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Abstract Accurate intracellular cholesterol traffic
plays crucial roles. Niemann Pick type C (NPC) pro-
teins NPC1 and NPC2, are two lysosomal cholesterol
transporters that mediate the cholesterol exit from
lysosomes. However, other proteins involved in this
process remain poorly defined. Here, we find that the
previously unannotated protein TMEM241 is required
for cholesterol egressing from lysosomes through
amphotericin B-based genome-wide CRISPR-Cas9 KO
screening. Ablation of TMEM241 caused impaired
sorting of NPC2, a protein utilizes the mannose-6-
phosphate (M6P) modification for lysosomal target-
ing, resulting in cholesterol accumulation in the ly-
sosomes. TMEM241 is a member of solute transporters
35 nucleotide sugar transporters family and localizes
on the cis-Golgi network. Our data indicate that
TMEM241 transports UDP-N-acetylglucosamine (UDP-
GlcNAc) into Golgi lumen and UDP-GlcNAc is used
for the M6P modification of proteins including NPC2.
Furthermore, Tmem241-deficient mice display choles-
terol accumulation in pulmonary cells and behave
pulmonary injury and hypokinesia. Taken together,
we demonstrate that TMEM241 is a Golgi-localized
UDP-GlcNAc transporter and loss of TMEM241 cau-
ses cholesterol accumulation in lysosomes because of
the impaired M6P-dependent lysosomal targeting of
NPC2.
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LDL-derived cholesterol must be released from ly-
sosomes otherwise the lysosomal cholesterol accumu-
lation causes diseases, such as Niemann-Pick disease
type C (NPC) (1). Patients with NPC develop enlarged
spleen and liver, progressive neurological symptoms,
and premature death (2). NPC is dominantly caused by
mutations in NPC1 or NPC2 genes. Human NPC1 en-
codes a lysosomal transmembrane protein of 1,278
amino acids (AAs) and NPC2 encodes a soluble protein
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of 151 AAs, which is concentrated in lysosomes and
secreted from cells (3–6).

Once delivered to lysosomes, the LDL particles are
hydrolyzed and cholesterol is released. In the lysosomal
lumen, the hydrocarbon tail of cholesterol first inserts
deep into the binding pocket of NPC2. Further,
cholesterol is handed over to the N-terminal domain
binding pocket of NPC1 with its 3β-hydroxyl group
buried. NPC1 employs a tunnel to deliver the choles-
terol to insert into the lysosomal membrane (5, 7). Then
cholesterol is transported to other organelles mainly by
nonvesicular transport mechanism at membrane con-
tact sites (8–12).

Adequate mannose-6-phosphate (M6P) modification
is necessary for the lysosomal targeting of NPC2,
otherwise NPC2 is secreted into medium (13). After
synthesized in the endoplasmic reticulum (ER), NPC2 is
delivered to the Golgi network, where it undergoes
M6P modification. To support M6P modification, the
UDP-N-acetylglucosamine (UDP-GlcNAc) is trans-
ported by its solute transporter 35A3 (SLC35A3) in the
Golgi network (14), and GlcNAc-1-phosphotransferase
(GNPT) selectively adds GlcNAc-1-phosphate
(GlcNAc-1-P) to specific mannose residues of cargo
proteins (15). Then GlcNAc is removed by the enzyme
N-acetyglucosamine-1-phosphodiester α-N-acetylglu-
cosaminidase. M6P monoesters are recognized by two
M6P receptors (MPRs) in the trans-Golgi network, fol-
lowed by lysosomal targeting (16, 17). About 5–20% of
newly synthesized lysosomal proteins escape from
MPRs binding in the Golgi and are secreted out of the
cell (18).

In this study, we performed genome-wide CRISPR
screening to seek for new cholesterol transport regu-
lators under amphotericin B (AmB)-based selection. We
found a function-unreported protein TMEM241 was
involved in lysosomal transportation of cholesterol.
TMEM241 ablation led to lysosomal cholesterol
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accumulation and impaired lysosomal sorting of NPC2.
We then demonstrated that TMEM241 was a Golgi-
localized UDP-GlcNAc transport. Loss of TMEM241
decreased M6P modification of many proteins,
including NPC2. In summary, we identified TMEM241
contributes to lysosomal targeting of NPC2 by regu-
lating the M6P modification pathway thus promotes
lysosomal exit of LDL-derived cholesterol.
MATERIALS AND METHODS

Cell culture
HeLa or stably expressing lentiCas9-FLAG (HeLa/Cas9),

SV589, and HEK293T cells were grown in a monolayer at
37◦C in 5% CO2. The cells were maintained in medium A
(DMEM containing 100 units/ml penicillin and 100 μg/ml
streptomycin sulfate) supplemented with 10% FBS. HeLa/site-
1 protease (S1P) KO cells were maintained as previously
described (19). Cholesterol-depleting medium was medium A
supplemented with 5% lipoprotein-deficient serum (to elimi-
nate exogenous cholesterol absorption) supplemented with
1 mM lovastatin (to inhibit endogenous cholesterol biosyn-
thesis) and 10 mM mevalonate (to permit the synthesis of
nonsterol isoprenoids essential for cell growth) (20). For LDL
and U18666A treatment, 50 μg/ml LDL and 1 μg/ml U18666A
were added to the cholesterol-depleting medium for 4 h.
Cyclodextrin medium was cholesterol-depleting medium
supplemented with 1.5% hydroxypropyl-beta-cyclodextrin
(HPCD) for 10 min (21). AmB medium was cholesterol-
depleting medium supplemented with 300 μg/ml AmB.
Antibodies
Anti-LAMP1 (H4A3-c) was from Developmental Studies

Hybridoma Bank. Anti-NPC1 (13926-1-AP), anti-TOM20
(11802-1-AP) and anti-GAPDH (10494-1-AP), anti-cathepsin D
(CTSD), and rabbit anti-FLAG (20543-1-AP) were from Pro-
teintech Group. Anti-NPC2, mouse anti-FLAG (F9291) and
anti-Actin (A1978) were from Sigma-Aldrich. Anti-GM130
(610,823) and anti-EEA1 (610,457) were from BD Transduction
Laboratories. Anti-P230 was from BD Biosciences. Mouse anti-
myc (sc-40) was from Santa Cruz. The myc-tagged single-
chain M6P antibody fragment was obtained from Dr Thomas
Braulke laboratory (University Medical Center Hamburg-
Eppendorf, Germany) (18). And the monoclonal antibody
against SREBP2 (1D2) were prepared in our laboratory (22).
Horseradish peroxidase–conjugated donkey anti-mouse and
anti-rabbit IgG were from Jackson Immuno Research Labo-
ratories. These antibodies described above were used at di-
lutions of 1:500 for immunofluorescence staining and 1:1,000
for Western blot. Alexa Fluor 488 donkey anti-rabbit IgG and
Alexa Fluor 555 donkey were from Life Technologies.
Reagents
AmB, U18666A, crystal violet, lovastatin, sodium mevalo-

nate, and filipin were from Sigma-Aldrich. 2-HPCD was from
Cyclodextrin Technologies Development. Puromycin was
from Biosharp. Human LDLs and lipoprotein-deficient serum
(d > 1.215 g/ml) were prepared as previously described (23, 24).
H&E staining kit (#C0105) was from Beyotime.
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Plasmids
LentiCas9-FLAG plasmid and human genome-scale

CRISPR/Cas9 KO (GeCKO) pooled library (v2) (No.
1000000049) were from Addgene. The coding regions of
Tmem241 and Slc35a3 were amplified from mouse liver cDNA
using standard PCR and cloned into pHAGE-3×FLAG vectors.
The plasmids plvx-NPC2-IRES-Zsgreen and pcDNA3-NPC1-
EGFP were obtained as previously described (25).
AmB selection procedure
HeLa/Cas9 stable cells were cultured in cholesterol-

depleting medium for 16 h (it ensured depletion of cellular
cholesterol and drastically induced the LDL receptor (LDLR)
expression) and incubated with 30 μg/ml LDL and 1 μg/ml
U18666A for 4 h at 37◦C (large amounts of LDL-derived
cholesterol were internalized by LDLR-mediated endocytosis
and trapped in late endosome/lysosomes (LE/Lys) because of
U18666A (26)). Then the cells were washed with PBS and
treated with 1.5% HPCD for 10 min to acutely deplete
cholesterol from plasma membrane (PM). Later, the cells were
washed with PBS twice and maintained in cholesterol-
depleting medium that U18666A was removed that allowed
cholesterol in LE/Lys to transport to other organelles
including PM. After 0 h, 1 h, 3 h, and 5 h, the cells were
incubated with 300 μg/ml AmB medium for 45 min, which
can specifically bind PM-cholesterol and form pores resulting
in cytoplasmic leakage and cell death. The rates of cholesterol
trafficking in cholesterol trafficking defective (CTD) cells
were slower than in WT cells and their PM-cholesterol levels
were lower than WT cells at certain time points. Thus, these
CTD cells can survive from AmB treatment. Finally, the cells
were washed with PBS twice and maintained in growth me-
dium for 72 h. After five rounds of AmB selection, the sur-
viving cells and the cells without selection were amplified and
subjected to deep sequencing.
Crystal violet staining
After exposed to 300 μg/ml AmB for 45 min, the cells were

washed with PBS twice, then cultured in medium A supple-
mented with 10% FBS for 3 days. Survival cells were washed
twice with PBS and fixed with 95% ethanol for 30 min at
room temperature. Thereafter, cells were stained with 0.5%
crystal violet in 25% ethanol for 1 h and washed with pure
water three times, extracting dye with 10% acetic acid. The
absorbance was determined at 600 nm.
Genome-wide CRISPR/Cas9 screen and analysis
HeLa cells expressing Cas9 were infected with GeCKO v2.0

pooled libraries consist of over 122,411 single-guide RNA
(sgRNA) constructs targeting more than 19,050 human genes
at 0.3 multiplicity of infection. Infected cells were selected
puromycin (4 μg/ml) for 4 days. After five rounds of AmB
selections, survived populations were collected, genomic DNA
was isolated from all samples, and the sgRNA sequences were
amplified by PCR and sequenced on an Illumina NovaSeq
6000 and data were analyzed using the MAGeCK algorithm
(27). As we intended to validate hit genes found in our screen,
hit genes were selected as interesting candidates among those
with a P-value <0.001 and log2 (fold change) >1 and at least
two different enriched sgRNAs for genes enriched (see
supplemental Table S1).



RNA interference
Duplexes of siRNAs targeting human genes were synthe-

sized by Ribobio (Guangzhou, China). All siRNA sequences
are listed in supplemental Table S2. SV589 cells were plated
on day 0 and transfected with siRNA oligonucleotides
(50 nmol/ml) using RNAiMAX on day 1. After transfection
for 48 h, the cells and media were harvested.

Quantitative real-time PCR
Total RNA was extracted from cells or mouse tissues using

Trizol (T9424, Sigma). The equal amounts of RNA from the
same treatment were pooled for cDNA synthesis with oligo
dT and reverse transcriptase MLV (Promega). Equal amounts
of RNA were used for cDNA synthesis, followed by quanti-
tative real-time PCR as previously described (28). The relative
mRNA levels were calculated using the comparative cycle
threshold method. Human GAPDH or mouse 18sRNA were
used as the control. All quantitative PCR primers are listed in
supplemental Table S3. Gene expression was analyzed by
quantitative real-time PCR on a Bio-Rad CFX384 Real-Time
System.

Immunofluorescence
Cells grown on glass coverslips were fixed with 4% para-

formaldehyde (PFA) for 30 min at room temperature. For
cellular NPC2 staining, cells were fixed with Bouin’s solution
(Sigma) for 1 h. Then cells were washed with PBS, per-
meabilized with 0.1% Triton X-100 in PBS for 5 min, and
blocked with 1% BSA in PBS for 1 h at room temperature.
Cells were then incubated with primary antibodies for 1.5 h.
After washing three times with PBS, cells were incubated with
secondary antibodies or 1 h at room temperature. For filipin
analysis, cells were incubated with 10% FBS/PBS containing
50 μg/ml filipin (block, cell membranes permeabilization, and
labeling free cholesterol) after fixed with 4% PFA. And then
cells were, respectively, labeled primary antibodies and fluo-
rescent secondary antibodies in 10% FBS/PBS containing
50 μg/ml filipin for 1 h at room temperature. Last, cells were
examined and imaged under a Leica Biosystems SP8 laser
scanning microscope. The contours of cell were outlined
manually, and background-subtracted fluorescent intensity
was quantified using ImageJ.

Immunoblotting
Cells were harvested and homogenized with RIPA buffer

supplemented with protease inhibitors. After centrifuging at
13,400 g for 10 min, the supernatants were collected, and the
protein concentrations were determined using the BCA kit
(Thermo Fisher Scientific). The supernatants were mixed
with the membrane protein solubilization buffer (62.5 mM
Tris-HCl, pH 6.8; 15% SDS; 8 M urea; 10% glycerol; 100 mM
DTT) plus the 4× loading at 37◦C for 30 min. Proteins were
resolved by SDS-PAGE and transferred to PVDF membrane.
Blots were blocked with 5% BSA or in TBS plus 0.075% Tween
and probed with primary antibodies overnight at 4◦C. After
TBS plus 0.075% Tween wash, blots were incubated with sec-
ondary antibodies for 1 h at room temperature. For NPC2
protein analysis in cell extracts and culture media, cells were
cultured in medium without FBS for 12 h. Later, the media
and cells were harvested separately. Proteins in the media
were concentrated with centrifugal filters (10 kDa). Culture
media containing equal amounts of proteins were subjected to
immunoblotting. To analyze M6P modification, cells were
grown in DMEM/low Glucose (SH30021-01, Cytiva) containing
100 units/ml penicillin and 100 μg/ml streptomycin sulfate
without FBS for 12 h at 37◦C before harvested.
SREBP2 cleavage analysis
HeLa cells and HeLa/TMEM241 KO cells were incubated in

cholesterol-depleting medium for 16 h, followed by incuba-
tion in cholesterol-depleting medium supplemented with
50 μg/ml LDL for 5 h at 37◦C. In the last 1 h, the cells were
treated with N-acetyl-leucinal-leucinal-norleucinal at a final
concentration of 25 μg/ml. Then the cells were harvested for
analysis of SREBP2 cleavage (precursor of SREBP2 and nu-
clear form of SREBP2).
KO cell lines establishment and validation
The TMEM241 KO cell lines and SLC35A3 KO cells were

constructed by transient cotransfection of sgRNAs targeting
the TMEM241 gene and SLC35A3 gene, respectively, in HeLa/
Cas9 cell. The TMEM241 and SLC35A3 sgRNA sequences were
as follows: 5′-gtagctgaagttatcatctg-3′; 5′-aacctaaaatacgtttccct-3′.
Single cells with puromycin (4 μg/ml) selection were seeded in
96-well plates. After cell expansion, the gene KO DNA frag-
ments of target loci were independently amplified by PCR
with a primer pair (TMEM241-seqF: 5′-agccccagcgtcattttatct-3′;
TMEM241-seqR: 5′-gatgcaaggcacccaggtta-3′; SLC35A3-seqF: 5′-
ccttctccctctcggtgtttt-3′; SLC35A3-seqR: 5′-agtcactgctggactaat-
caat-3′). The purified PCR products were sequenced and
analyzed.
Evolutionary relationships of taxa
The evolutionary history was inferred using the neighbor-

joining method. The bootstrap consensus tree inferred from
1,000 replicate is taken to represent the evolutionary history of
the taxa analyzed. Branches corresponding to partitions
reproduced in less than 50% bootstrap replicates are
collapsed. The evolutionary distances were computed using
the Jones-Taylor-Thornton matrix–based method and are in
the units of the number of amino acid substitutions per site.
This analysis involved 32 AA sequences. All positions with less
than 95% site coverage were eliminated, that is, fewer than 5%
alignment gaps, missing data, and ambiguous bases were
allowed at any position (partial deletion option). There were a
total of 296 positions in the final dataset. Evolutionary ana-
lyses were conducted in MEGA11.
Golgi isolation
Stable cell lines expressing TMEM241 or SLC35A3 by len-

tiviral particles and corresponding control cells were set up on
day 0 at 37.5 × 105 cells per 15 cm dish. On day 1, the cells were
treated with DMEM/low Glucose (SH30021-01, HycloneTM)
containing 100 units/ml penicillin and 100 μg/ml strepto-
mycin sulfate without FBS for 12 h before harvested. The
Golgi apparatus was isolated on day 2 as previously described
with minor modifications (29). All operations were performed
at 0–4◦C. After treatment, cells were transferred into fresh
ice-cold 0.5 M sucrose homogenization medium (prepared in
buffer A: 37.5 mM Tris-maleate, pH 6.5, 1% dextran, 5 mM
MgCl2, and 5 mM 2-mercaptoethanol) containing protease
inhibitors for homogenizing. The homogenates were centri-
fuged at 1,000 g for 10 min to remove the nuclei and cellular
debris. Then resulting homogenate supernatants were layered
over 1.5 volumes of 1.25 M sucrose (prepared in buffer A) in
TMEM241 is a UDP-GlcNAc transporter 3



Ultra clear tubes and were centrifuged at 100,000 g in a SW55i
rotor for 60 min at 4◦C. The crude Golgi apparatus fractions
(F2) which appeared as a cloudy band at the 0.5 M sucrose
(F1)/1.25 M sucrose (F3) interface were collected and diluted
with 0.25 M sucrose homogenization medium and centrifuged
at 25,000 g for 30 min to get pellets of crude Golgi sample.
UDP-GlcNAc analysis by MS
The pellet of crude Golgi was washed with PBS, and then

half was taken for measurement of protein concentration by
BCA, and the other half was added with 80% methanol con-
taining internal standard (IS) for detection of UDP-GlcNAc by
LC-MS/MS. The mixture was vortexed for 30 s, sonicated for
10 min on ice, and repeated once. The samples were centri-
fuged at 12,000 rpm for 10 min at 4◦C; and the supernatant was
transferred into a clean tube to dryness using a speedvac
(Labconco, USA). The dried samples were resuspended in 80%
methanol and analyzed by ultraperformance liquid chroma-
tography with MS/MS (UPLC–MS/MS) conducted on aWaters
Acquity UPLC-system coupled with 5500 QTRAP system
(SCIEX). Chromatographic separation was achieved on a Wa-
ters Acquity UPLC BEH C18 Column (2.1 mm × 100 mm, 1.7 μm,
Waters) using a flow rate of 0.3 ml/min at 40◦C; during an
8 min gradient (0–1 min 5% B, 1–5 min from 5% B to 50% B,
5–6 min from 50% B to 5% B, 6–8 min 5% B), using buffer A
[LC-MS grade water with 0.3% formic acid (pH 9.0) with
ammonium hydroxide] and buffer B (100% acetonitrile). MS
was operated in negative ion mode using an ESI source. The
parameters in the source were set as follows: curtain gas, 35 psi;
collision gas, medium; ionspray voltage, −4,500 V; temperature,
500◦C; ion source gas 1, 55 psi; ion source gas 2, 55 psi. The
analytes were monitored in multiple reaction monitoring
mode using the precursor-to-product ion transitions of m/z
606.0→384.9 for UDP-GlcNAc and m/z 118.9→73.8 for succi-
nate-1,4–13C2 (IS). Collision energy was −38.29 eV for UDP-
GlcNAc and −16.30 eV for IS. Peak determination and area
integration were performed using Analyst 1.7.1 (SCIEX) and
SCIEX OS 1.4.0 software (SCIEX). The protein and IS quanti-
fications were used for normalization.
Animals
All animal experiments were performed under the pro-

tocols approved by the Institutional Animal Care and Use
Committee of Wuhan University.

Tmem241 heterozygous (Tmem241+/−) mice on C57BL/6J
background were generated by GemPharmatech (Nanjing
China), using CRISPR/ Cas9–based technology. In brief, the
sgRNAs targeting the sites flanking exon 6–exon 10 were
coinjected with the Cas9 mRNA into zygotes, resulting in the
depletion of exon 6–exon 10 and early stop of Tmem241 in
mice. Male and female Tmem241+/− mice were crossed to
generate Tmem241 KO (Tmem241−/−) mice and WT littermates.
Mice were housed in a specific pathogen-free, temperature-
controlled room with a 12-h light and 12-h dark-cycle. Mice
were fed on a chow diet and housed in a pathogen-free ani-
mal facility in plastic cages at 22◦C, with a daylight cycle from
6 a.m. to 6 p.m.
Histology
Mouse tissues were fixed in 4% PFA, embedded in paraffin

and cut into 5 μm sections using a microtome (Leica RM2235),
or saturated with 30% sucrose in PBS at 4◦C and embedded in
OCT compound for 8 μm frozen section with a cryostat (Leica
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CM 3050S). For histological analysis, paraffin sections were
deparaffinized and stained with H&E. The frozen sections
were then processed for filipin staining.

Open field test
A 25 × 25 cm2 field was equally divided into 3 × 3 squares

with the middle square designated as the center. The animals
were put on to the middle square of the entire field and
allowed to explore freely for 10 min. The movement was
recorded by an overhead camera and the total distance trav-
eled and time spent in the center were analyzed using Etho-
Vision XT 10 (Noldus, Leesburg, VA) to analyze the moving
activities of different groups of mice.

Rotarod test
The balance and motor coordination of mice were tested

on a rotarod machine as previously described (25). Prior to the
test, mice were placed on the rotarod instrument for 10 min
daily for consecutive three days to train them. After training,
mice were placed on the rotating rod, which rotates with a
gradual increasing speed of 0–40 rpm. The experiment was
ended if the animals slip down from the rotating rod.

The treadmill fatigue test
The analyses were carried out using a six-lane motorized

treadmill. Aged animals were subjected to be acclimatized and
trained on the treadmill at low intensity for 30 min daily for
consecutive 7 days. After that, mice were put on a treadmill at
high magnitude and the test was stopped when the mouse
remained in the fatigue zone for more than 10 s. The time to
exhaustion was determined from the beginning of the test.

The published single-cell sequencing data analysis
The TMEM241 and NPC2 expression analysis in different

cell type of normal lung was obtained by the online tools
from cellxgene (https://cellxgene.cziscience.com/gene-
expression) based on combined published single-cell lung
atlas (30–33).

Statistical analysis
The data in this study were presented as mean ± SD values

and analyzed using appropriate statistical methods with SPSS
Statistics 21 software. For groups that met the assumption of
normal distribution, the differences between two groups were
assessed using the Student’s t test. Comparisons among mul-
tiple groups were conducted using one-way ANOVA, fol-
lowed by either the Bonferroni post hoc test (for data with
homogeneity of variance) or the Tamhane T2 post hoc test
(for data with heteroscedasticity). In cases where the data did
not follow a normal distribution, nonparametric tests were
employed. The figure legends include the specific statistical
methods used and the corresponding P-values for each figure
panel. A P-value of less than 0.05 was considered statistically
significant.

RESULTS

Genome-wide CRISPR screen for genes affecting
intercellular cholesterol trafficking

To uncover new regulators of cellular cholesterol
transport, we adopted the GeCKO screening strategy

https://cellxgene.cziscience.com/gene-expression
https://cellxgene.cziscience.com/gene-expression


combined with AmB selection (Fig. 1A). Briefly, the
HeLa cell stably expressing Cas9-FLAG were infected
with GeCKO v2.0 pooled libraries consisting of over
122,411 sgRNA constructs to target 19,050 human genes
at a low multiplicity of infection (0.3) (34). Infected cells
were subjected to the AmB-based screening that was
developed before (10) (Fig. 1A). In brief, cells were
incubated with cholesterol-depletion medium to inhibit
endogenous cholesterol biogenesis and induce LDLR
high expression. Second, a large amount of LDL-
derived cholesterol was endocytosed and trapped in
LE/Lys by addition of LDL and U18666A, a compound
that reversibly blocks cholesterol efflux from LE/Lys.
Next, the PM cholesterol was rapidly depleted by HPCD
treatment, leading to synchronization of cells at the
state of high cholesterol in LE/Lys and low cholesterol
in PM. Last, cholesterol liberated from LDL exited LE/
Lys and transported to the PM after removal of
U18666A. Since AmB could bind to PM cholesterol, in-
crease cell permeability, and cause cell death, WT cells
were killed by AmB. But CTD cells were resistant to
AmB as they had lower PM cholesterol.

To validate the screen strategy, HeLa cells received
control siRNA or siRNA targeting NPC1 and NPC2 were
subjected to the screen procedure. After removal of
U18666A for different time periods, the cells were
treated with AmB. Silencing NPC1 or NPC2 rendered
complete AmB resistance as NPC1 and NPC2 are critical
for cholesterol exiting lysosomes (8) (Fig. 1B).

After five rounds of selections, the survived cells
were completely resistant to AmB treatment, and the
sgRNA cassettes were amplified by PCR and subjected
to deep sequencing (Fig. 1C). We filtered out 179 genes
as top candidates with at least two independent
sgRNAs and P-value <0.001, a log2 (fold change) of
more than 1 (Fig. 1D and supplemental Table S1).
Several reported genes involved in cholesterol traf-
ficking and metabolism were highly enriched in our
screening, such as: NPC1 (lysosomal cholesterol trans-
porter), LDLR (LDL endocytosis), SREBP2 and SCAP
(LDLR expression regulation), and LIPA (lysosomal
cholesterol ester hydrolase). A previously uncharac-
terized gene TMEM241 highlighted in magenta was
also enriched. Gene ontology analysis indicated the
enrichment of several pathways and the “glycosyla-
tion” and “Golgi organization” were identified among
the top hits (Fig. 1E). We randomly selected 12 candi-
dates, silenced them with siRNAs, and found drastic
cholesterol accumulation in the cells compared with
control siRNA (Fig. 1F, G).

TMEM241 deficiency causes cholesterol transport
defect

TMEM241 is a membrane protein consisting of ten
putative transmembrane segments (Fig. 2A). Silencing
TMEM241 by siRNAs caused severe lysosomal choles-
terol accumulation and pathological lysosome
morphology (Fig. 2B, C and supplemental Fig. S1A). We
also generated two TMEM241 KO cell lines and they
showed lysosomal cholesterol accumulation and
swollen lysosomes compared with control cells (Fig. 2D,
E and supplemental Fig. S1B). The TMEM241 KO cells
were also resistant to AmB (supplemental Fig. S1C). In
WT cells, the LDL-derived cholesterol can leave lyso-
somes and transport to ER, where it caused ER reten-
tion of pSREBP2 and then decreased nuclear form of
SREBP2. However, LDL failed to inhibit SREBP2 pro-
cessing in TMEM241 KO cells. As a positive control,
U18666A blocked the lysosomal exit of cholesterol and
ablated the inhibitory effect of LDL on SREBP2
maturation (Fig. 2F) (26). We transfected the plasmid
expressing TMEM241 into TMEM241 KO cells. Exoge-
nous TMEM241 (green) successfully restored abnormal
lysosomal cholesterol aggregation (Fig. 2G, H). Collec-
tively, these data demonstrated that deficiency of
TMEM241 causes cholesterol accumulation in lyso-
somes, thereby impairing cholesterol transport to PM
and ER.

TMEM241 deficiency decreases NPC2 in lysosomes
NPC1 and NPC2 are two key proteins required for

lysosomal cholesterol exiting lysosomes. We then
analyzed the expression of NPC1 and NPC2 in
TMEM241 knockdown cells. Without changing NPC1 or
NPC2 mRNA levels, silencing TMEM241 reduced the
NPC2 protein level in whole-cell lysate but increased its
level in culture medium. The NPC1 protein level in
whole-cell lysate was not affected and not detected in
medium (Fig. 3A, B). Similar results were observed in
TMEM241 KO cells (Fig. 3C, D). Immunofluorescence
analysis showed that the level of NPC2 in lysosomes was
reduced in TMEM241 KO cells and the NPC2 KO cells
were used as the control group (Fig. 3E, F). Reex-
pression of TMEM241 in the TMEM241 KO cells
increased the lysosomal distribution of NPC2 and
decreased extracellular NPC2 (Fig. 3G–I). Notably,
overexpression of NPC2 but not NPC1 reversed the
abnormal cholesterol accumulation in TMEM241 KO
cells (Fig. 3J, K). Thus, these results suggested that
TMEM241 deficiency causes lysosomal cholesterol
accumulation through decreasing the lysosomal tar-
geting of NPC2.

TMEM241 is a Golgi-localized UDP-GlcNAc
transporter

Besides NPC2, the lysosomal proteins, CTSD and
cathepsin L (CTSL), showed reduced levels in cells and
increased levels in medium. Similarly, the enzyme ac-
tivity of lysosomal β-hexosaminidase in whole-cell
lysate was decreased but increased in medium
(Fig. 4A–C).

M6P posttranslational modification is required for
trafficking soluble proteins into lysosomes. The M6P
modification occurs in a two-step pathway in the lumen
of Golgi. First, GlcNAc-1-P is transferred from UDP-
GlcNAc to the 6-position of mannose residues of N-
TMEM241 is a UDP-GlcNAc transporter 5



Fig. 1. Genome-wide CRISPR-screen of factors in intracellular cholesterol trafficking. A: Schematic representation of the screen
procedure. The HeLa/Cas9 cells were infected with lentiviruses expressing whole genome sgRNAs, followed by puromycin selec-
tion. The cell mixture was incubated in cholesterol-depleting medium overnight and then 30 μg/ml LDL containing 1 μM lovastatin
and 1 μg/ml U18666A for 4 h. Then the cells were treated with 1.5% HPCD for 10 min and switched to cholesterol-depleting medium.
After different time durations, the cells were treated with 300 μg/ml amphotericin B for 45 min. B: HeLa cells were transfected with
control siRNA or siRNA targeting NPC1 and NPC2, then subjected to the treatment in Fig. 1A. After removal of U18666A for 0, 1, 3,
and 5 h, the cells were treated with amphotericin (B), washed, and stained with crystal violet. C: Survival ratio and crystal violet
staining of the cells after every selection round. Results represent the mean ± SD of three independent experiments. D: Scatter plot
showing for each enriched gene in (A). Genes with a phenotype value log2 (fold change) >1, P-value <0.001 and at least two different
enriched sgRNAs are in blue, except for TMEM241 in magenta and the known positive genes in green, the rest genes are in gray. The
enriched genes were also listed in supplemental Table S1. E: Gene ontology (GO) term enrichment analysis for 179 genes with a
phenotype value in (D). F: Q-PCR showing the knockdown efficiency of the representative candidates. G: The human fibroblast
SV589 cells were transfected with indicated siRNAs for 48 h. The cells were fixed and stained with filipin. Scale bar, 10 μm. HPCD,
hydroxypropyl-beta-cyclodextrin; sgRNA, single-guide RNA.
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linked oligosaccharides by GlcNAc-phosphotransferase.
Second, the terminal GlcNAc is removed by the uncov-
ering enzyme N-acetyglucosamine-1-phosphodiester
α-N-acetylglucosaminidase (17). The exposed M6P is
recognized by the MPRs in trans-Golgi apparatus and
delivered to lysosomes. UDP-GlcNAc is synthesized in
cytosol and its translocation into Golgi lumen is a pre-
requisite for M6P modification. Previous studies have
shown that nucleotide sugar transporters are encodedby
the SLC35 gene family and SLC35A3 transports UDP-
GlcNAc into the lumen of cis-Golgi network (35)
(Fig. 4D; supplemental Figs. S2 and S3).

Evolutionary tree analysis suggested that TMEM241
belonged to SLC35 transporters family and displayed
high relevance to SLC35A3 (supplemental Fig. S3).
Therefore, we hypothesized that TMEM241 affected
NPC2 location by acting as an UDP-GlcNAc trans-
porter. We measured the gross M6P modification of
cellular proteins with anti-M6P antibodies. The prote-
ase S1P cuts the α/β-subunit precursor of GlcNAc-
phosphotransferase to generate mature GlcNAc-
phosphotransferase and SLC35A3 transports UDP-
GlcNAc into the Golgi lumen (19, 36, 37). So, the gross
M6P was decreased in the S1P KO or SLC35A3 KO cells.
Surprisingly, the M6P modification of total cellular
proteins was also reduced in the TMEM241 KO cells
(Fig. 4E). Reexpression of exogenous TMEM241 or
SLC35A3 substantially increased the gross M6P modi-
fication and the cellular NPC2 level in TMEM241 KO
cells (Fig. 4F).

Immunofluorescent analysis showed that TMEM241
colocalized with SLC35A3 and GM130, the cis-Golgi
marker, but not with P230, the trans-Golgi network
marker (Fig. 5A). The M6P reaction happens in the cis-
Golgi network (17). Immunofluorescence detection
proved that SLC35A3 can rescue intracellular choles-
terol accumulation and NPC2 sorting abnormalities
caused by TMEM241 KO (Fig. 5B–D). Since TMEM241
deficiency compromised lysosomal targeting of
several luminal proteins due to impaired gross M6P
which could be complemented by SLC35A3, it is likely
that TMEM241 is a Golgi-localized UDP-GlcNAc
transporter. To demonstrate this notion, we purified
Golgi apparatus as illustrated in Fig. 5E. The F2 frac-
tion contained Golgi with neglectable endosomes,
mitochondria, or cytosol (Fig. 5F). LC-multiple reaction
monitoring–MS/MS was used to analyze UDP-GlcNAc
(supplemental Fig. S4A, B). The results showed that the
UDP-GlcNAc in the Golgi from SLC35A3 KO or
TMEM241 KO cells was decreased by 70–80%
compared with WT cells (Fig. 5G and supplemental
Fig. S4C). On the contrary, overexpression of
SLC35A3 in SLC35A3 KO cells increased Golgi UDP-
GlcNAc by 30% and overexpression of TMEM241
increased UDP-GlcNAc in Golgi by 70% (Fig. 5H and
supplemental Fig. S4D). These results demonstrated
that TMEM241 is a Golgi-localized UDP-GlcNAc
transporter.
10 J. Lipid Res. (2023) 64(12) 100465
TMEM241 absence induced cholesterol
accumulation and pulmonary injury

To investigate the function of TMEM241 in vivo, we
generated whole body Tmem241 KO mice by zygote
injection with sgRNA and Cas9-coding mRNA. The
mice were grossly normal and showed similar body
weight, total cholesterol in serum, and triglyceride in
serum with WT mice (Fig. 6A, B). The tissue expression
profile showed that the lung had the highest Tmem241
expression level (Fig. 6C). Intracellular cholesterol
accumulation was detected in lung, not other tissues
including the heart, liver, spleen, kidney, or brain in the
Tmem241-deficient mice. Notably, cholesterol accumu-
lation occurred in minor cells in lung (Fig. 6D).
Accordingly, we did not detect any change in NPC2
level in the lung tissue and plasma (supplemental
Fig. S5A). We speculated that TMEM241 only affects
NPC2 in specific lung cells. Analysis of publicly avail-
able single-cell sequencing results of normal lung pro-
vided clues, indicating that TMEM241 and NPC2 were
highly coexpressed in specific cell types, such as alve-
olar macrophage or stromal cells, rather than type I
pneumocyte, type II pneumocyte, or club cells
(supplemental Fig. S5B) (30–33). The lung of Tmem241-
deficient mouse showed inflammatory cell infiltration
and thicker alveolar walls (Fig. 6E) that may impair
respiratory function and cause hypokinesia. The
expression of proinflammatory genes such as TNFα,
CCL5, and CXCL10 was increased in Tmem241-ablated
mice (Fig. 6F). Although the metabolic levels in quies-
cent condition showed no significant differences in WT
and Tmem241-deficient mice (Fig. 6G), the Tmem241-
deficient mice showed less fatigue distance in treadmill
test compared with WTmice (Fig. 6H). The functions of
central nervous system seemed no significant differ-
ences compared with the control mice by rotarod test
and open filed test (Fig. 6I–K). Collectively, Tmem241
ablation caused ectopic cholesterol accumulation in
lung cells. The inflammation was increased, and lung
function might be impaired.

DISCUSSION

In this study, we performed CRISPR-based whole
genome screening under AmB-based selection to seek
for new cholesterol transport regulators. Analysis of
sgRNA sequencing profiles displayed the enrichment
of the canonical cholesterol trafficking regulators such
as LDLR, SCAP, SREBF1, SREBF2, and NPC1. Many other
reported regulators were also appeared in the top hits:
the adaptor protein 2 complex (38), the ATPase com-
plex (39) and GARP complex (VPS51, VPS52, VPS53,
VPS54) (25), AAGAB that is involved in clathrin-coated
vesicle trafficking (38), Rab7, CCZ1B, and C18ORF8
(Fig. 1D) (40). Notably, GNPTAB, the gene encodes the
key subunits of GNPT in the M6P modification
pathway, was robustly enriched, indicating that the M6P
modification pathway was closely associated with
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lysosomal cholesterol exit (Fig. 1D, F, G). These positive
genes confirm the reliability of our screening.

Here, we identified TMEM241 regulates cholesterol
trafficking. TMEM241 ablation caused lysosomal
cholesterol accumulation. We found that TMEM241
functioned as a UDP-GlcNAc transporter and a core
component in M6P pathway. TMEM241 ablation led to
improper lysosomal targeting of NPC2. SLC35A3 is a
well-known UDP-GlcNAc transporter (14). The absence
of SLC35A3 resulted in cholesterol accumulation in
lysosomes (supplemental Fig. S2A–D), which has not
previously reported. Evolutionary tree analysis showed
that TMEM241 was highly homologous with SLC35A3
(supplemental Fig. S4), and immunofluorescence assay
indicated that both TMEM241 and SLC35A3 located at
cis-Golgi (Fig. 5A). Significantly lowered M6P modifi-
cation level in TMEM241 KO cells demonstrated that
TMEM241 is a crucial regulator for M6P modification.
The SLC35A3 and TMEM241 restoring experiments
together with MS quantification of UDP-GlcNAc in
purified Golgi from cells under different SLC35A3 and
TMEM241 expression levels strongly supported that
TMEM241 is a new UDP-GlcNAc transporter. TMEM241
was highly expressed in lung tissues. Tmem241-deficient
mice behaved as abnormal cholesterol accumulation,
lung inflammatory infiltration, and hypokinesia, sug-
gesting the importance of lysosome homeostasis in lung
function.

The deficiency of cation-dependent MPR and the
cation-independent MPR were proved to cause NPC2
excessive secretion and lysosomal cholesterol accu-
mulation (25, 41). The loss of the GARP complex dis-
rupts the retrieval of cation-independent MPR to the
Golgi, resulting in abnormal lysosomal sorting of
NPC2 and impaired cholesterol transportation (25).
Furthermore, GNPTAB impairment leads to abnormal
intracellular cholesterol accumulation, as a pivotal
enzyme in the formation of M6P modifications
(Fig. 1F, G). The destruction of other factors respon-
sible for GNPTAB maturation also resulted in
abnormal cholesterol accumulation within lysosomes,
such as S1P and POST1 (19, 42). These findings
together with our findings here support the important
role of M6P modification pathway in regulating lyso-
somal cholesterol exit.
transfected with 3×FLAG-SLC35A3 plasmid, fixed, and stained wit
Relative intensity quantification of cellular filipin shown in (B) and
and represented as mean ± SD (n = 20). ***P < 0.001, Student’s t test.
detecting metabolites in crude Golgi isolated by sucrose density gr
ganelles level in homogenate supernatant (HS) and 0.5 M sucrose f
sucrose fraction (F3) of WT cells, TMEM241-overexpressing cells, an
UDP-GlcNAc detected by LC-multiple reaction monitoring–MS/MS
KO cells (red) and HeLa/TMEM241 KO cells (purple). Data are norm
for 0.01 ≤ P < 0.05, Student’s t test. H: The relative abundance of t
isolated from SLC35A3 KO cells (blue) and SLC35A3 KO cells ov
normalized to control cells and represented as mean ± SD (n = 3).
GAPDH, cytosol marker; GM130, Golgi marker; NPC, Niemann-Pi
chondria marker; UDP-GlcNAc, UDP-N-acetylglucosamine.
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We found that the food intake, body weight, serum
TC, and triglyceride in Tmem241 KO mice were negli-
gibly changed. Rotarod test and open filed test sug-
gested that central nervous system remained normal in
Tmem241 KO mice. However, NPC patients usually
behave as neurological disorders and abnormal serum
lipid profiles (1), indicating that TMEM241 is not a
neurological regulator. We observed the highest
Tmem241 expression in the lung where abnormal
cholesterol accumulation, inflammatory infiltration,
and alveolar walls thickening occurred (Fig. 6C–F).
However, we did not detect any change in NPC2 level in
the lung tissue and plasma (supplemental Fig. S5A). The
filipin staining results showed that cholesterol aber-
rantly accumulated only in a specific cell type in the
lungs of Tmem241 KO mice, while most lung tissue cells
were indistinguishable (Fig. 6D). To clarify this issue, we
adopted single-cell RNA-seq analysis. TMEM241
expression is cell type–specific and rare in lung. The
proportion of cells expressing TMEM241 is less than
2.59%. These data suggested that TMEM241 may be
selectively expressed in a specific cell type within the
lung, masking the differentiation of NPC2 as detected
by Western blot analysis of the entire lung.

The lysosomal luminal proteins require M6P sorting
pathway for lysosomal targeting (43). M6P pathway
impairment causes unusual lysosomal storage disorder
(44). As an indispensable organelle in which antigens
from dead cells are cleaved and eliminated, lysosome
homeostasis is necessary for autoimmune response (45).
It has been well established that lysosomal enzymes are
implicated in promoting clearance of dead cells and the
production of cytokine (46). In cultured cells, we found
reduced α-galactosidase activity and imbalanced CTSD
/cathepsin L distribution in TMEM241-deficent group
compared with the controls (Fig. 4A–C), which has been
demonstrated to induce autoimmune response, such as
aberrant activation of NKT cells by blunted degrada-
tion and excessive accumulation of antigens (47). We
therefore conjectured that the inflammatory infiltra-
tion in the lung of Tmem241 KO mice was owned to
lysosome dysfunction.

In summary, this study shows that TMEM241 is a
Golgi-localized UDP-GlcNAc transporter. Loss of
TMEM241 impairs M6P modification of proteins
h anti-NPC2 (white) and anti-FLAG (green). Scale bar, 10 μm. D:
cellular NPC2 shown in (C). Data are normalized to control cells
Scale bar, 10 μm. E: Schematic diagram depicting the strategy for
adient centrifugation. F: Immunoblot analysis of different or-
raction (F1), the crude Golgi apparatus fraction (F2) and 1.25 M
d SLC35A3-overexpressing cells. G: The relative abundance of
in crude Golgi isolated from control cells (blue), HeLa/SLC35A3
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including NPC2. Therefore, the lysosomal targeting of
NPC2 is decreased and cholesterol exits from lysosomes
are blocked.
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