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The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity 
for the diagnosis of Parkinson’s disease has formed the backbone for a proposed staging system for incorporation in 
Parkinson’s disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of 
diagnosis during recruitment of Parkinson’s disease patients into trials (as distinct from patients with non- 
Parkinson’s disease parkinsonism or non-Parkinson’s disease tremors). There remain, however, further challenges 
in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson’s disease, namely: optimizing 
the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a can
didate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of long
er-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may 
assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this 
enzyme as the target; the presence of coexisting Alzheimer’s disease-like pathology (detectable through CSF levels of 
amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neurome
lanin MRI may objectively track decline in Parkinson’s disease even in its later stages. The exploitation of additional 
biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and as
sess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of dis
ease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the 
population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers 
in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an 
intervention is modifying a key pathophysiological process of Parkinson’s disease. However, correlation with clinical 
progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will de
pend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes 
from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical 
Parkinson’s disease.
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Introduction
Modifying the relentless deteriorating course of Parkinson’s dis
ease (PD) remains a critical yet currently elusive goal. Despite dec
ades of trials evaluating promising candidates, no treatments have 
yet been proven to achieve this. While this may be due to lack of 
trial evaluation of truly effective agents, other potentially contrib
uting factors include imprecise patient selection, inadequacies in 
trial design, failure to confirm target engagement and the absence 
of objective measures of disease progression.1

One way of improving the likelihood of success is by identifying 
better biomarkers. A biomarker is a characteristic that is objectively 
measured and evaluated from any substance, structure or process 
that can be measured in the body or its products as an indicator 
of normal biological or pathogenic processes, or pharmacologic re
sponses to a therapeutic intervention.2 An ideal biomarker should 
be readily quantifiable in accessible clinical samples [clinical as
sessments, biofluids (blood, CSF, urine, saliva, tears, stool), imaging 
and tissues (skin, oro-gastrointestinal mucosa)], while being reli
able, quick and inexpensive.

Suboptimal patient selection in disease modifying trials may be 
related to poor diagnostic accuracy. Pathological modification (phos
phorylation and conformational transformation) of the physiologic
al protein α-synuclein (α-syn) to misfolded oligomeric and fibrillary 
forms is the most consistent pathological feature of PD.3 The accu
mulation and interplay of these abnormal protein forms with the or
ganelles/cellular pathways involved in their clearance as well as 
normal cellular maintenance and survival results in neuronal dys
function and ultimately axonal injury and neuronal death.

The α-syn seed amplification assay (SAA) has high sensitivity and 
specificity for PD diagnostic accuracy, with a recent study of >1100 
samples from the Parkinson’s progression markers initiative (PPMI) 
cohort4 further confirming pre-existing evidence for its use,5–11 and 
is now proposed as a core aspect of a potential staging system for 
PD.12,13 This is potentially a pivotal step in clarifying eligibility criteria 
for inclusion in trials and distinguishing PD patients from those with 
atypical forms of parkinsonism. While needing further clarification, 
the α-syn SAA is at the present time largely a binary measure simply 
indicating the presence/absence of the pathophysiological process of 
α-syn aggregation and cannot yet be used to track disease severity, 
which instead relies on clinical measurements.

As such, there is still a need for additional biomarkers that 
might enrich treatment arms for PD subgroups most likely to re
spond and allow early exploratory analyses according to engage
ment of the therapeutic with its putative target. Current trials 
typically rely on clinical end points with scales and questionnaires, 
which are subject to inter-rater variability, while potentially being 
confounded by symptomatic drug effects. Evaluations using scales 
may also be compromised by non-linear changes over time,14 be 
limited by reduced compliance, recall bias and fatigue,15 some
times do not correlate sufficiently with quantitative objective as
sessments16,17 and vary in their sensitivity at different disease 
stages,18,19 raising questions about the inclusion of patients who 
may have progressed beyond the salvageable period.

Biomarkers that are robustly demonstrated to track disease pro
gression and treatment effects could potentially shorten periods of as
sessment and reduce the number of patients required for preliminary 
demonstration of efficacy. Ideally, short-term changes in the biomark
er should anticipate long-term clinical outcomes. Furthermore, by con
firming target engagement according to the dose(s) of the agent under 
study, biomarkers can be used to improve the distinction between an 
intervention’s disease-modifying effects and purely symptomatic 

improvements. While there are parallel efforts exploring additional 
biomarkers for PD prior to clinically manifest disease, in this review, 
we will discuss the current state of fluid, tissue and imaging biomarker 
developments in clinically established PD and their potential for use ei
ther alone or in combination in future disease modifying clinical trials.

Fluid and tissue biomarkers
Box 1 outlines techniques that have been used to measure different 
forms of α-syn as well as other protein/enzyme levels that reflect 
cellular pathway abnormalities that can be measured in biofluids.

Alpha-synuclein

Total, phosphorylated and oligomeric α-syn levels and their ratios 
in CSF, blood and other body fluids and tissues have all been ex
plored for biomarker use (Table 1).

Distinguishing Parkinson’s disease from other conditions

Total free α-syn levels have been explored in CSF, plasma/serum, saliva 
and submandibular gland tissue and are of no diagnostic value in 
PD.21–30 Measurement of total α-syn levels in extracellular vesicles 
(EVs) either in CSF,31 plasma/serum32–39 or saliva40 can distinguish 
PD from controls.33–37,39,41–43 Total α-syn levels in EVs derived from 
neurons can also distinguish PD from atypical disorders, though best 
distinction is achieved when α-syn levels are combined with levels of 
other proteins such as clusterin.36,44 Similarly, differences in α-syn le
vels in neuronal- compared with oligodendroglial-derived EVs shows 
promise for distinguishing PD from multiple system atrophy (MSA).38

Phosphorylated α-syn at serine-129 (Ser-129p-α-syn) levels are ele
vated in the CSF,25,45–48 serum and plasma49–52 of PD patients, although 
similar elevations are seen in atypical parkinsonian conditions, limit
ing specificity/diagnostic use.53–56 Elevated levels are similarly seen for 
Ser-129p-α-syn in skin.30,57–61 A predilection for Ser-129p-α-syn depos
ition in autonomic compared with somatosensory nerve fibres and 
proximal to distal gradients could be applied for improving the distinc
tion between PD and MSA-parkinsonian type (MSA-P).62,63

Levels of α-syn oligomers are also increased in the CSF,28,48,64–68

plasma,69,70 red blood cells,71,72 saliva and tears29,64,73–78 of PD patients 
(although again with a few teams reporting contradictory find
ings67,79,80). Oligomeric CSF α-syn levels taken alone, however, have 
unsatisfactory diagnostic properties.25 Combining oligomeric α-syn 
and aggregated tau measurement in serum neuronal-derived exo
somes seems to distinguish PD from tauopathies well.81 Reliable 
quantification and differentiation approaches between protein spe
cies (oligomers, fibrils and other aggregated forms) are currently lack
ing.51,53 Making these distinctions will be critical in improving the 
diagnostic performance of aggregated forms, considering unique pat
terns have been noted in different synucleinopathies.82,83 Ratios of 
Ser-129p-α-syn and/or oligomeric α-syn to total α-syn are elevated in 
PD and seem most promising in overcoming the limitations of individ
ual markers for differentiating synucleinopathies.45,46,54,55,66,68,84,85

Seed amplification assays such as real-time quaking-induced 
conversion (RT-QuIC) and protein misfolding cyclic amplification 
(PMCA) are arguably the most important achievement in the field of 
biomarkers to date and will likely be the most useful diagnostic bio
marker for trials. These techniques can amplify and detect minute 
amounts of aggregated α-syn in CSF.10,86–88 Studies comparing brain 
and CSF samples have demonstrated excellent performance for 
distinguishing PD from healthy controls (sensitivity and specificity: 
90–100%),4–11 with comparable results for both seeding methods7,10
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across laboratories.10 Assays can also distinguish PD from non- 
synuclein disorders such as progressive supranuclear palsy (PSP) 
and corticobasal syndromes (CBS),11 although the accuracy in distin
guishing MSA from these conditions is poor (sensitivity: 4–82%), while 
studies exploring the use of α-syn SAA to distinguish MSA from PD 
have also reported variable findings.87–91 As differences in α-syn 
strains and therefore biochemical, morphological and structural 
properties of the final α-syn SAA reaction products underlie PD and 
MSA phenotypic heterogeneity, different outcomes may be explained 
by the fact that different chemical environments (SAA reaction mixes) 
can differentially influence the formation and growth of different 
strains. Protocols optimized for PD may not therefore work so well 
for MSA detection.11,92

In attempts to avoid lumbar puncture, the use of α-syn SAA has 
been explored using samples obtained through less invasive ap
proaches. Increased α-syn skin seeding activity has been observed 
in PD (post-mortem and living) patients with excellent distinction 
from non-neurodegenerative cases,93 while aggregation rates using 
RT QuIC correlate with cognitive and motor status.8 Similarly, seed
ing activity in submandibular gland tissue of PD patients has been 
noted, although sensitivity (73.2% versus 100%) and specificity 
(78.6% versus 94%) for distinguishing PD from healthy controls var
ies between studies,94,95 while preliminary findings in saliva are 
promising.96 A recent report demonstrating the excellent ability 
of serum immunoprecipitation-based RT-QuIC for distinguishing 
PD from healthy controls may herald a new approach to diagnosing 

Box 1 Fluid and tissue biomarker measurement techniques

ELISA 
• target-specific antibodies bind to the sample proteins

• secondary antibody linked to an enzyme recognizes the matched antibodies

• fluorescent reaction is created when exposed to a chemical substrate

• amount of antigen present correlates to intensity of colour change

• detection range inferior to other high-sensitivity techniques

Luminex 
• beads conjugated with antibody against specific analyte present different colour codes

• high-throughput screening

• can measure up to 80 different proteins or RNA from a single microplate

Mesoscale discovery 
• high-throughput measurement of single or multiple targets

• antibodies can be conjugated to generate electro chemiluminescent signals, unlike ELISA

Single molecule array 
• antibody-based ELISA and bead-based platform

• antibody-coated bead binds to a single molecule and analysed separately

• multiplexing of up to 11 analytes, high sensitivity and wide detection range

Proximity extension assay 
• DNA oligonucleotide tags linked to matched antibodies that both bind to target protein

• antibodies come into proximity on binding, DNA duplex formed, sequence amplified

• wide library of matched antibodies with high sensitivity and specificity for their targets

SomaScan 
• Aptamers (short, single-stranded DNA or RNA molecules) bind target

• quantified by microarrays or quantitative PCR

• allows creation of library with high sensitivity for targets

Single molecule counting 
• antibody–antigen sandwich complexes from either beads or plates

• broken up and fluorescently labelled detection antibody counted by laser beam

• allows for a high dynamic concentration range

Mass spectrometry 
• measures mass-to-charge ratio of one or more molecules present

• provide quantitative information about composition of complex protein samples

• can also provide information about conformational properties

Microscopy 
• used to examine to structure and formation of aggregates

• approaches include fluorescence (aggregates labelled with fluorescent probes) microscopy and electron microscopy (resolve oligomer structure at higher 

resolution)

Seed amplification assays 
• aggregation assays that detect the presence of protein aggregates

• sample sonication and incubation with recombinant protein monomer

• aggregate seeds template and induce aggregation of the excess protein monomers

• reaction monitored by a thioflavin readout, aggregation curve characteristics recorded

Extracellular vesicles protein measurement 
• released by cells, content represent central nervous system processes

• precipitation to increase concentration and neuronal enrichment with immune capture

• protein quantification with electrochemiluminescence (e.g. mesoscale discovery)
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PD via a simple blood test, although lower detection rates in MSA, 
likely due to technical factors, will still need to be overcome.97

Similarly, the demonstration of seeding activity from pathological 
α-syn derived from plasma EVs is also promising.98 The use of 
less invasive samples will be ideal for trial recruitment (given feed
back from patients regarding tolerability of submandibular gland 
biopsy) but will require demonstration of comparability with the 
high sensitivity and specificity achieved with CSF (although a re
cent meta-analysis suggested comparability between CSF and 
skin for diagnostic purposes90,99).

Predicting severity phenotypes and measuring progression

Total free α-syn levels do not correlate with disease severity and 
their ability to predict and track progression is also poor.22,25,49 EV 

total α-syn levels also predict and track progression in PD 
poorly.31,32,35,36,100

While Ser-129p-α-syn levels do seem to reflect disease sever
ity45,46,101 and motor symptom progression,102 an inverse relation
ship in later disease (potentially as a result of extensive neuronal 
damage)53,103 makes its use as a progression biomarker challenging 
if applied to trials with long-term follow-up or involving patients 
with established disease. CSF and serum levels of a number of other 
phosphorylated α-syn species have also been explored, although 
preliminary findings are somewhat conflicting.104–106 A rostro- 
caudal pSer129-α-syn deposition gradient in the gastrointestinal 
tract of PD patients has also been noted, reflecting neurodegenera
tion in the myenteric plexus,107,108 although this may be a reactive 
physiological phenomenon.109 Disentangling reactive from patho
logical components will be important, as deposition may occur 

Table 1 Alpha-synuclein fluid and tissue biomarkers and their potential relevance to clinical trial design

Biomarker Origin Differentiating PD 
from healthy 

controls

Marker of 
disease 
severity

Differentiating PD 
from atypical 
parkinsonism

Predicting 
disease 

progression

Surrogate for 
disease 

progression

Total α-syn CSF – + – – +
CSF (exosomes) – + + – –
Plasma/serum ++ − + – –
Plasma/serum 

(exosomes)
+++ ++ ++ + +

Saliva +++ + – – –
Tears ++ − − – –
Skin ++ + – – –

Ser-129p-α-syn CSF ++ +++ ++ +
Serum/plasma + + – + –
Tissue/intestine ++ – – – –
Skin + – ++ – –

Ratio of 
phosphorylated 
α-syn to total α-syn

CSF + – – – –
Saliva (exosomes) + – – − –

Tyrosine 
phosphorylated 
α-syn

CSF + – – – –

Tyrosine nitrated 
α-syn

Serum + – – – –

Oligomeric α-syn CSF +++ ++ + – –
Plasma/serum/blood + – – – –
Serum/plasma 

(exosomes)
+ + + – –

Saliva +++ − + – –
Saliva (exosomes) + − – – –

Ratio of oligomeric to 
total α-syn

CSF +++ + + + +
Plasma/serum 

(exosomes)
+ – – – –

Saliva + − – – –
Red blood cells + − − − –

Oligomeric 
phosphorylated 
α-syn species

CSF + – – – –
Plasma + – – – –

α-syn seed 
amplification

CSF +++ + +++ – –
Saliva – + – – –
GI biopsy + – – – –
Skin ++ – – – –
Olfactory mucosa + – + – –

α-syn = α-synuclein; GI = gastrointestinal tract; PD = Parkinson’s disease. Grading approach adapted from Majbour et al.20

− = No effect (also scored if negative in a meta-analysis). 
+ = Effect in 1 study/inconsistent results across studies. 

++ = Effect in 2–3 studies using single site cohort. 

+++ = Effect in ≥3 studies or multisite cohort (also scored if positive in meta-analysis).
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here earlier and therefore guide earlier treatment in early motor 
stages where diagnostic criteria have yet to be totally fulfilled.

Oligomeric CSF α-syn levels can also reflect PD severity and 
progression,47,54,101,103 despite some contradictory evidence,110

although previously highlighted limitations of differentiating 
aggregated forms need to be addressed. Longitudinal measurement 
of Ser-129p-α-syn and/or oligomeric to total α-syn ratios might 
detect effective treatment responses.45,46,54,66,68,84,101 Similar find
ings have also been observed when measuring these ratios in 
serum and salivary EVs, although this does not seem to offer add
itional value.35,36,39,85,111,112

Correlation of α-syn SAA with disease severity and progression is 
unclear, and specific kinetic cut-offs remain elusive, although 
quantification of α-syn SAA end products with oligomer-specific 
enzyme-linked immunosorbent assay (ELISA) may be helpful in 
this regard.10,20,113 Taken together, the best α-syn candidate 
biomarkers for diagnosing PD to consider for clinical trials are 
α-syn SAA. The ratios of Ser-129p-α-syn and or oligomeric α-syn to 
total α-syn can also helpfully differentiate between synucleinopa
thies45,46,54,66,68,84 and are credible markers for tracking progression.

Alzheimer’s disease-like biomarkers

Amyloid-β (Aβ) peptides are cleaved from the amyloid precursor 
protein (APP) into the peptides Aβ42 and Aβ40, which can form extra
cellular amyloid plaques.114,115 Tau proteins comprise highly sol
uble isoforms, while their hyperphosphorylation contributes to 
the development of neurofibrillary tangles (NFTs).116 Amyloid pla
ques are abundant in the CNS alongside NFTs in Alzheimer’s dis
ease (AD), while NFTs are characteristic of PSP and CBS.117,118

Distinguishing Parkinson’s disease from other conditions

Biomarkers reflecting tau and amyloid pathology can be measured 
in CSF and blood and include free and EV levels of total tau (t-tau), 
phosphorylated tau (p-tau) and amyloid peptide isoforms (Aβ42 and 
Aβ40). Higher CSF t-tau and decreased Aβ42 levels occur in tauopa
thies. This combination best distinguishes PD from CBS, although 
the relative rarity of CBS makes widespread testing in PD trials of 
modest value.119,120 Preliminary evidence suggests that ultrasensi
tive tau SAA may identify/exclude patients with tauopathies from 
PD at trial recruitment,121 although a combined assay with α-syn 
would be more ideal.

The combination of reduced Aβ42 and increased t-tau and p-tau 
levels is collectively termed ‘an AD-like profile’ considering its 
specificity for diagnosing the condition.122 This profile occurs in a 
larger proportion of synucleinopathy patients with prominent 
cognitive dysfunction, i.e. Parkinson’s disease dementia (PDD) and 
dementia with Lewy bodies (DLB).123–125 CSF AD-like biomarkers 
may, therefore, be useful for differentiating DLB from other parkin
sonian disorders, although for some interventional trials this dis
tinction may be somewhat arbitrary. Levels of t-tau and p-tau are 
increased in all parkinsonian disease groups and combining them 
with Aβ42 only usefully differentiates PD from frontotemporal de
mentia.126 Taken together, these findings suggest free blood levels 
of these markers are unlikely to be of diagnostic value in trials.

Predicting severity phenotypes and measuring progression

Tau and AD pathology commonly coexist in synucleinopathy pa
tients127 and correlate with an acceleration in cognitive decline.128,129

PD patients with lower CSF Aβ42 levels at disease onset also have 
earlier appearance of cognitive impairment and more rapid 

conversion to PD-related dementia.68,130,131 The measurement of 
CSF Aβ42 could, therefore, be of prognostic value by reflecting brain 
amyloid content even prior to apparent clinical cognitive 
impairment.132

Although Aβ42 and tau can also be measured in blood, levels cor
relate poorly with cerebral pathology,133 potentially due to extra- 
cerebral sources such as platelets. Ultrasensitive immunoassay 
technologies such as immunomagnetic reduction (IMR) improve 
this,134 although correlation with cognitive function has been in
consistent.126,135,136 Similarly, total tau protein blood findings 
have been variable,135,136 potentially due to rapid changes in blood 
concentrations,137 although higher t-tau levels seem to correlate 
with lower cognitive performance.138

Aβ42 and tau can also be detected in EVs. While also not of diag
nostic value, elevated levels in combination with elevated 
α-syn139,140 and lower serine phosphorylated insulin receptor sub
strate (IRS-p312), a marker of neuronal insulin resistance in blood 
EVs,141 predict worse motor and cognitive dysfunction progression 
phenotypes well. Larger replication studies of Aβ and tau in EVs are 
needed to better assess their validity for predicting cognitive dys
function in PD before adoption for widespread use.

Measurement of other phosphorylated tau species (p-tau181, 
p-tau217 and p-tau231) in CSF and plasma can discriminate AD pa
tients from cognitively unimpaired subjects and reflect cognitive 
measures and progression.142 P-tau181 levels have been studied 
in PD, and their ability to predict disease severity and cognitive de
cline has been mixed and, therefore, they cannot currently be re
commended for trial use.143–145 Other tau species also show 
promise in AD and need further exploration in PD cohorts.

Neuroinflammation

Immune cells in the CNS and in the periphery are involved in PD 
neurodegeneration.146 Measurement of cellular components and 
levels of inflammatory mediators have, therefore, been explored 
for biomarker purposes (Table 2). Glial fibrillary acidic protein 
(GFAP) is released from astrocytes into the bloodstream, and its le
vel can be used to distinguish PD from healthy controls,147,148 while 
its ability to discriminate PD from other atypical parkinsonisms is 
unclear. The glial activation biomarkers YKL-40 (chitinase-3-like 
protein 1) and MCP-1 (monocyte chemoattractant protein-1) are in
creased even further in atypical parkinsonian patients compared 
with PD and can thus reliably discriminate tauopathies from synu
cleinopathies,149,150 although this is best achieved by combining 
them with a panel of non-inflammatory CSF biomarkers [area un
der the curve (AUC)  = 0.95].151 Among PD patients, GFAP levels 
seem to predict the development of dementia.152

Neutrophil-to-lymphocyte ratios (NLRs) are indicative of overall 
inflammatory status and are elevated in PD compared with healthy 
controls153 as is the proinflammatory lymphocyte profile (dimin
ished T-regulatory and increased T-helper cell levels).154–157 The 
NLR has been negatively associated with presynaptic radionuclide 
striatal-binding ratios and positively associated with motor impair
ment,153,158,159 while a proinflammatory lymphocyte profile shift is 
associated with more severe motor and cognitive impairment,160,161

and an increase in Tregs expressing CD49d is linked to lesser motor 
impairment.162 Altered lymphocytes lead to and are in turn influ
enced by cytokines. Elevated C-reactive protein (CRP), interleukin 
(IL)-6 and IL-10 as well as tumour necrosis factor α and chemokine 
ligand 5 (CCL5, RANTES) levels have been noted in PD.163–171

Current evidence does not, however, suggest these markers would 
help in distinguishing PD from atypical conditions considering 
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inconsistent findings between studies156,172–174 and small-to-inter
mediate effect sizes.175 Similarly, associations with non-motor 
symptoms noted particularly for IL-6 and IL-10176 are unlikely to be 
of value for trial design, although associations of pro-inflammatory 
cytokines, particularly CRP and CCL5, with reduced survival177 and 

the development of motor and cognitive impairment178–180 are of va
lue for both prognosis and monitoring progression.

Taken together, the value of individual inflammatory markers is 
low, although combining several inflammatory markers to predict 
disease progression will likely contribute to future approaches.180,181

Table 2 Fluid and tissue biomarkers from aberrant pathways noted in Parkinson’s disease and their potential relevance to clinical 
trial design

Biomarker Origin Differentiating PD 
from healthy 

controls

Marker of 
disease 
severity

Differentiating PD from 
atypical parkinsonian 

disorders

Predicting 
disease 

progression

Surrogate for 
disease 

progression

Neuroinflammation
Glial activation markers 
(YKL-40)

CSF +++ – + – –

Glial activation markers 
(MCP-1)

CSF +++ ++ + – –

GFAP Serum/plasma + ++ – + –
T-cell subtype level/ratios Blood +++ +++ − + –
Neutrophil lymphocyte 
ratio

Blood +++ + – – –

CRP Blood +++ + – + –
Interleukin levels Blood +++ +++ − ++ –
TNF Blood +++ +++ – + –
Complement levels Blood − + – + –
Chemokine ligand 5/ 
RANTES

Blood ++ ++ – – –

Lysosomal dysfunction
Glucocerebrosidase activity CSF ++ + – + –

Blood ++ – – – –
β-hexosaminidase CSF + – – – –
Cathepsin D CSF + – – – –
Glucosylceramide CSF − – – – –

Plasma ++ – – – –
Serum − – – – –

Mitochondrial dysfunction
DJ-1 CSF + + – – –

Plasma/serum − + + – –
Peroxisome 
proliferator-activated 
receptor γ coactivator 1α

Blood ++ + – – –

Fibroblast growth factor 21 Serum − – – – –
Growth differentiation 
factor 15

Serum − – – – –

Synaptic markers
SNARE complex Plasma/serum 

(exosome)
+ − – – –

SNAP25 CSF + – – – –
Neurogranin CSF +++ ++ − − –
β-Synuclein CSF − + − – –
GAP43 CSF + – – – –
Contactin-1 CSF + – + – –
Pentraxins CSF + + – + –
Neurotransmitter levels CSF + – + – –
Dopamine metabolites 
(HVA, DOPAC)

CSF +++ +++ – + −
Plasma ++ + – – –

Axonal damage (NfL) CSF − + +++ ++ –
Plasma/serum − +++ +++ +++ –
Plasma/serum 

(exosome)
− + – – –

DOPAC = dopamine, 3,4-dihydroxyphenylacetic acid; HVA = homovanillic acid; NfL = neurofilament light chain; PD = Parkinson’s disease. Grading approach adapted from 
Majbour et al.20

− = No effect (Also scored if negative in a meta-analysis). 

+ = Effect 1 study/inconsistent results across studies. 

++ = Effect in 2–3 studies using single site cohort. 
+++ = Effect in ≥3 studies or multisite cohort (also scored if positive in meta-analysis).
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While better validated general biomarkers of progression exist, these 
panels could be particularly useful for enriching trials that test agents 
targeting inflammatory pathways.

Genetics and gene regulation

The relationship between genetic risk factors for PD and the patho
physiological processes underlying PD are under renewed scrutiny 
based on the use of α-syn SAA in CSF. People with leucine-rich repeat 
kinase 2 (LRRK2) mutations may develop typical PD, positive α-syn 
SAA in CSF and typical PD pathology at post-mortem,182 while the 
phenotype, pathophysiology and α-syn SAA findings and post- 
mortem pathology can also be completely different, despite the 
same LRRK2 mutation.183 The far lower rates of positivity of the 
CSF α-syn SAA among LRRK2 mutation carriers questions whether 
these patients should be included within trials specifically targeting 
α-syn and potentially other broad interventions being considered 
for PD neurodegeneration.184 Nevertheless, there is great interest in 
targeting LRRK2 as a means of influencing disease progression in 
PD, and genetic status may be of greater relevance for these interven
tions than other biomarkers. That said, the most advanced LRRK2 in
hibitor trial has pragmatically chosen to focus recruitment of a 
combination of PD patients with and without LRRK2 mutations 
(NCT05348785), while other LRRK2-specific interventions may specif
ically want to recruit the subgroup who are positive for the α-syn SAA.

Of relevance to this point, molecular dysfunction of pathways 
downstream from LRRK2 also occur, and these are being explored as 
biomarkers in trials targeting this enzyme. pS1292-LRRK2 levels are 
higher in urinary EVs in idiopathic PD and correlate with motor sever
ity.185 Furthermore, CSF EV pS1292-LRRK2 levels are 10-fold higher 
than urinary EV levels, suggesting relevance for CNS activity.186

Genetic variability may, therefore, be considered when selecting 
patients for precision medicine interventions as well as for helping 
to balance trial arms for progression or adjusting for baseline differ
ences in longitudinal analysis. pS1292-LRRK2 levels or other down
stream molecular abnormalities [whole-blood pS935 LRRK2 levels, 
peripheral blood mononuclear cell pT73 Rab10 levels, urine di-22:6- 
bis(monoacylglycerol) phosphate and CSF total LRRK2] may become 
useful tools for measuring target engagement and the therapeutic re
sponse to agents specifically targeting these pathways, as has been de
monstrated in a recent early stage LRRK2 inhibitor trial187

(Supplementary Table 1).
Other genetic factors can also determine phenotypic severity 

and progression. PD patients with the A53T α-syn mutation experi
ence worse autonomic and cognitive deterioration,188 while apoli
poprotein E (APOE4) and glucosidase beta acid 1 (GBA1) PD 
patients have accelerated cognitive189–193 and motor deterior
ation,194 although this may be constrained to specific mutations/ 
polymorphisms.195–197 Polygenic risk scores for predicting the rate 
of progression appear promising but need replication.198,199

Non-coding RNAs (ncRNA) contribute to gene expression regula
tion. Micro RNAs (miRNAs) are small ncRNAs (sncRNAs), which have 
been explored for biomarker potential. Unique serum miRNA pat
terns comprising upregulation (miR-6836-3p and miR-6777-3p) and 
downregulation (miR-493-5p, miR-487b-3p and miR-15b-5p) have 
been noted in PD200,201 and supported by known involvement of these 
miRNAs in PD pathogenic processes. Sampling, quantification and 
analysis approaches need to become standardized to facilitate be
tween study comparisons. SncRNA analysis from CSF EVs may also 
be worth further exploration.202 While plasma EV miRNA measure
ment appears useful when distinguishing PD from healthy controls 
[AUC 0.85 (miR331-5p) and 0.90 (miR-505)203], the combination of 

miR153 and miR-409-3p using the CSF EV approach is even more im
pressive (AUC 0.99).204 miRNAs may likely play a diagnostic role in fu
ture trials depending on the mode of action of the drug being studied.

Lysosomal dysfunction

The GBA1 gene encodes the lysosomal enzyme β-glucocerebrosidase 
(GCase). GBA1 mutation carriers have almost uniformly positive 
α-syn SAA in CSF.4 Impaired GCase and other lysosomal enzyme ac
tivity [e.g. cathepsin D (CTSD)] in GBA1-carrier and non-carrier PD 
patients leads to lysosomal dysfunction, thus negatively impacting 
α-syn degradation.205,206 Although CSF GCase activity depends on 
the specific GBA1 mutation carried, levels are also lower in idiopath
ic PD patients compared with controls.207 GCase levels are, however, 
of low value for diagnosing PD, although combining GCase activity 
with oligomeric/total α-syn ratios (AUC = 0.87, 82% sensitivity, 71% 
specificity), as well as other lysosomal enzymes (CTSD and 
β-hexoxaminidase) and Aβ42, improves this (AUC = 0.83, 75% specifi
city, 84% sensitivity).208

CSF GCase levels correlate with cognitive impairment,209 while 
activity also seems to predict subsequent development of dementia 
regardless of genetic status.210 CSF GCase levels may, therefore, use
fully allow enrichment of clinical trial arms testing agents targeting 
this enzyme (even in the absence of a GBA1 mutation) as well as a 
method for confirming target engagement. Blood GCase activity is 
also reduced compared with healthy controls, although prediction 
of progression has not been explored.211,212 GCase activity has 
been used as an exploratory outcome in recent disease modification 
trials in conjunction with its downstream hydrolytic product gluco
sylceramide (Supplementary Table 1). Glucosylceramide can distin
guish GBA-PD from idiopathic PD and healthy controls and be 
measured in both plasma and peripheral blood mononuclear cells 
and therefore used as a biomarker for target engagement in clinical 
trials targeting GBA-PD.213,214

Mitochondrial dysfunction

Mitochondrial dysfunction contributes to the pathogenesis of 
PD.215 The existence of inherited autosomal recessive parkinson
ism due to mutations of parkin (PRKN), PTEN induced kinase 1 
(PINK1) and the protein deglycase (DJ-1) gene, which encode pro
teins that mediate mitophagy, supports this link.216,217 Typical 
α-syn pathology is less consistently reported in people with these 
mutations, and the rate of positivity of the α-syn SAA in CSF is 
also low,97,184 thus reinforcing the potential importance of both 
genetic testing and selection of additional other biomarkers during 
trial recruitment and follow-up, depending on the mode of action of 
the agent being tested.

The best explored mitochondrial biomarker in this context is CSF 
DJ-1, levels of which are decreased in PD218,219 compared with con
trols and correlate with disease severity,21 although similarities 
with other parkinsonian syndromes make its diagnostic use unlike
ly.220,221 Similar poor diagnostic value has been noted for serum and 
plasma DJ-1 levels.222–224 Other less well studied biomarkers include 
phosphorylated ubiquitin at the serine 65 residue (pSer65Ub), which 
occurs by virtue of the loss of mitochondrial membrane potential 
triggering the stabilization of PINK1 at the outer mitochondrial 
membrane.225 While increased pSer65Ub levels have been observed 
in PD post-mortem brains, lower levels have been identified in famil
ial PD with PINK1/parkin mutations.226,227 Investigations of this 
marker in biofluid samples will be of interest, possibly as confirm
ation of target engagement and longitudinally to assess progression 
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rates of disease in these PD subtypes. Similarly, the peroxisome 
proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) has 
been of interest due to its role as a regulator of mitochondrial func
tion.228 The PGC-1α reference gene and PGC-1α levels are downregu
lated in human brain and blood leucocytes in PD compared with 
control patients, and this negatively correlates with disease sever
ity.229–231 Interventions targeting mitochondrial processes might 
usefully measure peripheral levels of PGC-1α.

A concern, however, for the use of mitochondrial blood-based 
biomarkers is that they do not recapitulate ‘neuronal’ mitochon
drial dysfunction. Genetic mutations leading to mitochondrial dys
function in PD often show tissue-specific expression patterns, and 
therefore peripheral blood changes may lack interpretability.232,233

This is supported by a recent study showing negligible diagnostic 
value for well-established biomarkers of mitochondrial disease 
such as fibroblast growth factor 21 and growth differentiation factor 
15 in reflecting mitochondrial dysfunction in PD patients.226

Insulin resistance

The coexistence of type 2 diabetes mellitus (T2DM) with PD results 
in more rapid motor and cognitive progression.234–237 Faster pro
gression appears to be independent from the existence of vascular 
disease in the brain238 and at least in part explained by disruptions 
in physiological brain insulin signalling (central insulin resist
ance)239 contributing to neurodegeneration.240

Central insulin resistance can be measured through abnormal
ities in insulin signalling mediated by insulin-receptor substrate-1 
(IRS-1). Tyrosine IRS-1 phosphorylation (IRS-1 p-Tyr) evokes insulin 
responsiveness, while serine phosphorylation primarily deacti
vates IRS-1 and attenuates insulin signalling.239,241 Elevated IRS-1 
phosphorylation at serine positions 616 (IRS-1 p-S616) and 312 
(IRS-1 p-S312) represents attenuated insulin signalling242,243 and 
has been noted in plasma EVs of PD patients.244,245 Decreased 
IRS-1 p-Tyr distinguishes PD patients from healthy controls and 
predicts cognitive impairment and motor severity.141 Increases in 
EV IRS-1 p-Tyr were associated with motor benefits from exenatide 
in a clinical trial, while increases in downstream p-Akt S473 
predicted treatment response (Supplementary Table 1).244

Peripheral insulin resistance as defined by a Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR) value ≥ 2.0 or gly
cated haemoglobin (HbA1c) concentration ≥5.7%, occurs in up to 
60% of PD patients.246 The mechanistic importance of these finding 
in PD remains unclear, as the HOMA-IR is not associated with cog
nition or motor symptoms.247,248 Abnormal range HbA1c levels, 
however, predict motor and cognitive severity and progression in 
PD, while also being associated with the degree of axonal dam
age.249–252 Further exploration of insulin resistance and/or body 
mass index in the selection of patients for trials of agents that 
mechanistically target this pathway is clearly of potential import
ance, while measurement of central insulin resistance using exo
some IRS-1 p-Tyr may turn out to be of utility in confirming target 
engagement for a growing number of agents currently being stud
ied for disease modification.253

Synaptic degeneration

Disruptions to vesicle-mediated trafficking and secretory pathways 
with downstream effects on neurotransmitter levels and signalling 
as well as synaptic plasticity are key features of synucleinopa
thies.254 Proteins at different levels of this process have been ex
plored for biomarker use (Table 2). Evidence to date suggests 

limited usefulness in PD, in part due to the confounding effect of 
dopaminergic therapies. Despite some studies suggesting altera
tions in serum and CSF levels of synaptic dopamine potentiators 
[β-synuclein and growth associated protein 43 (GAP43)]254–260 and 
markers of synaptic plasticity [neurogranin (Ng), contactin-1 
(CNTN-1) and the zinc transporter ZnT3] in PD, inconsistencies be
tween studies and poor correlation with motor severity and cogni
tive progression make future utility unlikely.259,261–268

CSF concentrations of the secretory granule proteins (VGF and 
secretogranin-2) and the dense core vesicle protein prodynorphin 
are potentially useful in distinguishing PD from DLB or predicting 
cognitive decline.269,270 Similarly, preliminary studies suggest CSF 
levels of the excitatory-inhibitory regulatory protein, neuronal 
pentraxin-2 (NPTX2)270 and the glutamate receptor GluA3262 sug
gest value in reflecting cognitive status and distinguishing PD 
from DLB271 and thus warrant further exploration in the assess
ment of cognitive progression.

Measuring panels of CSF protein levels reflecting neurotrans
mitter secretion, synaptic plasticity and autophagy will likely shape 
any future use of these markers.272 An example of this approach in
cludes combining CSF and serum EV levels of the principal compo
nents of the soluble N-ethylmaleimide sensitive factor attachment 
protein (SNARE) complex [synaptosomal-associated protein 25 
(SNAP-25), the syntaxins 1A and 1B, syntaxin-binding protein-1 
and the vesicle-associated membrane proteins (VAMP-1, 
VAMP-2)] with oligomeric α-syn to improve diagnostic accur
acy.111,263 Similarly, combining CSF Ng, NPTX2, total α-syn and 
age273 or CNTN-1, total α-syn, total tau, phosphorylated tau and 
Aβ1-42

261) can also improve diagnostic distinction.
A similar approach would also be worthwhile when considering 

the use of neurotransmitter metabolites. Despite decreased CSF le
vels of the dopamine metabolite homovanillic acid (HVA) being 
consistently noted in PD,274–279 repeated measurements in the 
Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism 
(DATATOP) study did not suggest usefulness for monitoring 
progression. Simultaneous metabolite panel measurement of 
dopaminergic [e.g. 3,4-dihydroxyphenylalanine (DOPA), dopamine, 
3,4-dihydroxyphenylacetic acid (DOPAC)], noradrenergic (e.g. 
3,4-dihydroxyphenylglycol, 4-hydroxy-3-methoxyphenylglycol) 
and serotonergic [e.g. 5-hydroxy-3-indoleacetic acid (5-HIAA)] me
tabolites in CSF,278 however, correlates better with motor severity 
and dopamine transporter single-photon emission computed tom
ography (DAT-SPECT) uptake,280,281 and utility of the panel as a pro
gression marker needs to be further explored.

Axonal damage

Neuro-axonal damage represents the end event in the pathophysi
ology of PD. Axon cytoskeletons are comprised of neurofilaments, 
structural proteins which allow for growth, with large, myelinated 
axons having the highest content.282 Neurofilament subunits are 
released upon axonal injury irrespective of the cause.282 The neuro
filament light chain (NfL) subunit is of diagnostic value in degenera
tive parkinsonian syndromes,283 while also correlating with 
nigrostriatal degeneration and greater reductions in presynaptic 
putaminal DAT ratios over time.284,285 This said, CSF NfL concentra
tion does not seem to be increased in early PD,286 and significant in
creases are more indicative of atypical diagnoses than PD.283,286–288

Blood NfL strongly correlates with CSF NfL289–291 and reflects neu
rodegeneration in PD.291–294 Although NfL levels were not elevated in a 
meta-analysis considering all patients with PD290 and in one study 
exploring EV NFL levels,295 levels seem to be higher in more advanced 
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PD289,291,293,296 and the more severe postural instability and gait disor
ders (PIGD)-subtype.297,298 Consistent inverse associations with cog
nitive scores have been reported,48,292–294,299–302 while NfL levels also 
predict more severe motor progression,285 cognitive decline298,303

and progression to milestones [walking-aid, nursing-home living, 
reaching final Hoehn and Yahr (H&Y) Stage 5 or death]. Blood NfL 
may, therefore, be useful for trial stratification, although its potential 
use as a surrogate end point might depend on the disease stage of re
cruited participants and trial duration.296,304

The highest yield when using NfL seems to lie in combining it 
with clinical and disease-specific fluid biomarkers. Examples of 
this include the ratio of NfL to Aβ42 in CSF, discriminating PD 
from PSP with good accuracy (AUC 0.93, sensitivity 89%, specificity 
93%)305 as well as the use of a stepwise approach of firstly distin
guishing synucleinopathies from non-synucleinopathies with 
skin α-syn SAA and then further distinguishing MSA from PD 
with NfL306 or by combining CSF NfL, CSF α-syn SAA and brainstem 
imaging.307 Similarly, PD progression is better predicted when com
bining markers with serum NfL, genetic status (ApoE4 and GBA) and 
validated prognostic clinical variables (age, verbal fluency, Unified 
Parkinson’s Disease Rating Scale axial scores) predicting unfavour
able progression better than individual markers.296

Imaging biomarkers
A range of imaging modalities have been explored for their biomark
er potential (Table 3). These include sonographic measurement of 
nigral signal, imaging approaches that measure brain structure, 
spectroscopy to explore brain biochemical changes, functional im
aging to measure connectivity changes and radionuclide imaging 
to assess pre- and postsynaptic dopaminergic and non- 
dopaminergic integrity as well as metabolic functional changes 
(Box 2). Each approach has its strengths and weaknesses, and poten
tial biomarker roles in trials will depend on the stage of disease being 

studied as well as practical considerations of availability and effect 
strengths alongside and in comparison with fluid biomarkers.

In the proposed staging system for PD, the development of 
dopaminergic dysfunction has been incorporated as an important 
staging threshold.12 The range of imaging approaches that could 
be used for this are variable in their ability to discriminate PD 
from other pathophysiological processes as well as their potential 
for measuring the rate of progression of PD.

Transcranial sonographic imaging

Increased substantia nigra (SN) echogenicity, likely due to accumu
lation of nigral iron, is observed in PD,308–310 although a proportion 
of healthy controls and essential tremor patients also exhibit 
this.311 This sign can, however, differentiate PD from PSP and 
MSA with good sensitivity (91%) and specificity (82–96%).308

Hyper-echogenicity remains unchanged over follow-up312 and 
does not correlate with disease severity310,313 or presynaptic DAT 
loss,314 thus limiting use as a progression marker.

Structural MRI techniques

Structural MRI approaches comprise; T1-weighted structural im
aging methods, which measure cortical and subcortical volumetric 
changes and brain atrophy; neuromelanin-sensitive T1-weighted 
imaging, which is sensitive to measuring neuromelanin-iron com
plexes; iron-sensitive MRI which captures iron deposition and 
dopaminergic cell loss; and diffusion imaging using either single- 
tensor or two-compartment diffusion modelling (free-water), 
which reflects neurodegeneration and/or neuroinflammation.

T1-weighted structural MRI

T1-based structural MRI methods comprise cortical thickness 
measurement, voxel-based morphometry (VBM) and deformation- 

Table 3 Outlines the range of imaging biomarkers and their potential relevance to clinical trial design

Imaging modality Differentiating PD from 
healthy controls

Marker of 
disease 
severity

Differentiating PD from 
atypical parkinsonian 

disorders

Predicting disease 
progression

Surrogate for 
disease progression

Transcranial 
sonography

+ − + – −

T1-weighted structural 
MRI

++ +++ +++ ++ +++

Neuromelanin MRI + + + – ++
Iron sensitive MRI +++ + ++ + +++
Diffusion MRI +++ ++ ++ ++ ++
MR spectroscopy +++ ++ ++ – –
Functional MRI ++ – + – +
PET/SPECT

Radionuclide – – – – –
α-Syn − − − – –
Dopaminergic +++ +++ − − +++
Non-dopaminergic ++ ++ – ++ –
Synaptic density ++ + – – −

Metabolic and network imaging
Glucose metabolism +++ + ++ ++ +
Neuroinflammation + + − – –

PD = Parkinson’s disease; SPECT = single-photon emission computed tomography. Grading approach adapted from Majbour et al.20

− = No effect (also scored if negative in a meta-analysis). 

+ = Effect 1 study/inconsistent results across studies. 

++ = Effect in 2–3 studies using single site cohort. 

+++ = Effect in ≥3 studies or multisite cohort (also scored if positive in meta-analysis).
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based morphometry (DBM). Differences in these approaches are 
summarized in Box 2.

Structural differences in the midbrain, putamen, brainstem 
and cerebellum can distinguish PD from atypical parkinsonian 
disorders.315 This distinction is, however, best made in later 
disease stages at a time when disease modification approaches 
may be hardest to achieve. Novel automated indexes may 
improve this though will need to be tested in independent 
cohorts.316

In the PPMI cohort, deformation-based morphometry detected a 
unique atrophy pattern, which predicted motor progression in 
early PD without dementia.317 A faster decline in prefrontal and cin
gulate cortices and the caudate and thalamus has also been seen in 
de novo PD compared with controls,318 while greater frontal atrophy 
after 18 months has also been noted in PD patients without cogni
tive impairment with a disease duration of only 2 years319 (though 
these findings were separately contradicted320).

Studies in individuals with moderate to late-stage PD without 
dementia have also varied. No VBM differences were noted in 
one study,321 while another found reduced grey matter in the 
frontal lobe.322 Longitudinal atrophy of occipital and fusiform re
gions has been noted in patients with a disease duration of over 5 
years without cognitive impairment, while patients with cogni
tive impairment develop greater and more widespread atrophy 
in supplementary motor area, temporal, parietal and occipital 
cortices.323 Accelerated loss of gyrification in bilateral frontal 
and parietal regions in patients with a disease duration greater 
than 5 years compared to less than 5 years has also been 
noted.324

In summary, T1-weighted structural MRI methods are sensitive 
to neurodegenerative progression even in the absence of cognitive 
impairment, although this also seems to be better in more ad
vanced disease stages. Replication studies demonstrating patterns 
of atrophy progression depending on disease stages are however 
currently lacking and will be important before recommendation 
for trial use. Furthermore, ascertaining the precise role of 
ultra-high-field scanners (7 T and above), which can provide sub 
millimetric anatomical information and higher degrees of diagnos
tic detail compared with 3 T MRI,325 will be important. Planned fu
ture longitudinal studies will be critical for informing this.326

Neuromelanin and iron sensitive imaging

Neuromelanin imaging (NMI) demonstrates only moderate sensi
tivity and specificity for distinguishing PD from healthy con
trols,327–331 while signal differences are also suboptimal for 
distinguishing atypical parkinsonian conditions from PD.332,333 In 
contrast, however, NMI shows reduced signal across disease stages 
(disease duration of 1.5–10 years) with a ventrolateral to anterome
dial SN progression pattern consistent with the neuropathological 
patterns of cell loss.

Iron-sensitive techniques including R2* relaxation imaging, 
susceptibility-weighted imaging (SWI) and quantitative susceptibil
ity mapping (QSM) have similar ability to quantify nigral iron depos
ition as NMI.334–336 The absence of dorsal nigral hyperintensity 
corresponding to the region of nigrosome-1 (DNH) on iron-sensitive 
sequences distinguishes PD from controls well325,337,338 regardless 
of disease duration.339 Use for distinguishing atypical disorders 
from PD is however lacking, while progression marker use 
seems to be disease duration-dependent.

Although striatal, nigral, globus pallidus and caudate R2* 
relaxation rate increased in two separate studies after 2 years in 
early-stage PD,335,340 separate studies exploring R2* or QSM in de 
novo patients336 and patients with a disease duration <1 year 
showed no longitudinal changes.339 The use of R2* as a progression 
marker becomes clearer, however, in later disease stages,339 with in
creased relaxation time in SN R2* mapping over 3 years correlating 
with motor severity in cases with an initial disease duration of 5  
years,341 while faster progression in the SN pars compacta seems 
to occur after a disease duration >5 years.339

Taken together, NMI and iron-sensitive imaging could poten
tially be developed usefully as progression biomarkers, although 
values will need to be considered in the context of disease duration. 
Obviously, the use of iron-sensitive modalities will be particularly 
advantageous in trials targeting iron.

Diffusion imaging

Although some studies have demonstrated reduced SN fractional 
anisotropy with single tensor diffusion imaging in early PD,342–344

this was not confirmed by a meta-analysis of 10 studies.345

Evidence in later disease (disease duration 10 years) is limited to 

Box 2 Biomarker imaging techniques

Transcranial sonography 
• ultrasound echogenicity measurement of brain tissues or structures through intact cranium—limited by lack of bone window in some subjects and 

inter-technician variability

Structural MRI 
• quantification of brain structural change using regions-of-interest or whole-brain approaches

• commonly used sequences include T1, T2, T2*, R2* (R2* = 1/T2*)-weighted, susceptibility-weighted, proton-density-weighted, fluid-attenuated inversion 

recovery and neuromelanin-sensitive approaches

Proton magnetic resonance spectroscopy 
• estimates relative concentrations of proton-containing metabolites in brain

• metabolites commonly assessed include N-acetylaspartate, choline-containing compounds, myo-inositol and creatine

Functional MRI 
• evaluates neuronal activity by measuring transient variations in blood flow and variation correlation in functionally connected regions

• utilized under task-based or under resting-state conditions

Radiotracer imaging 
• measures pre- and postsynaptic receptor and transporter density as well as glucose metabolism and microglial activation using different radiotracers

• provides information on nigrostriatal dopaminergic, serotonergic and cholinergic system integrity, regional tissue glucose metabolism and activity and 

status of microglial-mediated inflammation
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one study demonstrating more anterior and rostral SN involve
ment.344 On balance, this approach cannot currently be recom
mended for progression marker use. The finding of diffusion 
abnormality of the nucleus basalis of Meynert predicting develop
ment of cognitive impairment could be explored for balancing 
arms in small trials or selecting phenotypes that are likely to re
spond to specific treatments though replication of this finding is 
important.346

Free water imaging studies have been more consistent with in
creased signal in the posterior SN being noted in early PD.347,348

Free water in the posterior SN also increases over 4 years and 
changes over 1 year can predict the H&Y 4-year change.348 This in
crease continues in later disease stages (duration over 7 years), 
where longitudinal increases in free water occur in the anterior 
but not posterior SN.349 This modality is promising as a progression 
biomarker but may require selection of the region of interest de
pending on the disease stage. Free water imaging of the basal gan
glia, midbrain and cerebellum and the application of automated 
imaging differentiation is promising for differentiating PD from 
atypical conditions.350 This approach was found to be superior to a 
conventional magnetic resonance Parkinsonism index as well as 
plasma NfL levels for distinguishing PD from atypical conditions.351

Proton magnetic resonance spectroscopy

Proton magnetic resonance spectroscopy (MRS) reveals the meta
bolic status of the region sampled for a specific disease process. 
In PD, N-acetyl aspartate/creatine (NAA/Cr) ratios in the SN are re
duced compared to controls and correlate with disease sever
ity.352,353 Lower ratios have also been noted in the lentiform 
nucleus (LN), temporoparietal and posterior cingulate cortices, as 
well as the presupplementary motor area,354–357 although correl
ation with disease severity is less clear.355,356 NAA/Cr ratios are low
er in the rostral SN in PD with an inverted pattern in atypical 
parkinsonian patients and healthy controls.358 Taken together, 
there is some preliminary level of evidence that MRS could serve 
to improve PD diagnostics, but it may be best used in combination 
with conventional MRI to increase specificity.

Phosphorus based MRS (31P-MRS) has been of specific interest for 
a subset of potential interventions as it can assess mitochondrial 
function. In vivo Pi/ATP and PCr/ATP ratios reflect oxidative phos
phorylation pathways.359 Reductions in ATP and PCr360 and increased 
Pi/ATP ratios361 in the putamen and midbrain of PD patients com
pared with controls have been reported while differences can also 
distinguish PD from PSP (AUC 0.93).362 Longitudinal ratio improve
ment suggestive of target engagement was also noted in a recently 
completed disease modifying trial of ursodeoxycholic acid.363

Functional MRI

Resting-state and task-based functional MRI reveal networks in
volved in motor, cognitive and affective processes. Network impair
ments have been associated with motor and non-motor symptoms. 
Reduced resting-state connectivity between the striatum and thal
amus, midbrain, pons and cerebellum has been noted in PD as have 
connectivity changes between cortical and subcortical areas.364

Reduced resting-state functional connectivity within the basal gan
glia network can differentiate PD from healthy controls (sensitivity 
100%, specificity 89.5%),365 while cerebellar connectivity with mul
tiple brain networks differs between PD and MSA.366 Longitudinal 
task-based functional MRI can track progression with declining ac
tivity in the putamen and primary motor cortex over 1 year,367

although the impact of levodopa administration on network con
nectivity is an important consideration.368 While the available evi
dence for this modality is promising overall, more widespread 
replication of diagnostic and progression findings are necessary.

PET/SPECT imaging

Radionuclide imaging

Several radiolabelled probes for imaging α-syn have been explored 
though no tracer is currently of diagnostic value for PD. Issues to 
overcome include developing tracers for intracellular targeting 
with ideal lipophilicity and tracer selectivity for α-syn over amyloid 
and tau aggregates.369,370 More recently, however, a newly devel
oped α-syn PET tracer, 18F-ACI-12589, was shown to bind to basal 
ganglia and cerebellar white matter in a small cohort, although 
this was confined to MSA patients.371 Larger studies examining 
diagnostic accuracy for distinguishing PD from MSA will be critical.

Dopaminergic tracers

A variety of radionuclide tracers are available to examine pre- and 
post-synaptic striatal dopaminergic function using PET or SPECT 
imaging. At the presynaptic level, molecular targets and their re
spective tracers include L-aromatic amino acid decarboxylase 
[AADC/tracer fluorodopa (F-DOPA)], vesicular monoamine trans
porter 2 (VMAT2/tracer 11C-dihydrotetrabenazine) and the DAT 
(DAT/tracers CFT PET and 123I-CIT SPECT) density.

These markers are sensitive for the detection of dysfunction or 
loss of striatal dopaminergic terminals and enable the identifica
tion of parkinsonian syndromes with nigral neurodegeneration 
but do not reliably distinguish PD from atypical disorders. Visual as
sessment for the presence of nigrostriatal degeneration with this 
modality is increasingly used in trial recruitment372 to exclude pa
tients with clinical presentations in keeping with PD but with scans 
without evidence of dopaminergic deficit (SWEDDS) due to e.g. drug 
induced parkinsonism.373–375 Objective measurement of striatal 
uptake in comparison to other regions may, however, be more use
ful in trials recruiting patients with more established PD as these 
ratios can reflect motor and non-motor disease severity as well as 
progression through disease stages, although hemispheric domin
ance and type of tracer used are important considerations.376

Striatal dopaminergic markers decline most prominently in the 
first years of motor disease before largely plateauing within 5 years 
of diagnosis.377–380 Quantification of dopaminergic markers in the 
midbrain/SN may be better markers beyond this point.381

The type of dopaminergic tracer used can potentially be critical 
for tracking progression in trials and measuring treatment response 
with VMAT2 imaging is less subject to compensatory changes in ex
pression than DAT and F-DOPA.382 Quantitative dopaminergic as
sessments have been used in a number of recent disease 
modification trials though with overall negative findings to date 
(Supplementary Table 1).

Dopamine receptor expression can also be estimated at the 
post-synaptic level with PET ligands such as 11C-raclopride, 
18F-fallypride or 123I-IBZM SPECT (all of which bind to D2 receptors) 
or agents such as 11C-NNC 112, which binds to D(1) receptors.383

Preservation of post-synaptic dopamine receptors is typical of PD 
whereas post-synaptic receptor loss early in the disease is more 
likely indicative of an atypical form of parkinsonism. Imaging re
sults depend on the dose and timing of oral dopaminergic replace
ment and the usefulness of this type of imaging approach may 
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perhaps be restricted to restorative approaches such as cell or gene 
therapy interventions.384

Non-dopaminergic tracers

Radionuclide imaging studies of the serotonergic and cholinergic 
systems demonstrate associations with non-motor PD pathophysi
ology. Reduced binding on serotonergic imaging has been noted in 
individuals with early PD (disease duration less than 5 years).385

Serotonergic denervation also correlates with increased dopamine 
turnover and reduced levodopa responses.386 In later disease stages 
(disease duration 5–10 or more years), serotonergic transporter 
binding remains reduced compared to controls,385 and the degree 
of serotonergic pathology is associated with cognitive decline.387

Cholinergic denervation also occurs in early PD (disease duration 
less than 3 years) but is more pronounced in PD with dementia.388

Noradrenergic activity, quantifiable by PET imaging is reduced in 
PD and is associated with the presence of RBD and cognitive impair
ment.389 The utility of these markers in tracking progression is of 
interest but not yet sufficiently clear.

Synaptic density

Synaptic density quantification irrespective of neurotransmitter 
type has also been of interest in PD. Tracers quantifying the concen
tration of the synaptic vesicle 2A protein (18F-UCB-H or 11C-UCB-J) 
reflect this and have been studied in several cohorts. Lower binding 
potential in both cortical and subcortical regions have been noted 
in PD though this is most prominent in the SN.390 Correlation 
with clinical status has, however, been inconsistent though one 
study suggested more prominent and extensive reductions in PD 
dementia and DLB cases.391–393 Similarly, small cohort studies 
using 11C-UCB-J PET did not note binding changes over 2 
years.391,394 Current evidence therefore does not support the use 
of this marker in clinical trials.

Metabolic and network imaging

Glucose metabolism
18F-FDG-PET parieto-occipital hypometabolism is noted in PD,395,396

while preserved glucose metabolism in the basal ganglia distin
guishes PD from MSA and PSP.395 Inferior parietal and left caudate 
glucose hypometabolism in PD also correlates with motor and cog
nitive deficits.397 A unique PD-related pattern (PDRP) characterized 
by elevated pallidothalamic and pontine metabolic activity with re
duction in the supplementary motor area, premotor cortex and par
ietal association areas has also been noted in cases prior to 
dopaminergic treatment398 and can differentiate PD from atypical 
parkinsonism.399

PDRP progresses in early PD (disease duration less than 2 years) 
over 24 months, suggesting potential progression marker use in the 
early stages,400 although a critical limitation is that acute dopamin
ergic treatment diminishes the pattern.401 A PD-related cognitive 
pattern (PDCP) characterized by a reduction in the medial frontal 
and parietal association regions and metabolic increase in cerebel
lar cortex and dentate nuclei402 has also been described. This pat
tern seems to occur years after the PDRP,400,403 increases over 
time400 and is higher in those with dementia.404 The PDCP also cor
relates with memory and executive performance,402 while its lack 
of change with dopaminergic treatment potentially supports its 
use as a marker of cognitive dysfunction.405 These separate 

metabolic networks could potentially be used to track progression 
and treatment response in the appropriate setting.

Neuroinflammation imaging

The PET ligands 11C-PK11195, 11C-PBR28 and 18F-FEPPA, which bind 
to the 18 kDa translocator protein (TSPO) on mitochondria in micro
glia, have been used for imaging neuroinflammation with TSPO up
regulation suggesting microglial activation.406

PD clinical severity and putaminal presynaptic dopaminergic 
integrity correlates with 11C-PK11195 binding.407 Binding affinity 
can vary with TPSO genetic polymorphisms which needs appropri
ate adjustment in analyses.406,408 Taken alone, TPSO patterns lack 
the ability to distinguish parkinsonian conditions though their fu
ture use may be as biomarkers of therapeutic response for interven
tions targeting neuroinflammation.409

Limitations of biomarkers
A framework for considering the definition of PD according to the 
presence/absence of α-syn SAA-CSF is potentially a major step for
ward in planning PD trials. Several practical obstacles need to be 
considered however prior to the routine use/reliance on biomarkers 
in the clinical trial context. Firstly, acquiring some biomarkers, e.g. 
CSF, requires an invasive procedure, which may be unacceptable 
for some participants. Growing evidence of the equivalence of 
α-syn SAA-in skin to that seen with CSF could, however, overcome 
this limitation. The demonstration of equivalence of testing on 
even less invasive samples such as serum/plasma or within periph
erally obtained EVs is therefore a priority. With greater demonstra
tion of validity, routine testing of peripherally acquired biomarkers 
can become normal practice, for example the widespread availabil
ity of plasma NfL testing in healthcare laboratories.

Interpretation of discrepant results between studies attribut
able to preanalytical and analytical confounders, different techni
ques employed and a lack of factoring of different protein species 
measured (total α-syn versus oligomeric) needs careful critique. 
Similarly, imaging studies are affected by methodological discrep
ancies, including different assumptions for correction of serial 
data as well as sample size, power and study design caveats and 
the use of different outcome measures. Collaborative studies allow
ing analysis of larger sample sizes with adequate follow-up that 
employ standardized sampling and analysis methodology will im
prove these limitations, as demonstrated by the harmonization of 
large numbers of samples processed in the PPMI.

The major limitation in biomarker discovery is undoubtedly dif
ficulty with validation. Association between a change in a biological 
assay alongside a clinical state need not equal causation. For ex
ample, biological changes may represent healthy compensatory re
sponses to a pathological process. Furthermore, even biomarkers 
that do reflect active processes of neurodegeneration may not 
have linear relationships over the course of disease particularly if 
production ultimately declines because of widespread tissue death. 
While it is possible to use clinico-pathological data for validation, 
confirmation that a biomarker predicts slowing of disease progres
sion necessarily requires the identification of an agent which 
achieves this according to our threshold, whether that be clinical, 
patient reported, functional impairment or quality of life mile
stones, which have inherent limitations.

To date, no single biomarker can yet be recommended to act as a 
surrogate for clinical disease progression in PD. Combinations of 
fluid biomarkers invariably increase the strength of their individual 
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predictive properties. While fluid and imaging biomarkers are often 
collected from the same trial participants, explorations of the util
ity of multiple fluid biomarkers as a panel alongside imaging in 
combination are rare. This approach was partly adopted in the re
cent deferiprone trial (Supplementary Table 1) where brain iron 
content using T2* sequences and plasma ferritin and prolactin le
vels were used as combined markers of target engagement and spe
cific measures of treatment effect while structural imaging for 
measurement of brain atrophy and DAT-SPECT imaging was used 
to explore the impact of the agent on overall disease progression 
(atrophy and nigrostriatal degeneration). Although clinical worsen
ing in the deferiprone treated group complicates interpretation of 
how well the panel of biomarkers performed, one could argue 
that they did reflect the effect of the drug with decreased nigrostria
tal iron content and plasma ferritin and increased plasma prolactin 
in the deferiprone group, while no inverse correlation between 
brain-structure volumes and iron content was noted in keeping 
with the negative clinical findings over a relatively short duration 
of follow-up.

Challenges for future trials will be in the choice of selection of 
suitable combinations of fluid and imaging biomarkers that com
plement each other. This will certainly need to be strongly guided 
by the biological action of the agent being tested and the stage of 
the disease of their participants being treated, although those bio
markers that appear to align most closely with disease progression 
should be prioritized. How much weight each biomarker in the pa
nel will ultimately carry will become more easily evident following 
a positive clinical trial.

Conclusions and recommendations
The identification of a better framework for the certainty of a PD 
diagnosis based on positivity of α-syn SAA-CSF is a major step for
ward, and less invasive equivalent alternatives will help even more. 
The further development of reliable biomarkers of PD neurodegen
eration could further facilitate prognostication, identification of 
disease subtypes, conduct of clinical trials and identification of 
agents that may slow down or stop these processes. The precise 
role for biomarkers will depend on the mechanism of action of 
the agent in question, and the decision made regarding the stage 
of the illness at which the intervention is being applied. There is 
interest in recruiting people earlier in the neurodegenerative pro
cess, even prior to symptom onset, given that, intuitively, earlier 
intervention may provide a better chance of preventing irreversible 
cell death.410 Alongside trials in prodromal cohorts, there will re
main a need to identify whether any disease modifying interven
tion has an impact on the 6–10 million people already struggling 
with symptoms and in need of prevention of further decline.

In this group, PD diagnosis is less difficult though a sizeable pro
portion of cases at this stage with atypical parkinsonian disorders 
can be mistaken as suffering from PD and therefore inadvertently 
recruited into disease modifying trials. While there will remain 
healthy debate whether α-syn oligomeric seeding and propagation 
is the primary cause of PD neurodegeneration, it appears that the 
α-syn SAA-CSF assay reflects an α-syn-related neurodegenerative 
process and can reliably distinguish synucleinopathies from other 
causes of parkinsonism/tremor with high specificity.

PD subtyping is also a high priority for better selection of respon
ders. For example, interventions that specifically target an aspect of 
disease pathophysiology associated with genetic abnormalities 
could be specifically tailored to these patients.411 Mutations in 

GBA1 confer a worse prognosis and therefore a trial enriched with 
these patients may potentially allow an earlier signal of efficacy. 
In parallel, enhancement of GCase activity may also have thera
peutic benefits in PD patients without GBA1 mutations.412

Features that strongly predict subsequent disease progression 
need to be carefully considered during treatment allocation. The 
randomization process itself should lead to balancing of features 
between placebo and active treatment arms, however this can fail 
to achieve this in smaller sized trials. The application of a panel 
of biomarkers for example pro-inflammatory immune markers 
which predict faster progression180 and reflect different aspects of 
disease-related pathways would be a useful approach to stratify pa
tients into prognostic groups and potential responders to the treat
ment being tested, which will in turn enable more efficient and 
cost-effective collection of data and increase the likelihood of de
tecting an effect.

The most useful function of biomarkers is in the prediction that 
a change in any such biomarker reliably predicts slowing down of 
the neurodegenerative process that translates to reduction in dis
ability accrual, and maintenance of function and quality of life. 
Towards this, the ratio of phosphorylated or oligomeric α-syn to to
tal α-syn in CSF appears to be an encouraging fluid biomarker for 
disease progression. Technical challenges notwithstanding, meas
urement of one or both of these ratios may become routine practice 
in clinical trials of disease modifying agents to further improve 
diagnostic precision at baseline, minimize difference between trial 
arms and monitor changes in response to the intervention. The se
lection of a single fluid biomarker is likely to be a lower sensitivity 
surrogate for disease progression than the use of a panel of biomar
kers. The development of a poly-biomarker, analogous to a poly
genic risk score, will require careful modelling in large cohorts 
that have collected identical panels using agreed standardized op
erating procedures for their collection.

There are several structural imaging techniques that seem to 
track disease progression in PD reliably, perhaps the most useful 
of which are neuromelanin or free water MRI. Whether these allow 
sufficient resolution to quantify changes over shorter time periods 
than needed for conventional clinical methods, requires further 
data. Functional or PET imaging may allow more rapid confirmation 
of target engagement in trials, and their routine use may depend on 
the putative mechanism of action of the intervention, e.g. TSPO 
PET, in a trial of a neuroinflammatory intervention. While stabiliza
tion of fluid, imaging or tissue biomarkers should mirror attenu
ation of α-syn aggregation within the brain, it remains to be seen 
whether change in biomarker activity can reliably predict subse
quent clinical disease progression.

In terms of recommendations, during the design and conduct of 
a clinical trial of a disease modifying intervention in PD, we suggest: 
• For broad interventions, investigators should routinely collect a biomarker 

(CSF, skin, blood) that can be used for an α-syn SAA as part of the trial inclu

sion criteria. Currently, SAA offers the highest specificity in distinguishing 

PD from controls or PD-like conditions, but it’s utility in differentiating PD 

from MSA requires further assay refinement.

• For precision interventions, investigators should consider whether the 

planned intervention targets an alternative process that can be defined 

by an alternative genetic marker (LRRK2, GBA1, mitochondrial mutation) 

or measurable pathophysiological process (neuroinflammation, bioener

getics), irrespective of α-syn SAA.

• Investigators should consider incorporating such a biomarker within the 

trial inclusion criteria, while also ensuring the biomarker is appropriate 

for the stage of disease being studied.

• Where appropriate, the same biomarker might also be used to confirm tar

get engagement of the intervention.
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• Clinical outcome analyses may need to incorporate baseline differences in 

panels of wet biomarkers as well as imaging differences between treatment 

groups predictive of more rapid progression.

• Investigators should formally evaluate the relationship between biomarker 

changes and predicting the clinical effect of the intervention.

• Consideration should be given at an early stage how biomarker data can be 

usefully shared/integrated to maximize learning across interventions.

Until we have identified an agent that slows down clinical pro
gression, it will be difficult to conclude the validity of any biomarker 
at predicting such disease modification. It appears as a somewhat 
circular argument therefore, that we need success, before we can 
be confident in our tools designed to help achieve success. Faced 
with this challenge, the most practical path forward is to systemat
ically collect specimens from participants in clinical trials for future 
research, while also incorporating longitudinal measurement of 
encouraging biomarkers for continued comparison with clinical 
progression measures. This requires a degree of consensus in the 
PD trials community regarding standardized protocols for speci
men collection and analysis. The Critical Path for Parkinson’s 
(CPP) consortium is helping to achieve this.413 Differences in the 
longitudinal change in biomarkers according to candidate inter
ventions will undoubtedly help in the understanding of target en
gagement and help in the eventual prediction of long-term 
outcomes and ultimately are likely to become reliable surrogate 
outcome measures.

In conclusion, we should remain optimistic that the use of a 
combination of fluid, tissue and imaging biomarkers may become 
sufficient to reliably demonstrate disease modification. There is al
ready a precedent that change in an imaging biomarker has been 
considered sufficient evidence, by some, to conclude disease modi
fying properties of aducanumab in AD.414 This decision has been 
controversial, and it is likely that a more robust conclusion in PD 
would only be reached once any combination of biomarkers has 
been comprehensively validated in relation to patient reports of 
clinical symptoms of relevance to their health and wellbeing. In 
the meantime, the best biomarker candidates can already likely im
prove the selection of participants and may contribute to early as
sessments of target engagement and of efficacy in counteracting 
pathophysiological mechanisms. An ongoing systematic process 
of confirming clinico-biomarker validity and utility is required.
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