake of GABA.5-9

Despite recent aggregation efforts,2,5,10,11 there is a need for sys
tematically curated clinically relevant genotype-phenotype asso
ciations to understand the disease mechanism and possibly guide 
genetic counselling, patient management and, ultimately, treat
ment. It has been shown that 32 out of the 88 (36.4%) described 
SLC6A1 patient variants are located in the helical-transmembrane 
segments and inter-helical hinges. In contrast, general population 
variants cluster in the cytoplasmic domain.2 An analysis using 
the GAT1 3D structure may increase the granularity of these 
preliminary observations and identify clinically relevant variant- 
to-phenotype or variant-to-function associations. 3D structure 
analysis has previously been successful in elucidating genotype- 
phenotype associations in various genes.12-17 An investigation 
into gene variant effects across sodium channelopathies showed 
clustering of pathogenic missense variants in functional do
mains.18-22 However, due to limited available patient data for 
most SLC6A1 variants, meaningful associations have been difficult 
to establish. Currently, SLC6A1 variant interpretation is still chal
lenging as, to date, there is no single resource with aggregated and 
curated data for SLC6A1-related disorders. Previous studies have 
suggested that transmembrane segments are important for pro
tein function.2,4,5,10,11,23 However, clear guidance on which seg
ments or subdomains are particularly affected is lacking. A 
recent study on the molecular mechanism of SLC6A1 variants, in
vestigating 182 variants, showed that LoF variants are found pre
dominantly around the proteins’ vertical axis.10,11 A relationship 
between transporter activity and literature-based disease associ
ation has been recently proposed.11 However, statistical confirm
ation of phenotype and variant location needs yet to be 
established.

The complexity and heterogeneity of SLC6A1-related disorders 
pose difficulties in disease recognition, diagnosis, prognosis and 
care. The spatial analysis of genetic variants on 3D protein struc
tures has the potential to identify genotype-phenotype correla
tions, as has been shown in other related neurodevelopmental 
disorders.24-30 As ‘phenotype’ for the analysis, clinical data of 

variant carriers or molecular readouts generated for the variant 
can be used to study the effect of different variants.30 However, 
this type of work requires large datasets from various sources. In 
our study, we build upon previous data aggregation efforts and bio
informatic methods and present the currently most extensive ef
fort to investigate genotype to phenotype associations for 
SLC6A1-related disorders.

Here, we aggregated the currently largest collection of individuals 
with SLC6A1-related disorders and implemented a 3D-based frame
work28 to evaluate genetic, clinical and functional features. Our study 
compiled a comprehensive dataset of pathogenic and likely patho
genic SLC6A1 variants from the literature, ClinVar31 and our clinical 
research network. We also incorporated population variants from 
gnomAD as controls for comparative analysis (gnomAD, public re
lease 2.1.1). Subsequently, we performed linear sequence and 3D pro
tein structure-based genotype-phenotype analysis using in vitro 
assay and clinical phenotype data to identify structure, to function 
to phenotype relationships for SLC6A1-related disorders. Finally, we 
deployed all data and analysis tools into the SLC6A1 portal, a joint ef
fort of clinical and basic science investigators in collaboration with 
advocacy groups, to enhance further analysis, awareness and variant 
interpretation of SLC6A1-related disorders.

Materials and methods
Genotype and phenotype data from patients with 
SLC6A1-related disorders

We aggregated published genetic and corresponding phenotype 
data from SLC6A1-related disorder studies.2,5,6,11 Investigators pro
vided unpublished genetic and phenotype data (n = 51) from the 
Danish Epilepsy Centre, Filadelfia, Denmark (K.M.J. and R.S.M.). 
We also included genetic and syndrome-level data from the Epi25 
collaborative for large-scale whole exome sequencing in the epi
lepsy collaborative database.32 Epi25 data are limited to genotype 
and International League Against Epilepsy (ILAE) syndrome cat
egorization. The data for all patient variants (n = 172) that were 
evaluated, curated and harmonized in collaboration with clinical 
experts, including comprehensive annotations, can be viewed in 
Supplementary Table 1.

The functional data were aggregated from two recent stud
ies.5,11 One study quantified GABA uptake for 182 variants from 
15 cohorts, including individuals with epilepsy, developmental 
disorders and healthy controls. The dataset contains pathogenic 
and likely pathogenic variants, variants of uncertain significance, 
variants that had been classified as benign or likely benign, and 
variants that were unclassified or had conflicting annotations.11

Additionally, we included functional readouts of two variants 
(p.Pro361Thr and p.Leu73Phe) from a recent publication.5

Patients or their legal guardians provided signed informed con
sent according to the Declaration of Helsinki and local IRB 
requirements.
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Genotype data from public repositories

We retrieved general population SLC6A1 missense variants (n = 158) 
from gnomAD (public release 2.1.1) in Variant Call Format.33

Missense variant annotation was performed with variant effect 
predictor (VEP),34 including information from public repositories.33

Pathogenic variation in SLC6A1-related disorders is mostly de novo 
and rarely expected to be found in general population repositories 
such as gnomAD.2 Thus, we used general population variants from 
the gnomAD database as controls. Although most variants are ex
pected to be fully penetrant, we also calculated a gnomAD fre
quency cut-off for ultra-rare SLC6A1 disorder variants with 
incomplete penetrance using the cardiodb allele frequency app.35

We accessed pathogenic and likely pathogenic ClinVar31 missense 
variants from the FTP site (https://ftp.ncbi.nlm.nih.gov/pub/ 
clinvar/) (ClinVar, July 2021). We obtained ClinVar variants classi
fied as of uncertain significance (VUS) from the FTP site (https:// 
ftp.ncbi.nlm.nih.gov/pub/clinvar/) (ClinVar, December 2022). All 
genetic variants were mapped onto the canonical isoform, 
P30531, as defined by the UniProt database (The UniProt 
Consortium, 2021).

Domain-specific analysis: mapping variants onto the 
3D protein structure

We obtained the human wild-type GABA transporter type 1 3D 
structure from the Protein Data Bank (PDB ID: 7SK2).23 The variants 
were mapped onto the structure using PyMOL.36 For each residue, 
we calculated a normalized functional score. First, we annotated 
the functional scores on the GAT1 protein structure using the 
bio3d R-package.37 Second, we normalized the functional activity 
by calculating the average functional score reported across all resi
dues located within a 5 Å radius. We define the distance from the 
ligand as the distance in angstroms (Å) between the variant wild- 
type residue and the ligand. Since no GABA is bound to the GAT1 
7SK2 protein structure, we calculated the minimum distance in 
angstroms between the variant wild-type residue and tiagabine. 
This GAT1 inhibitor is bound to the GAT1 structure at the GABA 
binding site (https://www.rcsb.org/structure/7SK2). We considered 
all atoms of each protein residue and the tiagabine for the min
imum distance calculation.

Functional data curation

We next aggregated data for 184 electrophysiologically tested var
iants,5,11 for which the average transporter activity has been experi
mentally measured. Both studies have employed a radiolabelled 
assay to measure the GABA reuptake activity in HEK293T cells. 
However, Mermer et al.5 used scintillation counting to quantify 
the amount of radiolabelled GABA taken up by the cells, whereas 
Trinidad et al.11 used mass spectrometry to create a high- 
throughput GABA trafficking assay. Despite the methodological 
variations between the two studies, the deviations from previous 
per cent wild-type (WT) levels were minimal. Mermer et al.5 con
ducted their analysis without using two mass spectrometry detec
tors (MSMS), employed different cell lines that lacked the 
CRISPR-Cas9 SLC6A1-knockout present in the research by 
Trinidad et al.,11 and did not account for variable expression effi
ciencies using the beta-lactamase (BLA)-reporter, as done by 
Trinidad et al.11 Each variants’ transporter activity is reported as a 
percentage of the wild-type activity.5,11 All functionally tested 
pathogenic variants but one (p.Val342Met) showed an LoF effect 
with an average wild-type activity <42.8%, relative to wild-type 

activity. The threshold for LoF (42.8%) has been derived from the ob
served behaviour of ClinVar variants predicted to be synonymous 
or classified as benign.11 To date, pathogenic or likely pathogenic 
gain-of-function has not been reported.11 We stratified all variants 
into three activity groups based on their average relative-to-WT 
GABA uptake activity: (i) 0–10%, nearly complete LoF; (ii) 10–42.8%, 
low activity; and (iii) >42.8%, wild-type.

Phenotypic data curation

In collaboration with clinical experts, we summarized and harmo
nized the cognitive and syndrome level data into six cognitive and 
12 epilepsy syndrome categories, respectively [cognitive level: se
vere developmental delay (DD)/ intellectual disability (ID), moder
ate DD/ID, mild DD/ID, learning disability, unclassified DD, 
normal; epilepsy syndrome: childhood absence epilepsy (CAE), 
DEE, epilepsy with myoclonic-atonic seizures (EMAS), intractable 
primary generalized epilepsy, generalized epilepsy, genetic gener
alized epilepsy (GGE), intractable absence epilepsy, Lennox- 
Gastaut syndrome (LGS), non-acquired focal epilepsy (NAFE), 
temporal lobe epilepsy (TLE), unclassified epilepsy and no seizures]. 
The classifications were regrouped for consistency by experienced 
epileptologists (K.M.J. and K.G.). We opted for a binary categoriza
tion for disease severity and activity into (i) severe disease; and 
(ii) non-severe disease. A clinical diagnosis of one of the following 
syndromes indicates a severe disease: DEE, EMAS, LGS and intract
able absence epilepsy. All the patients diagnosed with one of the 
four syndromes were considered severe because they impose ser
ious life challenges due to their high seizure burden, often with sig
nificant developmental delay and are typically resistant to many 
seizure medications. There was no normal cognition reported in 
individuals with EMAS after seizure onset. Individuals with no 
seizures, a diagnosis of CAE, unclassified epilepsy, generalized epi
lepsy, GGE and TLE or NAFE were classified as having a non-severe 
disease. Individuals for which no syndrome level data were avail
able or a binary categorization impossible were classified as 
‘Other’. The complete regrouping and reclassification can be found 
in Supplementary Table 1.

Portal design

The SLC6A1 portal uses the Shiny R framework from RStudio (https:// 
shiny.rstudio.com/) to build the interactive web portal for compati
bility, expendability and portability. The portal is publicly available 
and hosted at the Broad Institute and was deployed with Google 
Cloud service using a self-contained Docker image (https://slc6a1- 
portal.broadinstitute.org/). The portal code is available on GitHub 
(https://github.com/LalResearchGroup/SLC6A1_Portal). We pro
duced a short educational video with whiteboard animation and 
used the software VideoScribe to increase the accessibility to knowl
edge about SLC6A1-related disorders (VideoScribe 3.9.5, Sparkol 
2012: https://www.videoscribe.co/en/download/).

Results
Data aggregation and description

We present genotype and phenotype data from the largest cohort of 
individuals with SLC6A1-disorders to date, including 172 indivi
duals (DS-172) with 94 unique variants, three copy number variants 
(CNVs) and 19 recurring variants found in 75 patients (for details on 
the cohort, see Supplementary Tables 1 and 3). Our clinical dataset 
of 172 SLC6A1 variants contains 51 variants that have not been 
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previously published (Supplementary Tables 1 and 2). The most fre
quent variant in our cohort is p.Val342Met, which was identified in 
11 patients. In addition, we report on in vitro GAT1 functional read
outs for 184 unique variants (DS-184) from two sources.5,11 For 70 
variants from 126 individuals (DS-126), clinical and in vitro trans
porter function data were available. For 57 variants from 79 indivi
duals (DS-79), clinical and variant information, including syndrome 
classification, was available together with functionally tested var
iants to investigate the relationship between disease severity and 
function (Supplementary Fig. 1 and Supplementary Table 1). 
Additionally, we mapped 162 of 195 ClinVar missense VUS onto the 
GAT1 3D protein structure and observed that those variants are dis
persed throughout the protein’s structure (Supplementary Fig. 2).

We obtained general population missense variants from 
gnomAD (n = 158) as controls for our analyses. The majority of 
gnomAD variants included do not overlap with patient variants 
and only 11 variants (4%) overlap between our patient dataset 
(n = 172) and gnomAD. To explore these variants further, we calcu
lated the maximum allele frequency (AF) in gnomAD (maximum 
credible population AF = 6.05 × 10−5) and added the results to 
Supplementary Table 1.35 The maximum credible population AF 
was determined using an estimated disease prevalence of 1/619.6 
(161.38/100 000),38 an incidence of 2.65 per 100 000 live births39

and a disease duration of 60.9 years40 (1.65 × 60.9 = 100.485). 
Because the lifespan of individuals with SLC6A1-related disorders 
is unavailable, we selected a population-based estimation of life- 
years lost. In our cohort, the largest proportion of cases is attribut
able to the missense variant p.Val342Met, found in 11 of 172 SLC6A1 
disorder patients. The allelic heterogeneity was therefore esti
mated as 0.06 (11/172), while the genetic heterogeneity, represent
ing the number of genes associated with the disorder, was set to 1 
as our study inclusion criterion is a variant in SLC6A1. For the above 
calculation, we estimated an 80% variant penetrance given that few 
patients have been reported with an inherited variant. Using these 
parameters to calculate the maximum credible population fre
quency, we identified a gnomAD variant cut-off of 6.05 × 10−5. 
None of the 11 patient variants that were also present in gnomAD 
exceeded the threshold set by the maximum credible allele filter.

Data sharing through the SLC6A1 portal

All the aggregated datasets are integrated to enable scientists to 
use our rich data source for their research studies and educate 
providers and families on SLC6A1-related disorders. The datasets 
can be explored in the SLC6A1 portal (https://slc6a1-portal. 
broadinstitute.org/) (Fig. 1), an interactive and user-friendly web 
application that combines genetic and clinical data of individuals 
with SLC6A1-related disorders with experimental functional and 
annotation data on variants. Users can navigate through four sec
tions: (i) basic information; (ii) educational resources; (iii) variant 
analysis; and (iv) research. By using these data within the portal in
frastructure, we enable the exploration of genotype to structure, 
function and phenotype associations (Supplementary Fig. 4). 
Here, we present the SLC6A1 portal, which provides access to the 
largest cohort of patients with SLC6A1-related disorders, including 
their clinical phenotypes and the largest dataset for in vitro GAT1 
functional readouts. We include a versatile variant entry interface 
and a visual comparison tool that shows variant location and 
molecular activity within the GAT1 3D protein structure. 
Additionally, the portal includes a domain-wide comparison of pa
tient versus population variants and a functional interface for data 
analysis, including tools to display each variants’ distance from 

tiagabine versus GABA uptake rate and to identify hot zones on 
the GAT1 3D structure based on user-selected variant filters. All ag
gregated data are shared according to the FAIR principles to make it 
findable, accessible, interoperable and reusable.41

Structure to clinical phenotype relationship

To elucidate critical regions for transporter function, we retrieved, 
for each GAT1 residue, its functional domain as classified on the re
cently published human structure (PDB ID: 7SK2).23 We investigated 
the GABA uptake activity of SLC6A1 variants by domain and found 
varying activity levels.5,11 Our final dataset contains functional 
readouts for 156 missense variants (DS-156). It shows that the 
transmembrane helices 1/6 (TM1/6), scaffold and extracellular 
loop 4 (EL4) regions harbour 83.3% of variants with low activity 
(<42.8%) and 16.7% of variants with wild-type activity (>42.8%) 
(n = 40 variants versus n = 8 variants with in vitro transporter activ
ity <42.8%).11 The scaffold in GAT1 comprises helices H3 and H8 and 
linkers H3-H4 and H8-H9 primarily located in the transmembrane 
region and serves scaffolding functions.23,42 The domain with the 
lowest average transporter activity of tested variants was scaffold 
(18.6% average GAT1 activity); the second and third lowest were 
TM1/6 and EL4, with 23% and 31.1% average activity, respectively. 
The fourth lowest is extracellular loop 3 (EL3), with 38.2% average 
activity. The linker, TMD-other and N-terminal domains have an 
average activity above the threshold of wild-type activity at 42.8% 
with 44%, 45.9% and 49.4%, respectively, but harbour variants 
with a wide range of activity levels ranging from nearly complete 
LoF to wild-type. In contrast, extracellular loop 2 (EL2) and 
C-terminal regions showed no change in their activity, with 56.9% 
and 90.5% of average activity, respectively (Fig. 2A). We found no 
enrichment truncating/frameshift variants across different GAT1 
domains. Next, we compared the enrichment of patient versus 
population variants per region in the SLC6A1 gene to identify those 
regions that are predominantly affected by patient variants. For 
variants that are in the TM1/6 and EL4 regions (n = 51), we found 
an 8.7 and 8.5-fold enrichment of patient versus population var
iants [TM1/6: 95% confidence interval (CI): 3.6–23.9, P = 7.5 × 10−9 

and EL4: 95% CI: 1.9–78.7, P = 1.1 × 10−3] (Fig. 2B). Variants in the 
TM1/6 and EL4 were in agreement with their functional data pre
sented in Fig. 2A. Variants in both the N- and C-terminal regions 
were depleted for patient variants with an odds ratio of 0.22 for 
N-terminal (95% CI: 0.06–0.61, P = 1.3 × 10−3) and 0.14 for 
C-terminal (95% CI: 0.03–0.5, P = 2.8 × 10−4). However, only variants 
in the C-terminal region were concordant with the functional data, 
as the N-terminal region harboured variants with a wide range of 
average transporter activity. We observed no enrichment for pa
tient variants in all other regions. The domain-wide analysis of pa
tient versus population variants identified the TM1/6 and EL4 
regions as the most essential and the N-/C-terminal as least essen
tial for GABA transport.

Structure to molecular function relationship

To explore the association between the pathogenicity of a variant 
and its transporter activity, we localized the missense variants, 
stratified them into severe LoF (0–10% activity), moderate LoF (10– 
42.8% activity) and wild-type (>42.8% activity), onto the GAT1 3D 
structure. Annotated functional scores were normalized over prox
imal residues across the entire GAT1 3D structure (see the 
‘Materials and methods’ section). A visual inspection of the GAT1 
3D structure suggests regions that harbour predominantly severe 
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LoF mutations (Fig. 3A and B). A similar analysis on 162 out of 195 
ClinVar missense VUS for which a 3D normalized score (for details 
on the normalized score, see the ‘Materials and methods’ section ) 
was available did not reveal the same pattern. The variants were 
dispersed and only 29/162 (17.9%) and 64/162 (39.5%) fall into the 
complete LoF and moderate LoF group, respectively 
(Supplementary Figs 2 and 3). We used a spatial distance scoring 
framework to explore spatial position-to-function relationships 
that measure each variant’s distance from the ligand.28 We calcu
lated the ligands’ distance from each variant in all three activity 

groups (Fig. 3C) and performed a two-tailed Wilcoxon rank sum 
test. The <10% wild-type activity group showed the lowest mean 
ligand distance, and the >42.8% wild-type activity group was the 
highest (P = 2.2 × 10−10). Overall, we observed that the higher the 
average transporter activity, the greater its distance from the ligand 
in a subanalysis with removed missense variants whose wild-type 
residue is glycine or proline residues, which are known to be ‘helix 
breakers’.43,44 We found the lowest mean ligand distance for var
iants in the <10% wild-type activity group and the highest for the 
>42.8% wild-type group (P = 1.1 × 10−8) (Supplementary Fig. 5). 

Figure 1 SLC6A1 portal: user interface and functionality (https://slc6a1-portal.broadinstitute.org/). Four main menu items hold different functional
ities of the SLC6A1 portal. Basic information: key milestones in SLC6A1 research and summary statistics of the clinical information. Educational re
sources: resources, links to family advocacy groups and our in-house produced an animated whiteboard explainer video. Variant analysis: clinical 
significance according to ClinVar and comparative information on the selected variant with other similar variants. Research: visualizations of variant 
annotations, clinical phenotypes and functional data based on multiple filter options. Efforts to add more data to our online resource are motivated by 
an increased ability to understand the logic of structure to function to phenotype relations. Furthermore, easy access, the ability to explore the data and 
educational resources are additional features of our web portal. Given that very few clinicians and caregivers can collect data and perform bioinfor
matics analyses, the portal enables anyone with access to the internet to explore the data, understand and develop hypotheses.
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When considering variants whose wild-type residue was either gly
cine or proline, an insufficient number of variants remaining im
peded a meaningful result (Supplementary Fig. 6). We also 
investigated the distance from the GABA transporter axis (defined 
as the distance in angstroms of each variant from the GAT1 axis), 
from TM1 and from TM6. Similarly, we observed an increasing aver
age transporter activity with increased distance from the transport
er axis, TM1 and TM6. Variants in the <10% wild-type activity group 
showed the lowest mean transporter axis distance, and the >42.8% 
wild-type activity group showed the highest for the transporter 
axis, TM1 and TM6. The strongest signal observed was the distance 
from TM6 (P = 8.6 × 10−9) (Supplementary material, ‘Methods’ 
section and Supplementary Figs 7–9).

Molecular function to clinical phenotype relationship

The clinical spectrum of SLC6A1-related disorders is broad. To de
termine if in vitro functional readouts are associated with disease 
severity, we compared the number of patients with severe versus 
non-severe disease for variants grouped by their average functional 
activity in relation to wild-type (0–10%, complete LoF, 10–42.8%, 
moderate LoF and >42.8%, wild-type). Severe disease is defined by 
a reported high seizure burden, often with significant developmen
tal delay and refractory seizures resulting in pronounced life 

challenges and inability to support themselves as prevalent in epi
lepsy syndromes such as DEE or LGS (see the ‘Materials and meth
ods’ section). For variants with complete loss of in vitro GAT1 
reuptake, we found a 4.6-fold enrichment of patients with severe 
versus non-severe disease (P = 2.9 × 10−3, 95% CI: 1.5–15.3) com
pared to variants with moderate LoF and wild-type function. 
Other comparisons were not significant.

Discussion
We aggregated SLC6A1 data from various sources to perform joined 
genetic, protein structure, molecular and clinical data analysis to 
study genotype-phenotype relationships in SLC6A1-related disor
ders. We show that a reduced distance from the ligand was asso
ciated with a greater reduction in transporter activity and that 
lower GAT1 transporter function is associated with more severe 
phenotypic SLC6A1-related disorder presentations marked by sig
nificant life challenges (i.e. intractable epilepsy, moderate-to- 
severe intellectual disability and ASD). To make all aggregated 
data available for educational purposes and research projects, we 
developed the SLC6A1 portal (https://slc6a1-portal.broadinstitute. 
org/). In addition to data access, we provide tools that allow the 
evaluation of genetic, clinical and functional features of 
SLC6A1-related disorders on the GAT1 3D structure.

Patient and population variant positions along its protein se
quence or 3D protein structure can inform whether a particular 
variant within a specific region is more likely to cause disease.45-48

Previous studies suggested that pathogenic missense variants pri
marily cluster near the GABA binding pocket, located around the 
sixth and seventh transmembrane domains of the GAT1 pro
tein.4,10,11 However, quantification and validation using a statistical 
approach were lacking. We demonstrate for the first time that the 
variants within the transmembrane region of GAT1 are predomin
antly LoF. Additionally, we observe that missense variants classi
fied as VUS are dispersed throughout the protein’s structure and 
that 42.6% of those variants fall into the wild-type group (>42.8% 
wild-type activity) and 17.9% fall into the complete LoF group 
(<10%), indicating that potentially a subset of VUS might be patho
genic. Future patient variant reports and functional analysis will 
likely resolve the clinical significance of this subset of VUS. As pre
viously suggested, we could not confirm any cluster of low-activity 
variants within the seventh transmembrane domain.4,10 Further, 
we refine the association using two orthogonal approaches. First, 
we investigated domain-wide changes in the transporter activity 
of tested patient variants. Second, we compared the enrichment 
of patient versus population variants across all domains and de
monstrated that the TM1/6 and EL4 domains harbour variants ex
clusively with a high decrease in in vitro transporter assay activity 
(<42.8%) compared to wild-type. Both TM1/6 and EL4 were enriched 
for patient variants. In line with our observation, previous studies 
on paralogous SLC6A1–14 genes also pinpoint the TM1/6 region as 
crucial based on substantial sequence conservation in central re
gions of the protein structure and the sodium ion binding sites.49-54

We show, for the first time, a spatial association of transporter 
activity and the distance between the variant position and the lig
and tiagabine. We could statistically quantify that the distance 
from the ligand was significantly different for the nearly complete 
LoF activity group of variants (<10%) compared to the 10–42.8% 
and >42.8% average activity groups to wild-type groups. Overall, 
the greater the distance of a variant from the ligand, the closer 
the transporter activity was to wild-type activity and vice versa. 
Our results align with previous observations from our team and 

Figure 2 Domain-wide analysis of patient and population variants. 
(A) The TM1/6, scaffold and EL4 regions harboured mainly variants 
with low activity, whereas the N-/C-terminal domain contained mostly 
variants with wild-type (WT) activity. The dotted line represents the 
cut-off that separates wild-type activity variants (>42.8% of wild-type 
activity) from low activity variants (<42.8% of wild-type activity). (B) A 
domain-wide comparison of patient versus population variants shows 
enrichment of patient variants in TM1/6 and EL4. The N- and 
C-terminal regions are depleted for patient variants. The dotted 
line represents a balance between patient and population variants. 
TM1/6 = transmembrane helix 1/6; TMD-other = transmembrane do
main other; EL2/3/4 = extracellular loops 2/3/4; OR = odds ratio.
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other research groups that indicated that missense variants with a 
higher decrease in activity compared to wild-type were predomin
antly located in the protein’s transmembrane domain and sug
gested upon visual inspection that LoF variants might be enriched 
near the transporter axis.11 Concordant with the suggestive prelim
inary data by Trinidad et al.,11 our 3D variant mapping also shows 
that variants with very low to low activity, compared to wild-type, 
tend to be closer to the proteins’ vertical axis. In contrast, variants 
with wild-type-like activity tend to face outwards, meaning that 
those variants tend to be consistently on the exterior of the protein 
structure and might have less interference with the protein’s trans
porter function. This pattern agrees with GAT1 function as a gate
way for GABA, and anything that could obstruct that gateway is 
potentially impairing its function as a transporter.11,23,55 We ob
served individual variants clustering around the vertical protein 
axis, causing a decreased channel function through defective 
transporter function. However, it is important to note that impaired 
trafficking to the cell surface in cell culture has been demonstrated 
also to cause channel dysfunction.5,6,11 Variants that cause channel 
dysfunction through impaired trafficking are, however, not cap
tured in our analysis. Also, an assay in human embryonic kidney 
(HEK) cells is not a model for investigating cellular trafficking. 
Further trafficking-specific functional evaluation of these variants 
is required to determine a trafficking defect.

Additionally, it has been shown for related proteins from the 
SLC6A1–14 transport family that the transmembrane region around 
transmembrane helices 1 and 6 is a crucial element for a functioning 

transporter protein.49-51,56-59 Although previous studies could show a 
relation between function and pathogenicity5,11 in selected SLC6A1 
variants, no study has yet established an association with disease se
verity. This study could show now that in vitro functional readouts of 
SLC6A1 variants were associated with disease severity. We observe 
an enrichment of LoF variants near the ligand. As this area is essen
tial for GABA transport, disruptions within the transmembrane do
main can cause devastating disease, potentially due to complete 
LoF—instead of partial LoF. Other research groups also identified 
crucial regions within the transmembrane domain near the GAT1 
axis.2,11,23,54 We found that variants with low activity compared to 
wild-type and disease severity were associated with a 4.6-fold en
richment of patients with severe disease versus non-severe disease. 
Here, severe disease is defined as having major challenges in life, 
such as any report of refractory seizures, developmental delay or in
tellectual disability. Children with non-severe phenotypes have few
er challenges, such as no refractory or milder seizures (see the 
‘Materials and methods’ section). We could not delineate an associ
ation of the ligand distance with the age of seizure onset as this fea
ture was only reported for a small subset of individuals (n = 27). This 
was expected considering previous information from studies on 
SLC6A1 that were all limited by small cohort sizes and sparse clinical 
information.5,10,11 Researchers had previously encountered this 
same challenge with other genes but could overcome these limita
tions over time with more data.60 Examples from the literature 
show a clear path for exploiting the relationship between variant lo
cation and patient phenotype.60-64

Figure 3 The spatial relation of SLC6A1 variants is associated with function and position within the GAT1 protein structure 3D structure (PDB id: 
7SK2).23 (A) GAT1 3D structure colour-coded in red regions with nearly complete loss-of-function (LoF) variants (<10% of normalized wild-type activity) 
and in yellow regions with wild-type activity variants (>42.8% of normalized wild-type activity). (B) Side view of the GAT1 3D structure. SLC6A1 variants 
were categorized in the same three activity groups [0–10% (left), 10–42.8% (middle), > 42.8% (right)] and mapped onto the GAT1 3D structure. The variants 
with the lowest and medium average functional activity tend to be closer to the ligand, whereas variants with wild-type activity tend to face outwards. 
(C) Box plot showing the quantification of each variant’s distance (Å) from the ligand by the three activity groups. **Significant after Bonferroni multiple 
test correction; *Nominally significant; n.s. = not significant; WT = wild-type.
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Our study has several limitations. First, although our SLC6A1 pa
tient cohort is the largest to date, it is still small, which may prevent 
findings from being extrapolated. Further, the clinical data have not 
been ascertained through standardized procedures, instead were 
post hoc curated by clinical experts who ascertained data from 
many sites. For rare diseases, like SLC6A1-related disorders, that 
only recently have been identified with specific phenotypes, such 
as specific EEG features, the task of correctly coding phenotypic in
formation in routine care represents a challenge.65-67 Cohort size 
and data standardization both affect statistical analysis power. 
Notably, the variant position-based analysis performed in this 
study does not account for trafficking defects that have been shown 
to contribute to SLC6A1 deficiency.5

Nevertheless, we validated previous suggestive evidence and 
identified novel genotype-phenotype associations. Data from the 
current prospective natural history of disease studies68 and larger 
retrospective data aggregations will likely identify additional 
genotype-phenotype associations and potentially enable risk pre
diction models.20,69,70 Another limitation of this study is the lack 
of complete genome and environmental data. We noticed that 
several patients with the same recurrent variant had heteroge
neous (non-severe versus severe) expressions of SLC6A1-related 
disorders. For example, the most frequent recurring variant 
p.Val342Met is classified as CAE for one individual, EMAS for three, 
and unclassified epilepsy in four individuals with cognition ranging 
from normal to severe DD/ID (Supplementary Table 1). Owing to the 
clinical SLC6A1 heterogeneity, the categorization into non-severe 
versus severe is limited. This was confirmed in personal discus
sions with the treating physicians to rule out a coding bias. 
Future studies should investigate genetic modifiers such as rare 
variation, the polygenic risk for epilepsy, autism or low intelligence 
quotient (IQ)71-74 since several recent studies showed that genomic 
background could modify the expression of the disease.75-78

Similarly, environmental factors, including drug history, need to 
be incorporated into statistical models.75

In summary, our results show the relationship between each 
variant’s distance from the ligand and the level of average trans
porter activity in SLC6A1-related disorders. Future functional char
acterization of variants is needed to investigate the hypothesis 
presented in this study and to determine whether the association 
between genetic location and disease severity found in this study 
can also be found in other clinical phenotypes, such as age at seizure 
onset. More data need to be aggregated to develop a reliable patho
genicity predictor, as this would be a major step forward in improv
ing the clinical management of patients with SLC6A1-related 
disorders. Our SLC6A1 portal will contribute to this endeavour. 
Future studies could potentially elucidate the relationship between 
variant location and treatment response, paving the way for a per
sonalized medicine approach.
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