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Age is a dominant risk factor for some of the most common neurological diseases. Biological ageing encompasses in
terindividual variation in the rate of ageing and can be calculated from clinical biomarkers or DNA methylation data 
amongst other approaches. Here, we tested the hypothesis that a biological age greater than one’s chronological age 
affects the risk of future neurological diagnosis and the development of abnormal signs on clinical examination.
We analysed data from the Swedish Adoption/Twin Study of Aging (SATSA): a cohort with 3175 assessments of 802 
individuals followed-up over several decades. Six measures of biological ageing were generated: two physiological 
ages (created from bedside clinical measurements and standard blood tests) and four blood methylation age mea
sures. Their effects on future stroke, dementia or Parkinson’s disease diagnosis, or development of abnormal clinical 
signs, were determined using survival analysis, with and without stratification by twin pairs.
Older physiological ages were associated with ischaemic stroke risk; for example one standard deviation advance
ment in baseline PhenoAgePhys or KDMAgePhys residual increased future ischaemic stroke risk by 29.2% [hazard ratio 
(HR): 1.29, 95% confidence interval (CI) 1.06–1.58, P = 0.012] and 42.9% (HR 1.43, CI 1.18–1.73, P = 3.1 × 10−4), respectively. 
In contrast, older methylation ages were more predictive of future dementia risk, which was increased by 29.7% (HR 
1.30, CI 1.07–1.57, P = 0.007) per standard deviation advancement in HorvathAgeMeth. Older physiological ages were 
also positively associated with future development of abnormal patellar or pupillary reflexes, and the loss of normal 
gait.
Measures of biological ageing can predict clinically relevant pathology of the nervous system independent of chrono
logical age. This may help to explain variability in disease risk between individuals of the same age and strengthens 
the case for trials of geroprotective interventions for people with neurological disorders.
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Introduction
Ageing—the loss of biological function with the passage of time— 
is a dominant risk factor for some of the most common diseases 
in the neurology clinic.1-3 Whilst chronological age (time since 
birth) captures much of this risk, there can also be wide variation 
in age-associated outcomes between individuals of the same 
chronological age. The concept of biological ageing offers an ex
planation for some of this heterogeneity, theorizing that indivi
duals age at different rates: age acceleration or deceleration. 
Approaches taken to quantify biological age have combined vari
ous biomarkers (including bedside clinical measurements, rou
tine laboratory bloods tests and methylation data) with 
different algorithms (such as predicting chronological age direct
ly versus predicting mortality risk, or tissue-generic versus 
tissue-specific approaches).4-10 Besides explaining some of the 
chronological age-adjusted variance in morbidity, biological age 
provides a conceptual framework to intervene on age-related 
diseases by using geroprotective treatments to slow biological 
ageing.11,12

Several previous studies have assessed biological age in the con
text of age-associated neurological conditions.4 For example, there 
is some evidence for accelerated blood methylation age amongst 
groups of patients with dementia,13,14 Parkinson’s disease15 and 
multiple sclerosis.16 Outside of a specific disease context, a higher 
blood epigenetic age is also associated with age-related CNS struc
tural changes (such as loss of white matter integrity)17 and func
tional decline (such as loss of general cognitive ability).18,19

Similarly, biological age estimated from routine blood tests can pre
dict dementia more accurately than chronological age.20

Despite several established associations between biological age 
and neurological health and disease, there is currently a paucity of 
longitudinal studies. Multiple assessments of biological age over 
time (including prior to diagnosis) may help to distinguish cause 
and effect. For example: does accelerated biological age drive 
neurological disease (such as dementia, stroke or Parkinson’s dis
ease), or does the condition itself cause physiological changes re
sulting in age acceleration? Outside of a specific disease context, 
certain abnormalities on bedside neurological examination also be
come more common with advancing chronological age, e.g. pro
blems with vibration sense, pupillary and tendon reflexes and 
gait.21–24 These findings likely represent underlying subclinical 
pathology as well as contributing to disability and increased risk 
of falls in older individuals.25 Their relationship to biological age 
has not been previously described and could offer insight into gen
eral mechanisms of neurological decline that occur in so-called 
‘healthy’ ageing.

The Swedish Adoption/Twin Study of Aging (SATSA) is a co
hort study encompassing longitudinal data on 857 individuals col
lected in-person from 1984 to 2014.26 This includes clinical 
assessments, basic laboratory blood tests and leucocyte DNA 
methylation data, with information available on diagnoses 
followed-up over several decades. The use of a twin cohort add
itionally allows for some adjustment of unobserved cofounding 
factors, such as any genetic predisposition to certain disorders. 
The present study generates measures of biological age based 
on clinical biomarkers or methylation data and tests the hypoth
esis that higher biological age measures than expected for 
chronological age can predict future risk of age-associated neuro
logical diagnoses or development of abnormal neurological signs 
(Fig. 1).

Materials and methods
Study population

SATSA is a Swedish cohort study that began in 1984, based on all 
same-sex twin pairs in the Swedish Twin Registry born before 
1959 who were identified as reared apart matched to twin pairs 
reared together based on sex, date and county of birth (n = 3838 in
dividuals; mean year of birth = 1919; 57.9% female).26 The SATSA 
data collections started with a questionnaire sent out to 2845 indi
viduals in 1984, to which 2018 responded. Twin pairs over the age of 
50 who both answered the first questionnaire were invited to in- 
person assessments, including health examinations, neurological 
tests and collection of blood samples. In total, n = 857 individuals 
participated in at least one of the nine in-person assessments, car
ried out between 1985 and 2014 (mean year of birth = 1925; 59.6% fe
male). The details of in-person assessments and blood sampling 
have been previously described by Pedersen et al.27 The study has 
approval from the Swedish Ethical Review Board in Stockholm.

Markers of biological ageing

Markers of biological age (Box 1) were generated for every available 
time point for all individuals within SATSA. Clinical biomarker data 
were available from 3175 instances across 802 individuals, which 
were used for the generation of two ‘physiological ages’: 
PhenoAgePhys and KDMAgePhys. DNA methylation data were avail
able from 900 instances in 365 individuals and was used to generate 
three ‘methylation ages’: HorvathAgeMeth, PhenoAgeMeth and 
GrimAgeMeth as well as the DunedinPACEMeth measure of the rate 
of ageing. Biological age residuals were then generated by regres
sing each biological age measure on chronological age, such that 
a biological age residual of +1.0 suggests an individual’s biological 
age measure is 1 year older than expected for their chronological 
age. Residuals were then divided by their respective standard devi
ation (SD) so that the effect sizes reported can be compared be
tween different biological age measures.

Physiological ages

Two physiological age measures (PhenoAgePhys and KDMAgePhys) 
were generated using the BioAge package in R, which trains models 
based on shared biomarkers measured in the US Health and 
Nutrition Examination Surveys (NHANES).28 Clinical biomarkers 
measured both in NHANES III and longitudinally in SATSA 
(Supplementary Fig. 1) were selected if they correlated with chrono
logical age (|r| > 0.1) amongst NHANES III participants (Table 1). 
PhenoAgePhys—based on phenotypic age but using our available pa
nel of biomarkers—is trained to predict the age at which the same 
mortality would be expected given this panel of biomarker results.5

KDMAgePhys—created using the Klemera-Doubal method—is trained 
to estimate a latent variable (biological age) given chronological age 
and the panel of biomarkers, with parallel analysis for males and fe
males.8 Both measures were validated in the NHANES IV testing set 
using methods previously described and showed statistically signifi
cant associations with all-cause mortality adjusted for chronological 
age.28 In SATSA, both measures correlated highly with chronological 
age and other measures of biological age (Fig. 2).

Methylation ages

DNA methylation from blood leucocytes was assayed using the 
Illumina Infinium Human Methylation 450K BeadChip according 
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to the manufacturer’s instructions.31 Three measures of methyla
tion age (HorvathAgeMeth, PhenoAgeMeth and GrimAgeMeth) were 
generated using principal components of CpG-level data as input 
to maximize their reliability, using the method described by 
Higgins-Chen et al.29 The DunedinPACEMeth measure was generated 
using the method described by Belsky et al.30

Residuals of biological ageing

Biological age residuals were calculated from the regression of each 
biological age assessment on chronological age, modelled as a nat
ural spline with three degrees of freedom:

BA = ns(CA, df = 3) + BAResidual (1) 

No adjustments for covariates, relatedness between twin pairs or 
repeated measurements from the same individual were made to 
calculate the biological age residuals, as these were subsequently 
adjusted for downstream, when analysing the effect of these resi
duals on the outcome measures.

Outcome measures

Information on diagnoses was obtained from the Swedish 
National Patient Register and the Causes of Death Register, up
dated to the end of 2016. ICD codes were used to identify cases 
of ischaemic stroke (I63), dementia (F00-F03, F05.1, G30, G31.1, 
G31.8A) and Parkinson’s disease (G20). Two additional sources 
were available to detect cases of dementia: first from clinical 
work-up within SATSA and second, the presence of dementia 
medications in the Prescribed Drug Register, as previously de
scribed.32 Follow-up ended when the participant died or was 
otherwise censored on 31 December 2016. Mean follow-up 
time for neurological diagnoses was 18.4 years from baseline 
assessment (mean chronological age at last follow-up = 82.8 
years).

Neurological examinations were performed by trained nurses at 
a location convenient to the participant’s home. Ankle vibration 
sense, patellar reflex, direct pupillary response to light and gait 

were extracted from a wider neurological examination due to their 
known associations with chronological age21-24 and inclusion with
in all waves one to eight of SATSA. For ankle vibration sense, parti
cipants were asked if they could feel a tuning fork vibrating against 
the bone of the ankle on either foot (‘yes’, ‘no’ or ‘inbetween’). For 
patellar reflexes, the nurse recorded whether they observed normal 
knee extension in response to striking the patellar tendon with a 
tendon hammer (‘yes’, ‘no’ or ‘inbetween’). For direct pupillary re
sponse to light, the nurse recorded whether they observed pupillary 
constriction when a flashlight was moved over the ipsilateral eye 
from the side (‘yes’, ‘no’ or ‘inbetween’). For gait, the nurse recorded 
whether a participant was able to walk for a distance of 30 m (‘yes’, 
‘with difficulty’ or ‘impossible’). In the present analysis, an unre
markable examination (‘yes’) bilaterally was considered as ‘nor
mal’, whilst any type of deficit on either side was considered 
‘abnormal’. Owing to some variability between normal and abnor
mal assessments longitudinally, abnormal assessments were dis
counted if they were subsequently followed by two or more 
normal assessments (Supplementary Fig. 2). For survival analysis, 
time to first abnormal assessment was then considered, with parti
cipants censored at the time of their last normal examination. 
Mean follow-up time for neurological examinations was 11.5 years 
from baseline assessment (mean chronological age at last follow- 
up = 76.0 years).

Statistical methods

Cox regression analysis

Cox proportional hazards regression was used to assess the effect 
of a 1 SD increase in biological age residual on the hazard of each 
of the outcomes described, using the survival package in R. Either 
the baseline or the latest premorbid assessment of biological age re
sidual was used in a ‘single assessment’ model. Baseline assess
ments were the earliest recorded for each individual in SATSA, 
excluding individuals who were diagnosed prior to their baseline 
testing. Latest premorbid assessments were the last assessments 
recorded prior to diagnosis for cases, or prior to reaching the me
dian age of diagnosis for non-cases.

Figure 1 Schematic representation of the study. Measures of biological age (BA) were calculated for participants of the SATSA cohort study, and bio
logical ageing residuals determined by regression on chronological age. Cox survival models were then used to determine whether advanced biological 
age residuals were associated with subsequent risk for developing a neurological condition or developing abnormal features on neurological examin
ation. CA = chronological age; SATSA = Swedish Adoption/Twin Study of Aging.
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As not all participants with physiological ages (n = 802) available 
had methylation ages (n = 365), two separate analyses were per
formed: first using the largest sample available for each biological 
age marker, and second, using the 365 individuals with complete 
data across all six markers of biological age. The former analysis 
(with the largest available samples) is shown in the main figures 
with the sample sizes displayed in the legends. The latter (with a 
smaller but consistent sample for all markers of biological age) is in
cluded in the Supplementary material. Associations with biological 
age residual were adjusted for sex, body mass index (BMI), smoking 
status (ever versus never smoker) and education level (primary ver
sus above primary level). For the neurological examination outcomes, 
models were further adjusted for the presence of an ischaemic stroke, 
dementia or Parkinson’s disease diagnosis. Where indicated, a rate of 
change of biological age measure between the baseline and latest pre
morbid assessment (the difference between biological age measured 
at the two assessments divided by the time between these) was add
itionally incorporated into the model. Assessments with missing data 
in any relevant field were dropped from analysis. Chronological age 
was implicitly adjusted for by using attained age as the underlying 
timescale. All models were stratified by decade of birth and robust 
standard errors were used to account for relatedness within a twin 
pair. Proportional hazard assumptions were tested for each model 
using the Schoenfeld residual test.

To adjust for other, unmeasured, factors (such as genetics) where 
indicated, survival models were also stratified by twin pair. 
Monozygotic and dizygotic twin pairs were handled in the same way.

Longitudinal analysis

To investigate whether chronological age modulates the associ
ation between advanced biological age and neurological out
comes, a time-dependent coefficient model was generated 
incorporating all assessments of biological age for each individual 
prior to the occurrence of the respective outcome. For each out
come, data were split into five chronological age intervals (<60, 
60–70, 70–80, 80–90 and >90) and only intervals with ≥10 observed 
cases were used for further analysis to minimize skew from small 
numbers of outlier values. The proportional hazards models de
scribed in the ‘Cox regression analysis’ section were expanded 
to include an interaction between chronological age interval 
and biological age residual in this dataset. Adjustment for covari
ates, decade of birth and relatedness within twin pairs were 
handled in the same way. Where the proportional hazards as
sumption was not met for another covariate, results were similar
ly verified by allowing this covariate to vary with chronological 
age interval.

P-values <0.05 were interpreted as statistically significant. 
Adjustment was not made for multiple comparisons across the 
six biological age measures, given these are correlated and not in
dependent (Fig. 1), but P-values and 95% confidence intervals (CI) 
are reported for each analysis. All analyses were conducted using 
R version 4.0.5.

Results
Biological ageing residuals and risk of neurological 
diagnoses

Baseline characteristics of the population including the six differ
ent biological age measures are shown in Table 2. Amongst follow- 
up of the 802 SATSA participants with biological age assessments, 
there were 179 individuals diagnosed with dementia, 116 with is
chaemic stroke and 15 with Parkinson’s disease. These three 
age-related neurological disorders were prioritized for further ana
lysis, whilst other neurological conditions (including multiple 
sclerosis, motor neuron disease and epilepsy) had too few cases 
to offer adequate statistical power.

Baseline assessments of biological age

To study the effect of increasing biological age residual on the risk 
of being diagnosed with an age-related neurological disorder, we 
used Cox regression models with participants’ baseline assessment 
for each biological age measure (Fig. 3 and Supplementary Tables 1 

Box 1 Biological ageing markers used in the present study

Physiological ageing markers 
PhenoAgePhys: Uses clinical biomarker results and chronological age to estimate the age at which the participant’s mortality risk would be expected.5,28

KDMAgePhys: Uses clinical biomarker results and chronological age to estimate a latent variable (biological age) by the Klemera-Doubal method.8,28

Methylation ageing markers 
HorvathAgeMeth: Uses principal components from methylation data to estimate the participant’s chronological age.7,29

PhenoAgeMeth: Uses principal components from methylation data to estimate the age at which the participant’s mortality risk would be expected, based 

on the original panel of PhenoAge biomarkers.5,29

GrimAgeMeth: Uses principal components from methylation data to estimate the age at which the participant’s mortality risk would be expected, based 

on methylation surrogates for seven plasma proteins and smoking status.6,29

DunedinPACEMeth: Uses methylation data from a single time point to estimate the preceding rate of change of a panel of physiological biomarkers.30

Table 1 Correlation between available clinical biomarkers and 
chronological age in NHANES III

Pearson correlation coefficient (r)

All Males Females

(BMI) (−0.02) (0.01) (0.03)
(Weight) (−0.06) (−0.07) (−0.07)
Waist circumference 0.26 0.31 0.23
Systolic blood pressure 0.59 0.51 0.66
Diastolic blood pressure 0.11 (0.06) 0.16
Pulse rate 0.61 0.54 0.67
Glucose 0.26 0.24 0.28
Total cholesterol 0.32 0.19 0.42
Triglycerides 0.18 0.10 0.26

Coefficients shown in bold without parentheses are those biomarkers with |r| > 0.1, 

which were used for training the physiological age models. BMI = body mass index.
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and 2). A 1 SD increase in either PhenoAgePhys or KDMAgePhys re
sidual significantly increased the risk of ischaemic stroke diagnosis 
by 29.2% [hazard ratio (HR): 1.29, 95% CI 1.06–1.58, P = 0.012] and 
42.9% (HR 1.43, CI 1.18–1.73, P = 3.1 × 10−4), respectively (Fig. 3A). A 
1 SD increase in the four methylation biological age measures all 
contributed to a higher risk of ischaemic stroke, which was signifi
cant only for DunedinPACEMeth (HR 1.30, CI 1.00–1.70, P = 0.049), al
beit analysed in a smaller population than for the physiological 
biological age measures. In contrast, for dementia risk (Fig. 3B), nei
ther physiological biological age measure had a statistically signifi
cant effect, but two methylation biological age measures 
significantly increased the risk: HorvathAgeMeth (HR 1.30, CI 1.07– 
1.57, P = 0.007) and GrimAgeMeth (HR 1.36, CI 1.01–1.85, P = 0.045). 

No biological age residual at baseline had an effect on the risk of 
Parkinson’s disease diagnosis.

Latest premorbid assessments of biological age

To compare these baseline results to a biological age assessment 
close to the time of diagnosis, we next considered the latest pre
morbid assessment of each biological age marker on disease risk 
(Supplementary Tables 3 and 4). For the physiological biological 
age measures (PhenoAgePhys and KDMAgePhys) the latest premorbid 
assessments were carried out a median of 10.7, 11.6 and 9.6 years 
after the baseline assessments for ischaemic stroke, dementia 
and Parkinson’s disease, respectively. For the methylation 

Figure 2 Visualization of the different biological age measures amongst SATSA participants. PhenoAgePhys (A) and KDMAgePhys (B) are shown for all 
assessments of all participants plotted against chronological age (CA). Each point represents an individual assessment, with longitudinal assessments 
from the same individual joined by a line. Correlation matrices for baseline assessments of the six biological age measures and chronological age (C) 
and the six biological age measure residuals (D) are shown, with scatter plots in the bottom left and Pearson correlation coefficients (r) in the top right. In 
C, in the left-hand column the gradient (m) and intercept (c) are displayed for the linear regression of each biological age measure on chronological age.
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biological age measures (HorvathAgeMeth, PhenoAgeMeth, GrimAgeMeth 

and DunedinPACEMeth) the corresponding intervals between baseline 
and latest premorbid assessments were 5.1, 6.5 and 3.3 years, 
respectively.

Similar to the baseline assessments, a 1 SD increase in either 
physiological biological age residual at the latest premorbid assess
ment increased the risk of future ischaemic stroke diagnosis, with 
an effect size of 31.8% for PhenoAgePhys residual (HR 1.32, CI 1.10– 
1.57, P = 0.002) and 26.9% for KDMAgePhys residual (HR 1.27, CI 
1.05–1.53, P = 0.013). DunedinPACEMeth had a similar effect size on 
ischaemic stroke when measured at the latest premorbid assess
ment compared to baseline (HR 1.34, CI 1.01–1.78, P = 0.042). Once 
again, the risk of dementia diagnosis was more dependent upon 
methylation biological age residuals, with statistically significant 
effects of a 1 SD increase in HorvathAgeMeth (HR 1.27, 1.03–1.57, 
P = 0.027) and PhenoAgeMeth (HR 1.28, 1.00–1.64, P = 0.048). Effect 
sizes were generally similar to those seen at baseline. A higher 
DunedinPACEMeth at this later time point also significantly in
creased the risk of developing Parkinson’s disease (HR 3.44, CI 
1.07–11.05, P = 0.038).

At the time of the latest premorbid assessment, we also have ac
cess to a ‘rate of change’ of biological age for individuals that partici
pated in multiple biological age assessments prior to diagnosis. After 
adjustment for the latest premorbid biological age, a 1 SD increase in 
the rate of change in biological age was not significantly associated 
with the future risk of any of the diagnoses studied, with effect sizes 
tending to be >1.0 for dementia and Parkinson’s disease and <1.0 for 
ischaemic stroke (Supplementary Tables 5 and 6).

Stratification by twin pair

To provide some adjustment for unmeasured confounding factors, 
we next leveraged the twin structure of SATSA to stratify survival 
models by twin pairs. The trade-off for this was a smaller sample 
size, given that pairs in which neither twin developed the relevant 
outcome could not contribute to the stratified analysis. Amongst 
the 802 individuals with at least one biological age assessment, there 
were 31 concordant and 102 discordant twin pairs with dementia, 15 
concordant and 80 discordant pairs with stroke and 13 twin pairs 
with Parkinson’s disease (all discordant). Effect sizes for baseline 
physiological age residuals on ischaemic stroke risk were similar 
when stratified by twin pair: 58.9% for PhenoAgePhys residual (HR 
1.59, CI 0.93–2.71, P = 0.089) and 96.8% for KDMAgePhys residual (HR 
1.97, CI 1.18–3.27, P = 0.009). In the subgroup with methylation data 
available, effect sizes were positive for most methylation age resi
duals on both ischaemic stroke and dementia risk, but none were 
statistically significant (Supplementary Tables 7 and 8).

Chronological age-dependent effects

For some of the above models, there was evidence that the effect of 
biological age residual was not constant across chronological age 
(Schonfeld residual test P < 0.05). Many participants had repeated bio
logical age assessments over time prior to their diagnosis, which al
lowed us to interrogate how the effect of accelerated biological age 
on the risk of neurological diagnosis varied with increasing chrono
logical age. To explore this, we produced a model using premorbid lon
gitudinal data in which the coefficient for biological age could vary by 
decade of chronological age (<60, 60–70, 70–80, 80–90 and >90) (Fig. 4).

The association between advanced physiological biological age 
and ischaemic stroke risk was most pronounced at younger 
chronological age, diminishing above a chronological age of 80. 
The same chronological age-dependent trend was not observed 
for dementia, or for the methylation ages in ischaemic stroke or de
mentia. A similar analysis for Parkinson’s disease was limited by 
small numbers of cases within each chronological age category.

To summarize, a premature acceleration in two physiological 
markers of biological age generated from basic clinical biomarkers 
was robustly associated with an increased risk of future ischaemic 
stroke. This association diminished with increasing chronological 
age. Meanwhile, acceleration in measures of epigenetic biological 
age were associated with increased risk of future dementia 
diagnosis.

Biological ageing residuals and the risk of abnormal 
neurological examination findings

As it is also common to have some degree of age-related neurologic
al dysfunction outside of specific diagnoses, we next explored the 
effect of biological age on neurological examinations carried out 
longitudinally on participants both with and without diagnosed 
neurological conditions.

Of the participants with at least one biological age assessment, 
all 802 (100%) had a recorded neurological examination, with a me
dian of 4.0 longitudinal examinations per participant. Four neuro
logical assessments were chosen for analysis based on known 
associations with advancing chronological age21–24 and the avail
ability of longitudinal data in SATSA: ankle vibration sense, patellar 
reflex, direct pupillary response to light and assessment of gait 
(Supplementary Fig. 2). The lifetime prevalence of abnormal signs 
in each of these assessments in the study population is shown in 
Supplementary Table 9.

Table 2 Baseline characteristics of the population under study

Full 
population  

(n = 802)

Subpopulation  
with methylation 

data (n = 365)

Chronological age, years 64.5 (8.9) 68.7 (9.4)
BA marker, years

PhenoAgePhys 62.5 (9.7) 66.7 (10.0)
KDMAgePhys 70.7 (11.4) 71.3 (11.0)
HorvathAgeMeth – 56.3 (7.2)
PhenoAgeMeth – 60.4 (8.8)
GrimAgeMeth – 76.2 (7.2)
DunedinPACEMeth

a – 1.1 (0.2)
BA marker residual, years

PhenoAgePhys residual 0.1 (2.7) −0.2 (2.9)
KDMAgePhys residual 2.5 (8.8) 0.3 (9.1)
HorvathAgeMeth residual – −0.6 (5.3)
PhenoAgeMeth residual – 0.1 (5.2)
GrimAgeMeth residual – −0.2 (3.0)
DunedinPACEMeth 

residuala
– 0.0 (0.2)

Model covariates
Female sex: n (%) 472 (58.9%) 215 (58.9%)
BMI: kg/m2 25.7 (4.1) 26.3 (4.1)
Current or ex-smoker: n 
(%)

278 (35.7%) 70 (21.2%)

Above primary education: 
n (%)

310 (39.9%) 160 (45.2%)

Data for the full population and the subpopulation with methylation data available 
are shown separately for the baseline assessment. Values are displayed as mean 

(standard deviation, SD) unless otherwise indicated. BA = biological age; BMI = body 

mass index. 
aDunedinPACE is reported in units of years of physiological decline per one 
chronological year; all other biological age markers are reported in units of years.
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Baseline assessments of biological age

At the baseline assessment, accelerated physiological biological 
age measures tended to increase the risk of all abnormal signs 
(Fig. 5 and Supplementary Tables 10 and 11), with statistically sig
nificant effects of PhenoAgePhys residual on patellar reflex (HR 
1.19, CI 1.03–1.37, P = 0.016), pupillary light response (HR 1.26, CI 
1.07–1.48, P = 0.006) and abnormal gait (HR 1.37, CI 1.17–1.59, 
P = 5.5 × 10−5) and of KDMAgePhys on pupillary light response (HR 
1.21, CI 1.05–1.40, P = 0.007) and gait (HR 1.18, CI 1.00–1.40, P =  
0.045). These results were consistent regardless of adjustment for 
the presence or absence of the age-related neurological diagnoses 

explored previously (ischaemic stroke, dementia and Parkinson’s 
disease). Of the baseline epigenetic biological age residuals at base
line, only DunedinPACEMeth contributed a significant effect on the 
development of gait abnormalities (HR 1.25, CI 1.02–1.53, P = 0.028).

Latest premorbid assessments of biological age

Similarly, when using the latest premorbid assessments, a 1 SD in
crease in residual for the two physiological ages tended to increase 
the risk of abnormal neurological signs, with a statistically significant 
effect of increased PhenoAgePhys residual on the risk of losing ankle 
vibration sense (HR 1.15, CI 1.00–1.32, P = 0.048) or developing an 

Figure 3 Effect of baseline biological age residual on risk of subsequent neurological diagnosis. The hazard ratios and 95% confidence intervals (CIs) of 
a 1 standard deviation (SD) increase in each biological age (BA) residual are shown for ischaemic stroke (A), dementia (B) and Parkinson’s disease (C). For 
PhenoAgePhys and KDMAgePhys, ntotal = 793, 791 and 800 for ischaemic stroke, dementia and Parkinson’s disease analyses, respectively. For 
HorvathAgeMeth, PhenoAgeMeth, GrimAgeMeth and DunedinPACEMeth, ntotal = 358, 355 and 365 for ischaemic stroke, dementia and Parkinson’s disease 
analyses, respectively. ntotal = total population at risk at the time of the baseline assessment.

Advanced biological ageing neurology                                                                                   BRAIN 2023: 146; 4891–4902 | 4897

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad252#supplementary-data


Figure 4 Effect of biological age residual on risk of subsequent neurological diagnosis at different chronological ages. The percentage increases in haz
ard associated with a 1 standard deviation (SD) increase in each biological age (BA) residual are shown, split by chronological age group for ischaemic 
stroke and dementia. The numbers of individuals in each analysis are reported on the plots. Bars are coloured red for a statistically significant effect 
and grey for a non-significant effect on hazard. ntotal = total population at risk; ncases = number of cases during follow-up.
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abnormal patellar reflex (HR 1.17, CI 1.06–1.29, P = 0.002). Epigenetic 
biological age markers measured premorbidly tended to have positive 
associations with future neurological signs, and significant effects 
were detected for abnormal gait with PhenoAgeMeth (HR 1.24 CI 
1.03–1.49, P = 0.020) and GrimAgeMeth (HR 1.31, CI 1.01–1.70, P =  
0.038) (Supplementary Tables 12 and 13). We further studied whether 
the rate of change in biological age residual from baseline to latest 
premorbid assessment contributed to the risk of incident abnormal 
neurological signs (Supplementary Tables 14 and 15). In this popula
tion, a higher rate of change in biological age did not significantly in
crease the future risk of neurological signs for any of the biological age 
measures assessed. There was a negative association between rate of 
change of PhenoAgePhys and future development of gait abnormality 
(HR 0.79, CI 0.67–0.92, P = 0.002), consistent with a higher effect size of 
PhenoAgePhys on this outcome at the baseline compared to the latest 
premorbid assessment.

Stratification by twin pair

Equivalent survival analysis was next performed with stratification 
by twin pair. Amongst the 802 participants, there were 151 concord
ant and 168 discordant twin pairs with abnormal ankle vibration 
sense, 107 concordant and 156 discordant pairs with abnormal patel
lar reflexes, 55 concordant and 144 discordant pairs with abnormal 
pupillary light responses and 52 concordant and 154 discordant for 
gait abnormalities. When stratified by twin pair, no baseline biologic
al age residuals contributed a significant effect on development of 
neurological signs (Supplementary Tables 16 and 17).

Chronological age-dependent effects

Finally, the effects of increased biological age residuals on neuro
logical examination findings were explored in a model 

incorporating longitudinal premorbid assessments, in which the 
hazard ratio could vary with chronological age (Supplementary 
Fig. 3). Advanced physiological biological age measures were asso
ciated with loss of ankle vibration sense for individuals in their sev
enth decade, whilst both physiological biological age measures and 
PhenoAgeMeth in the eighth decade of life predicted future gait ab
normalities. Similarly to what was seen with neurological diagno
ses (Fig. 4), the effect sizes were generally small above a 
chronological age of 80, beyond which there were no statistically 
significant associations between advanced biological age and de
velopment of abnormal neurological signs.

In summary, accelerated biological age residuals generally tended 
to increase the risk of developing age-related neurological examin
ation findings, independent of three common age-related neurologic
al diagnoses. The strongest evidence for this was for associations 
between accelerated physiological biological age measures and future 
risk of abnormal patellar reflex, pupillary response and gait, albeit 
with some variability between different types of analysis.

Discussion
In this study, we explored the effect of advanced biological age on 
the future risk of developing age-related neurological conditions 
or clinical signs. We used data from SATSA, a cohort study in which 
twin pairs had multiple assessments of biological age both before 
and after these outcomes.

Of the three age-associated neurological disorders studied, an 
increase in biological age residual was most robustly associated 
to ischaemic stroke risk. For the two physiological biological age 
measures (based on clinical biomarkers), significant effects were 
seen from both baseline and latest premorbid assessments and 

Figure 5 Effect of baseline biological age residuals on risk of development of abnormal clinical signs on neurological examination. The hazard ratios 
and 95% CIs of a 1 standard deviation (SD) increase in each biological age residual are shown for loss of vibration sense at the ankle (A), development of 
an abnormal patellar tendon reflex (B), loss of a normal direct pupillary reflex response to light (C) and development of a gait abnormality (D). For 
PhenoAgePhys and KDMAgePhys, ntotal = 577, 628, 673 and 658 for ankle vibration, patellar reflex, pupillary light reflex and gait analyses, respectively. 
For HorvathAgeMeth, PhenoAgeMeth, GrimAgeMeth and DunedinPACEMeth, ntotal = 222, 234, 273 and 269 for ankle vibration, patellar reflex, pupillary light 
reflex and gait analyses, respectively. ntotal = total population at risk at the time of the baseline assessment.
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then verified by stratifying the analysis by twin pairs. Across these 
different approaches, the effect size seen was ∼30–60% increased 
risk of ischaemic stroke for every SD increase in PhenoAgePhys re
sidual, and 25–95% increased risk for equivalent increments in 
KDMAgePhys residual. For reference, 1 SD increase corresponds to 
2.7 years of advancement in PhenoAgePhys, 8.8 years of advance
ment in KDMAgePhys and 2.9–5.3 years of advancement in the 
methylation biological age measures (Table 2). The strength of 
these associations for ischaemic stroke presumably reflects the re
liance of these physiological biological age measures on cardiome
tabolic health: the biomarkers used included waist circumference, 
blood pressure, glucose and lipids, all of which are well established 
risk factors for ischaemic stroke.2 The methylation biological age 
markers (which are less intimately related to cardiometabolic risk 
factors), also had similar effect sizes, with estimates ranging from 
15–67%. However, these effects were generally not statistically sig
nificant, likely in part due to fewer measurements of epigenetic 
ages.

Unlike for ischaemic stroke, physiological biological age acceler
ation was a weak predictor of dementia risk. Whilst there is evi
dence that dementia risk is influenced by cardiometabolic risk 
factors,33 this is less strong than the association for ischaemic 
stroke (a CNS manifestation of systemic cardiovascular disease), 
consistent with our results. Conversely, three methylation clocks 
(HorvathAgeMeth, PhenoAgeMeth and GrimAgeMeth) all had positive 
associations with future dementia diagnosis, with effect size esti
mates ranging from 11–212%. There are mixed reports in the litera
ture, with some studies demonstrating a similar positive 
association between blood epigenetic age and dementia risk,13,14

and others reporting no effect.34,35 A study in the Framingham 
Heart Study Offspring cohort found that DunedinPACE and 
HorvathAge were more strongly associated with future dementia 
risk than PhenoAge and GrimAge.14 We report here similar effect 
sizes in SATSA using the updated principal component-based ver
sions of the methylation clocks, but also found that the increased 
dementia risk from advanced methylation biological age was no 
longer statistically significant when stratifying by twin pairs. It is 
difficult to say whether this was due to unmeasured confounders 
biasing the unstratified analysis, or simply a reflection of the smal
ler sample size once limited to dementia-affected twin pairs.

The other part of our analysis focused on the detection of 
age-associated clinical deficits on neurological examination. Across 
different models, a 1 SD increase in physiological biological age mea
sures was generally associated with increased future risk of losing 
normal ankle vibration sense (estimate range −2 to 15%), patellar ten
don reflexes (−2 to 19%), direct pupillary response to light (2 to 35%) or 
gait (−16 to 37%). Meanwhile, epigenetic biological age measures had 
some value in predicting abnormal gait or pupillary response, par
ticularly when measured at the latest premorbid assessment.

The four neurological assessments explored here all represent 
combined functions of the CNS and peripheral nervous system 
(PNS). Vibration sense relies on intact sensory neurons and the dorsal 
column medial lemniscus pathway, the patellar reflex on peripheral 
afferent and efferent neurons via the spinal cord and pupillary re
sponse on the functions of cranial nerves II and III with relevant 
brainstem circuits. Gait, meanwhile, relies on a complex interaction 
between sensory inputs, motor outputs and central processing. 
Either neurology-specific or more systemic age-related pathology 
could therefore contribute to the development of any of these abnor
malities; e.g. musculoskeletal problems influencing gait or ocular 
pathology affecting pupillary response. Cognitive assessments, 
which are more specific to CNS function, have been previously 

described for SATSA and show correlation with other biological age 
residuals over time.9 Our analysis was agnostic to the underlying 
pathology, hence this heterogeneity may contribute to the variable ef
fects on biological age-predicted hazards that we observed.

A strength of this study is the access to repeated samples prior 
to relevant outcomes occurring, revealing more information about 
the temporal relationship between biological age and neurological 
disease. For example, advanced neurological conditions will cause 
changes in diet, activity, peripheral immunity and risk of intercur
rent infections, which could influence biomarkers used to calculate 
biological age. We found here that acceleration in biological age 
predates stroke or dementia diagnosis by several years, which is 
encouraging for the clinical utility of biological age measures for 
identifying people at risk with sufficient time for a putative inter
vention. A caveat of our approach is that the diseases studies 
here all have subclinical prodromes that can predate clinical diag
nosis considerably: e.g. cerebrovascular atherosclerosis in stroke, 
or accumulation of amyloid plaque in Alzheimer’s disease demen
tia. Consequently, there remains a risk of reverse-causation; the 
‘latest premorbid’ assessments in particular are likely to occur dur
ing this prodromal period. We have tried to mitigate for this by re
porting the effects of biological age both at baseline and at latest 
premorbid assessments.

The repeated samples also allow us to assess changes over time in 
the biological age measures, and whether this has additional utility in 
predicting neurological outcomes. In general, we did not find any evi
dence that a more rapidly increasing biological age was associated 
with a higher risk of any neurological outcome. In fact, some out
comes (particularly ischaemic stroke and gait abnormalities) tended 
to be negatively associated with rate of change, after adjustment 
for the latest premorbid value. Similar conclusions were reached 
from a study of an overlapping cohort, in which the rate of change 
of the frailty index had no effect on mortality.36 In contrast, other 
work has demonstrated that the pace of ageing in a younger cohort 
predicts age-associated neurological outcomes including cognitive 
function and MRI-based brain age.37,38 One synthesis of these findings 
is that rates of change in biological age measures might be more crit
ical earlier in life, whereas for older populations such as SATSA (mean 
age 64.5 at baseline assessment) a sustained biological age advance
ment over time is more detrimental for age-associated morbidity 
and mortality. That said, DunedinPACEMeth, which is a methylation- 
based predictor for the pace of ageing, increased risk for both stroke 
and gait abnormalities in our cohort, although the latter effect was at
tenuated at the latest premorbid time point.

The measures of biological age analysed here all focus on per
ipheral biomarkers, such as serum chemistry and leucocyte epigen
etic markers. Previous work has demonstrated how these can be 
incongruent with measures of brain biological age from the same 
individuals.39 Stronger associations may be observed by incorpor
ating CNS biomarkers such as neurofilament light chain.20

However, an advantage of focusing on well established peripheral 
biomarkers is the ability to use biological age measurements dating 
back to the 1980s, with several decades of follow-up data.

Finally, for all positive associations identified between ad
vanced biological age and neurological outcomes, we found that 
the effect sizes were generally small above a chronological age of 
80. Similar to previous work looking at all-cause mortality,40 it ap
pears that advanced biological age has a lower positive predictive 
value for neurological morbidity at higher chronological age. Part 
of this may be due to survivorship bias: those with higher biological 
age residuals are less likely to live into their 80s and 90s, resulting in 
an elderly population that is enriched for health-associated traits. 
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This highlights the importance of longitudinal studies across a 
range of chronological ages to interpret the effects of biological 
age measures on age-associated outcomes.

As the global population ages, we face an immense burden of 
age-associated neurological morbidity over the coming decades. 
Measuring biological age helps us to understand how ageing differs 
between individuals, and here we have shown that advanced bio
logical age increases the risk of clinically relevant pathology in 
the nervous system several years into the future. Ultimately this 
could give a window for putative interventions that slow biological 
ageing to delay the onset of these disorders.

Data availability
The SATSA cohort has been archived through NACDA Program 
on Aging (https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/3843) 
and detailed information on the study can be found on the 
Maelstrom Research platform (https://www.maelstrom-research.org/ 
mica/individual-study/satsa). Data archiving is completed for in- 
person testing waves 1 to 7 and is a work in progress for waves 8 to 
10. In addition, all methylation array data are available in the Array 
Express database of EMBL-EBL (www.ebi.ac.uk/arrayexpress) under 
the accession number of E-MTAB-7309.
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