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ABSTRACT
◥

Oral selective estrogen receptor degraders (SERD) could
become the backbone of endocrine therapy (ET) for estrogen
receptor–positive (ERþ) breast cancer, as they achieve greater
inhibition of ER-driven cancers than current ETs and overcome
key resistance mechanisms. In this study, we evaluated the
preclinical pharmacology and efficacy of the next-generation
oral SERD camizestrant (AZD9833) and assessed ER–co-
targeting strategies by combining camizestrant with CDK4/6
inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy
in models of progression on CDK4/6i and/or ET. Camizestrant
demonstrated robust and selective ER degradation, modulated
ER-regulated gene expression, and induced complete ER antag-
onism and significant antiproliferation activity in ESR1 wild-type
(ESR1wt) and mutant (ESR1m) breast cancer cell lines
and patient-derived xenograft (PDX) models. Camizestrant also
delivered strong antitumor activity in fulvestrant-resistant

ESR1wt and ESR1m PDX models. Evaluation of camizestrant in
combination with CDK4/6i (palbociclib or abemaciclib) in
CDK4/6-naive and -resistant models, as well as in combination
with PI3Kai (alpelisib), mTORi (everolimus), or AKTi (capiva-
sertib), indicated that camizestrant was active with CDK4/6i or
PI3K/AKT/mTORi and that antitumor activity was further
increased by the triple combination. The response was observed
independently of PI3K pathway mutation status. Overall, cami-
zestrant shows strong and broad antitumor activity in ERþ breast
cancer as a monotherapy and when combined with CDK4/6i and
PI3K/AKT/mTORi.

Significance: Camizestrant, a next-generation oral SERD, shows
promise in preclinical models of ERþ breast cancer alone and in
combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to
address endocrine resistance, a current barrier to treatment.

Introduction
Estrogen contributes significantly to many breast cancers by reg-

ulating the growth and differentiation of breast epithelial cells. This is
mediated through its interaction with estrogen receptor alpha (ERa):
A ligand-activated transcription factor encoded by the ER-1 (ESR1)
gene (1). Around 70% to 80% of patients with breast cancer have
hormone receptor–positive (HRþ) disease—meaning that their
tumors express ER and/or progesterone receptor (PgR)—and most
of these have ER-driven tumors at diagnosis (1). Thus, endocrine
therapies (ET) affecting ER-driven proliferation are routinely pre-
scribed for such patients (1).

ETs for breast cancer include selective ERmodulators (SERMs; e.g.,
tamoxifen); gonadotropin-releasing hormone agonists (e.g., gosere-
lin); aromatase inhibitors (AI; e.g., anastrozole, letrozole, exemestane);
and the selective ER antagonist and degrader (SERD, selective estrogen
receptor degrader) fulvestrant: The only SERD approved for first- and
second-line metastatic ERþ (i.e., ER expressing) breast cancer (2–4).

Although these agents effectively disrupt ER signaling, many are
limited by intrinsic or acquired drug resistance. For example, SERMs
can block the activation function (AF) 2 domain but not the AF1
domain of ER (5), agonizing certain tissues (e.g., uterus), which can, in
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other contexts, stimulate tumor growth (6). Similarly, AI treatment can
lead to clonal outgrowth of cells harboring resistance mutations in
ESR1 (ESR1m), which constitutively activate ER (1).

Despite this resistance, tumors often continue depending on ER
activity for growth (7). Indeed, addressing ET resistance is the most
significant unmet need in patients with HRþ breast cancer (1).

Adding cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) to ET
significantly improves outcomes for patients with metastatic HRþ

breast cancer, prolonging progression-free survival (PFS; refs. 8, 9).
However, CDK4/6i resistance can also occur, with several cellular
mechanisms described previously. These include upregulation of the
PI3K/AKT/mTOR signaling pathway (10). Moreover, approximately
40% of HRþ tumors also carry a PIK3CA (PI3K subunit p110a)
mutation, constitutively activating the PI3K/AKT/mTOR path-
way (11, 12). Accordingly, simultaneously blocking the ER and PI3K
pathways heightens antitumor activity in these subpopulations (13).
Constitutive activation of the PI3K/AKT/mTOR pathway sometimes
occurs via activatingmutations inAKT1 or loss-of-function alterations
in negative regulator PTEN (12). This led to the strategy of combining
ET not only with CDK4/6 (e.g., palbociclib) or PI3Ka (e.g., alpelisib)
inhibitors, but also with mTOR (e.g., everolimus) or AKT (e.g.,
capivasertib) inhibitors (14). Furthermore, triple combination of PI3K
or AKT inhibitors with CDK4/6i and fulvestrant significantly inhibits
the growth of patient-derived xenografts (PDX) resistant to double
therapy alone (14, 15).

SERDs compete with estrogen for ER binding, antagonizing,
and degrading ER whether ligand-driven or constitutively active
because of ESR1 mutations suppressing ER-dependent signal-
ing (16, 17). Fulvestrant is the first-in-class SERD and, because
it lacks agonism in all ERþ tissues, the first pure ER antagonist (18).
It is effective in patients with ERþ breast cancer, whether na€�ve
or resistant to tamoxifen and AIs (18, 19). However, fulvestrant has
low oral bioavailability, mandating invasive and uncomfortable intra-
muscular administration, which limits the deliverable dose (20).
Clinical studies with fulvestrant highlight the potential for greater ER
degradation if higher exposure could be achieved (19, 21). However,
the plasmaMATCH study showed that even at an effective intramus-
cular dose of 1,000mgmonthly, fulvestrant drove no clinical benefit in
heavily pretreated patients with ESR1m advanced breast cancer (22).

To address fulvestrant’s limitations, several orally bioavailable
SERDs have been developed. AZD9496, AstraZeneca’s first-
generation oral SERD, exhibited ER degradation and antagonism
comparable with fulvestrant, and with greater antitumor activity, in
MCF7 xenografts (23, 24). However, its antitumor activity did not
translate to other models.

More recently, other oral SERDs have entered clinical trials, includ-
ing giredestrant (Roche; ref. 25), imlunestrant (Lilly; ref. 26), and
amcenestrant (Sanofi; ref. 27), although amcenestrant’s development
was discontinued for poor efficacy (28). The SERM/SERD elacestrant
(Radius/Menarini) showed modest benefit over standard-of-care ETs
in patients with late-linemetastatic breast cancer, with greatestmedian
PFS uplift in patients with ESR1m disease (29). In addition, next-
generation SERMs (e.g., lasofoxifene, bazedoxifene) are being devel-
oped as monotherapies and combined with CDK4/6i for advanced
metastatic disease (30).

Here, we describe the preclinical characterization of the next-
generation SERD (ngSERD) camizestrant (AZD9833). The data
suggest that camizestrant’s activity profile is superior to fulvestrant
in vivo, with broad efficacy when combined with CDK4/6i and/or
PI3K/AKT/mTOR inhibitors in models of early disease and pri-
mary/acquired resistance to ETs and CDK4/6i.

Materials and Methods
Gene expression analysis in cell lines and PDX models

MCF7 and CAMA-1 cells were seeded into 6-well microplates
in phenol red-free RPMI-1640 medium (Invitrogen) containing
2 mmol/L L-glutamine and 5% (volume/volume, v/v) charcoal-
stripped FBS (Sigma). Cells were treated with 1 nmol/L estradiol and
100 nmol/L fulvestrant, AZD9496, or camizestrant for 24 hours, with
three replicates per condition and non–estradiol-treated controls.
Samples were harvested in 1 mL of QIAzol lysis buffer and snap-
frozen. Snap-frozen tissue from PDX studies was homogenized and
resuspended in QIAzol lysis buffer. RNA was extracted using RNeasy
96 QIAcube HT total RNA Cell with DNAse treatment, and samples
randomized over 96-well plates. RNA was quantified using the Qubit
RNABR kit (Q10213 Invitrogen), per themanufacturer’s instructions.

Analysis of RNA integrity, quality control, and gene expression
quantification of RNA sequencing

After sequencing, RNA integrity was analyzed on a TapeStation
4200 using the RNA 6000 Nano Kit (5067 1511, Agilent), according
to the manufacturers’ instructions. The Illumina Truseq stranded
mRNA library was generated by the Cancer Research UK Cam-
bridge Institute Genomic core facility, and sequencing of cell lines
was performed on the Illumina Hiseq4000 platform, providing
single-end 50 base pair reads and around 20 million reads per
sample. PDX samples were sequenced using Illumina NovaSeq600,
providing paired-end 100 base pair reads and around 34 million
reads per sample.

Quality control and gene expression quantification of RNA
sequencing (RNA-seq) were performed using the RNA-seq pipeline
implemented in bcbio-nextgen (https://bcbio-nextgen.readthedocs.
org/en/latest/). Reads were aligned to the University of California
(Santa Cruz, CA) Homo sapiens GRCh38 genome build, augmented
with transcript information from Ensembl release 86 using
HiSat2 (31). Alignments were evaluated for evenness of coverage,
ribosomal RNA content, genomic context of alignments, and com-
plexity, using a combination of FastQC, Qualimap, and custom
computational tools (32). Transcripts per million measurements per
isoform were generated by quasi-alignment using Salmon and were
used to estimate the abundance of genes (33). The aggregated gene
counts were used for differential gene expression analyses using
DESeq2 (34).

Proliferation assays
Camizestrant’s ability to inhibit proliferation in vitrowas measured

in ERþ breast cancer cell lines using the Sytox Green live/dead cell
count. MCF7 and CAMA-1 cells were seeded into 96-well microplates
in phenol red-free RPMI-1640 medium containing 2 mmol/L L-
glutamine and 5% (v/v) charcoal-stripped FBS at 4�103 and 8�103

cells/well, based on the doubling time of each cell line. Plates were
incubated for 24 hours (37�C; 5% CO2) and a 10-point concentration
range of selected compounds was dispensed onto the cells. Dimethyl
sulfoxide (DMSO) was dispensed into control wells to give a 0.1% final
concentration. One plate was untreated, as a day 0 control. Live cells
were counted at days 0 and 7 (or day 6 for Y537S ESR1mMCF7 cells)
using Sytox Green nucleic assay stain (180 nmol/L per well). Green
(dead) cells were counted at days 0 and 7 using an Acumen Explorer
(TTP Labtech) or Cellinsight imager (Thermo Fisher Scientific).
Saponin 0.045% (weight/volume) was added to permeabilize the cells
overnight, permitting total cell count. The number of live cells was
calculated by subtracting dead cells from the total cell count, and
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curve-fitted usingGraphPad Prism. Average cell counts from the day 0
plate were used to determine 0% cell growth. A dose–response curve
was plotted using non-linear regression to determine the IC50 and
bottom-of-curve values. Viability assay methods are described in
Supplementary Methods.

ER degradation
Camizestrant’s ability to degrade ER was assessed using ERþ

human breast cancer cell lines (MCF7, CAMA-1, BT474, ZR-75–1,
T47D, and MDA-MB-361) and an ERþ human endometrial cell line
(Ishikawa). Cells were seeded into 12-well tissue culture-treated
plates (0.5�106 cells/well) in phenol red-free RPMI medium con-
taining 5% (v/v) charcoal-stripped FBS. Cells were incubated for
48 hours (37�C; 5% CO2) with 100 nmol/L camizestrant, AZD9496,
or fulvestrant.

Cell lysates were loaded on NuPAGE 4% to 12% Bis-Tris Midi
Protein Gels, transferred to nitrocellulose membranes and immu-
noblotted with anti-ER antibody (clone SP1, Thermo Fisher Sci-
entific). To detect ER agonism, Ishikawa cells were incubated
in media containing 5% (v/v) double charcoal-stripped FBS,
achieved by stripping FBS using activated charcoal (C9157, Sigma).
Blots were probed with anti-PgR antibody (clone 636, Dako) then
horseradish peroxidase secondary antibody (anti-mouse, 7076 Cell
Signaling Technology or anti-rabbit, 7070 Cell Signaling Technol-
ogy). Protein levels were measured on the G-box using Pierce
West Dura and West Femto chemiluminescent reagents and Syn-
gene software.

In vivo models, patient-derived cells, and PDX models
All animal experiments were conducted in accordance with UK

Home Office legislation, the Animal Scientific Procedures Act 1986,
and the AstraZeneca Global Bioethics policy. All experimental work
done at AstraZeneca is outlined in project licenses P0EC1FFDF or
PP3292652, which went through an Animal Welfare and Ethical
Review Board, followed by approval by the Home Office. All experi-
ments followed the principles of good statistical practice, as well as the
PREPARE and ARRIVE guidelines. AstraZeneca is a signatory to the
Concordat on Openness on Animal Research in the UK. All animal
studies were conducted by contract research organizations in accor-
dance with local authorities, guidelines of the AnimalWelfare Act, and
the AstraZeneca Global Bioethics policy. Animal studies were per-
formed in accordance with protocols approved by the START “Insti-
tutional Animal Care and Use Committee” along with the AstraZe-
neca’s “Platform for Animal Research Tracking and External Relation-
ships” (PARTNER) group.

PDX models
For all PDX models, tumors were measured twice weekly;

changes in tumor volume and growth inhibition were determined
by bilateral Vernier caliper measurement (length x width). Length
was the longest diameter across the tumor and width the corre-
sponding perpendicular.

Details of formulating camizestrant, fulvestrant, elacestrant, palbo-
ciclib, abemaciclib, everolimus, capivasertib, and alpelisib appear in
the Supplementary Methods, together with methods of establishing
and harvesting patient-derived tumor tissue from mice.

For efficacy studies, animals were randomized into treatment
groups and dosing started once tumor volume reached 150–300 mm3.
Details of efficacy studies, and group sizes and treatments are described
in corresponding figure legends. PDX models in Fig. 6 and Supple-

mentary Fig. S1 were part of themulti-arm study (with arms irrelevant
to this publication) with common control monotherapy arms (e.g., the
vehicle-treated group). Hence, the same control data will be used in
different publications.

Tumor growth inhibition from study start to final day of tumor
measurement was assessed by comparing the geometric mean change
in tumor volume (TV) for control and treated groups.

% regression ¼ 1� Relative TVð Þ � 100%:

Percentage of TV change ¼ (Vend of study day – Vbaseline)/Vbaseline

�100.
For biomarker analysis, tumors were harvested and snap-frozen in

liquid nitrogen 4 or 24 hours after the last dose. Group sizes and
treatments are described in corresponding figure legends. Significance
was evaluated using a one-tailed t test compared with vehicle control
on the day of final tumor measurement.

Data availability
Raw sequencing data are available in ArrayExpress (accession

number E-MTAB-13113 and E-MTAB-13139). All other raw data
underlying this article’s findings are available upon request from the
corresponding author.

Results
Camizestrant potently inhibits proliferation in ER-driven breast
cancer cell lines

In vitro, camizestrant (Fig. 1A; ref. 35) degrades ER protein to the
same extent as fulvestrant, and more effectively than the first-
generation oral SERD AZD9496, across a panel of ER-driven cell
lines (Fig. 1B; Supplementary Fig. S2A).

SERD-mediated ER degradation does not reduce ER levels
completely, due to continuous ESR1 expression and protein transla-
tion.We therefore quantified ER degradation over time, which showed
that 100 nmol/L camizestrant increased the ER degradation rate,
reducing the ER basal half-life from 2.54–3.86 to 0.46–0.70 hours
(Supplementary Fig. S2B), as effectively as fulvestrant. Degradation
was proteasome-mediated, as the proteosome inhibitor MG132 ablat-
ed protein reduction (Supplementary Fig. S2C). Subcellular fraction-
ation revealed that following 100 nmol/L camizestrant or fulvestrant,
all residual ER was within the chromatin fraction (Supplementary
Fig. S2D).

To explore the consequence of different extents of ER degradation
by camizestrant, fulvestrant, and AZD9496 in MCF7 and CAMA-1
cells, we evaluated ER transcriptional activity using RNA-seq gene
expression. Following acute treatment, camizestrant, fulvestrant, and
AZD9496 antagonized all estradiol-driven gene expression, consistent
with complete antagonism of residual ER transcriptional activity
(Fig. 1C). In 7-day proliferation experiments, camizestrant and ful-
vestrant inhibited cell growth equivalently in both cell lines, whereas
AZD9496 displayed weaker antiproliferative effects in CAMA-1 cells
(Fig. 1D).

Having no ER agonism is important for an ngSERD. Accordingly,
we show that camizestrant degraded ER to the same extent as
fulvestrant in the ERþ Ishikawa endometrial cancer cell line, an
in vitro model of ER agonism (Fig. 1E), with no evidence of PgR
expression (as amarker of agonism), in contrast with AZD9496. These
data show that camizestrant promotes selective and proteasome-
mediated ER degradation, completely suppresses transcription by fully
antagonizing residual ER, and impairs proliferation in ERþ breast

Antitumor Activity of Camizestrant in ERþ Breast Cancer Models
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Figure 1.

Camizestrant (AZD9833) is a selective ER degrader and pure antagonist. A, Chemical structure of camizestrant. B, The indicated cell lines were treated with
100 nmol/L of the indicated compound for 48 hours. Levels of ERawere assessed byWestern blotting and normalized to an untreated control and fulvestrant. Each
point represents an independent experiment. C, MCF7 or CAMA-1 cells were treated with DMSO, 1 nmol/L estradiol, or 100 nmol/L of the indicated compound þ
1 nmol/L estradiol for 24 hours. RNA expressionwas assessed by RNA sequencing. Data represent z-scores of normalized gene expression for genes in an ER activity
signature. D, MCF7 and CAMA-1 cells were treated with the indicated concentration of the indicated compound for 7 days. Cell number was estimated with a Sytox
Green assay normalized to an untreated control on the dayof treatment (0.0) and an untreated control on day 7 after treatment (1.0). Data points represent themean
from three independent experiments performed in triplicate� SD. E, Ishikawa cells were treated with the indicated concentration of fulvestrant or camizestrant, or
100 nmol/L AZD9496 for 24 hours, and ERa and PgR expressions were determined by Western blot. DMSO, dimethyl sulfoxide; PR, progesterone receptor.
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cancer cell lines, without agonizing ER in uterine models, in marked
contrast with AZD9496.

Camizestrant inhibits proliferation in ESR1wt and ESR1m breast
cancer models

ESR1 ligand-binding domain (LBD)–activating mutations are well-
established mechanisms of resistance, detected in 20% to 40% of
patients with metastases who progress after AI-containing regi-
mens (36, 37). Therefore, we compared the binding potency of
camizestrant with fulvestrant in several ESR1m variants. In compe-
tition binding assays, camizestrant bound with high affinity to the
recombinant LBD of ESR1 wild-type (ESR1wt) and ESR1m variants,
including Y537C, Y537N, Y537S, S463P, D538G, and E380Q
(Fig. 2A). Some loss of affinity was observed in binding to certain
ESR1m, in particular Y537S for camizestrant and fulvestrant, and
E380Q for camizestrant. Despite reduced binding, camizestrant and
fulvestrant inhibited the growth of MCF7 cells expressing either wt or
Y537S ESR1 equivalently (Fig. 2B and C), and more potently than
elacestrant (RAD1901; Supplementary Fig. S3A and S3B). These
effects are as previously reported (35). The data suggest that despite
reduced binding affinity compared with ESR1wt, camizestrant can
inhibit proliferation of Y537S ESR1m cells.

In ESR1wt and ESR1m Y537S MCF7 cells, camizestrant and ful-
vestrant reduced ER and PgR levels more than did elacestrant
(RAD1901; Supplementary Fig. S3A and S3B). Collectively, camizes-
trant’s cellular activity matched fulvestrant’s activity in vitro, and was
positively differentiated from elacestrant.

In ERþ tumormodels, camizestrant showed strong dose-dependent
efficacy, with greater activity at lower doses in the ESR1wt HBXF079-
LTED than in D538G ESR1m CTC174 PDX models (Fig. 2D–G);
notably, camizestrant at 3 mg/kg daily still caused tumor stasis in the
latter. Efficacy correlated with overall ER degradation levels, and
similar dose-dependent efficacy occurred in MCF7 parental (35) and
ESR1m Y537S xenograft models (Supplementary Figs. S3C and S3D
and S4). The data indicate a similarly reduced potency inESR1mversus
ESR1wt models (as in protein binding and cell lines), but nevertheless
suggest that camizestrant still achieves high ER reduction and efficacy
at relevant doses.

Next, we established a pharmacokinetic/pharmacodynamic math-
ematical model to assess tumor ER levels during camizestrant treat-
ment in the CTC174 hormone-independent PDXmodel (Supplemen-
tary Fig. S4). Camizestrant-free plasma concentration clearly corre-
lated with ER levels, with an estimated in vivo free IC50 value of
0.4 nmol/L (Supplementary Fig. S4A). The magnitude and duration of
ER degradation with daily camizestrant was clearly dose-responsive
(Supplementary Fig. S4B). Moreover, the association between ER
degradation during the dosing interval and camizestrant’s antitumor
effect showed that maximal antitumor effects occur with 10 mg/kg
once-daily dosing, achieving an average 87% ER degradation (i.e., only
13%ER remaining; Supplementary Fig. S4C). This demonstrates a link
between camizestrant exposure, ER degradation, and antitumor effects
in vivo, with associated antagonism of remaining ER in line with the
in vitro data.

Having established camizestrant 10 mg/kg daily as the efficacious
dose, we confirmed in vitro results, showing complete ER antagonism
in Ishikawa cells (Supplementary Fig. S5A). A 10 mg/kg once-daily
dose in juvenile rats slightly reduced uterine weight and endometrial
epithelium area, consistent with the lack of agonism seen in vitro, and
contrasting with the effects of partial ER agonists tamoxifen and
AZD9496 (Supplementary Fig. S5B–S5D).

Camizestrant delivers broader activity than fulvestrant in
ESR1wt and ESR1m PDXs by enhancing suppression of ERa
and cell-cycle genes

Camizestrant delivers superior ERa antagonism and signaling
inhibition than fulvestrant. Therefore, we compared the activity of
camizestrant with fulvestrant in in vivo ERþ PDX tumor models
representing various disease stages and genomic alterations (Fig. 3;
Supplementary Fig. S6).

Camizestrant 10 mg/kg daily was profiled in 28 PDX models,
and head-to-head with fulvestrant at 5 mg/weekly in 25 ERþ

PDX models derived from primary or metastatic tumors, na€�ve or
exposed to ET and/or CDK4/6i, and with various ESR1m status
(Fig. 3A and B). Camizestrant showed antitumor activity in twice
as many models as fulvestrant, with efficacy in 56% of ESR1wt
and ESR1m models, with fulvestrant effective in 28% (Fig. 3C).
Some (44%) models were insensitive to both compounds, suggesting
absent ER-drive in those tumors. Remarkably, no model was
fulvestrant-sensitive but camizestrant-insensitive (Fig. 3C and
D). When overlaying ESR1m status on the analysis, 36% of models
had ESR1m, including Y537S, D538G, and E380Q. Camizestrant
was active, and fulvestrant inactive, in all Y537S models tested
(Fig. 3C and D). This comprehensive set of PDX models shows that
camizestrant delivers superior efficacy over fulvestrant, at clinically
achievable doses, in ESR1m and ESR1wt models from primary and
metastatic tumors.

Given the striking superiority of camizestrant in these PDX
models, we analyzed a subset of them, classifying their genetic
features and biomarker modulation compared with fulvestrant. We
extended the efficacy comparison with elacestrant 30 mg/kg daily in
three models. We observed equivalent activity between camizestrant
and fulvestrant in three models [two ESR1wt (HBXF-079 and
PDX191) and one ESR1m D538G (CTC174); Supplementary
Fig. S7A, S7B, and S7E], and superior activity for camizestrant in
four ESR1m models (PDX244, ST941/HI, PDX131, Y537S, and a
D538G ESR1m CTG1211; Supplementary Fig. S77C, S7D, S7F, and
S7G). In the PDX191 model, although a trend toward sensitivity to
fulvestrant was observed, this did not reach statistical significance.
In Y537S ESR1m PDX ST941/HI and PDX244 models, camizestrant
promoted more profound and sustained efficacy than elacestrant,
whereas both delivered similar efficacy in the HBXF-079 model
(Supplementary Fig. S7E–S7G). These data support a superior
efficacy profile of camizestrant versus both fulvestrant and elaces-
trant in Y537S PDX models.

End-of-study tumor ER protein levels weremeasured to understand
whether the differential efficacy of camizestrant, fulvestrant, and
elacestrant was due to the extent of protein degradation in vivo.
Although in the CTC174 model—equally sensitive to camizestrant
and fulvestrant—we observed similar ER degradation levels, in the
ST941/HI model (camizestrant-sensitive/fulvestrant-insensitive), ela-
cestrant degraded ER less than fulvestrant and camizestrant 4 and
24 hours after treatment (Supplementary Fig. S6H). Therefore, in these
models the difference in activity cannot result solely from ER degra-
dation differences.

To understand the mechanism allowing camizestrant to overcome
fulvestrant resistance, we measured, using genomic characterization
and RNA-seq analysis, non-genomic alterations and ER pathway
transcriptional output under drug treatment in seven PDX models.
The models were characterized by treatment response, ESR1m status,
and other molecular features (Fig. 4A). We observed clear enrichment
of patient-derived metastatic tumors harboring ESR1m in the
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four PDX models unresponsive to fulvestrant but sensitive to
camizestrant.

Gene expression analysis comparing the four fulvestrant-
resistant PDX models with the three fulvestrant-sensitive PDX
models showed that camizestrant more strongly modulated gene
signatures than fulvestrant, as demonstrated by both ER (Fig. 4B)
and estradiol gene signature scores (defined by expression of
estradiol-induced or estradiol-repressed genes; Supplementary
Fig. S7I), which correlated with camizestrant efficacy. Therefore,
camizestrant treatment in fulvestrant-resistant models more
strongly antagonizes ER and changes the transcriptional signature,
including superior suppression of the ER pathway, genes defining
early or late response to estrogen, and downstream cell-cycle–
related gene signatures (Fig. 4B; Supplementary Fig. S7I).

Camizestrant improves tumor control in D538G ESR1m and
N354K PIK3CAm PDX CTC174 in combination with CDK4/6 or
PI3K/AKT/mTOR inhibitors ex vivo and in vivo

Given the high activity of camizestrant monotherapy in ERþ PDX
models, we investigated camizestrant as the central ET partner to
CDK4/6i and other standard-of-care therapies in ERþ breast cancer.
Alpelisib (PI3Ka inhibitor) and everolimus (mTOR inhibitor) plus ET
are approved in biomarker-selected PI3K/PTEN/AKT-altered popu-
lations and late-therapy lines, respectively (38). Therefore, the com-
binatorial potential of camizestrant with mTOR, AKT, PI3K or
CDK4/6 inhibitors was tested ex vivo and in vivo (Figs. 5 and 6).

Experiments were conducted in PDX CTC174, a D538G ESR1m,
and N354K PIK3CAm models. First, viability assays were per-
formed in ex vivo PDX-derived organoids from CTC174 tumors.
Camizestrant added benefit when combined with agents targeting
the PI3K/AKT/mTOR pathway, alpelisib, everolimus, capivasertib
(AKT inhibitor, AKTi), and palbociclib (CDK4/6i; Supplementary
Fig. S8A and S8B). Next, we validated the benefits of these combi-
nations in vivo (Fig. 5A–D). All combinations were more effective
than monotherapy, with protein analysis from one study demon-
strating downregulation of ER, the PI3K/AKT/mTOR pathway
pS6/S6, or proliferation (proliferating cell nuclear antigen, PCNA)
biomarkers after camizestrant, alpelisib, or combination treatment
(Supplementary Fig. S8C).

Camizestrant is active in models resistant to CDK4/6i
in vitro and in vivo

Effective ways to treat resistance to ETs and CDK4/6i is a high
unmet need in ERþ breast cancer. Our experiments demonstrate

that in CTC174, a model sensitive to ET and CDK4/6 inhibition,
camizestrant and palbociclib showed a combination benefit. There-
fore, we next investigated camizestrant combinations to overcome
palbociclib (CDK4/6i) resistance in preclinical models. Camizes-
trant monotherapy efficacy was analyzed in MCF7 palbociclib-
resistant cell lines (PC1, PC6, and PC8), which acquired resistance
to palbociclib via different cellular mechanisms, including loss of
RB1, cyclin D1, and CCNE (cyclin E) overexpression, and unknown
mechanisms (Supplementary Fig. S8D). Palbociclib-resistant lines
were sensitive to camizestrant, with no added benefit observed when
combining with palbociclib (Supplementary Fig. S8D). However,
palbociclib-resistant lines were sensitive to an alternative CDK4/6i,
abemaciclib, with a broader CDK selectivity profile (39). Single-
agent abemaciclib efficacy was enhanced when combined with
camizestrant in palbociclib-resistant lines, supporting the rationale
of treatment with alternative combinations of ET and CDK4/6i to
overcome acquired resistance.

Next, we evaluated camizestrant efficacy in the PDX model
ST1799/HI/PBR, which represents acquired palbociclib resistance
and partial sensitivity to fulvestrant or the combination. In this
ESR1wt model, prolonged camizestrant exposure decreased tumor
growth compared with fulvestrant (Fig. 5F), and combined cami-
zestrant and either palbociclib or abemaciclib further decreased TV
(vs. fulvestrant and palbociclib combined). Efficacy was even sus-
tained for approximately 30 days after treatment withdrawal.
Although the ST1799/PBR model has an activating E542K PIK3CA
mutation, capivasertib (AKTi) monotherapy could not completely
arrest tumor growth. However, capivasertib combined with cami-
zestrant caused tumor regressions that were sustained even after
drug withdrawal. The data support combined approaches with
camizestrant plus palbociclib, abemaciclib, or capivasertib in
patients who progress on CDK4/6i treatment.

Therapies for early-stage ERþ disease to extend relapse-free survival
are an unmet need, and oral SERDs are starting to be tested in the
adjuvant setting. Therefore, we evaluated camizestrant in ST3632, an
ESR1wt PDX model derived from a primary tumor of a treatment-
na€�ve patient, reflecting early-stage disease. Camizestrant monother-
apy reduced relative TV by 75% compared with the vehicle, showing
greater efficacy than abemaciclib (46% inhibition) or palbociclib (0%).
Combining camizestrant with either palbociclib or abemaciclib
reduced TV further (91%; Fig. 5E), which corresponded with
decreased ER and PgR proteins (Supplementary Fig. S8E). These
results suggest that camizestrant alone or combined with CDK4/6i
could be efficacious in early disease.

Figure 2.
Binding and activity of camizestrant in clinically relevant ERamutations. A, The pIC50 value of fulvestrant and camizestrant to displace a fluorescent ER ligand from
wild-type, D538G, Y537N, E380Q, Y537C, S463P, or Y537S mutant purified ERa ligand-binding domain. Points represent independent experiments. B, MCF7 cells
expressingWTor Y537S ERawere grown for 7 days in 5%FBS. Growth inhibitionwas estimatedwith a SytoxGreen assaynormalized to an untreated control onday0
(0%) and an untreated control on day 7 of treatment (100%). Data points represent themean from two independent experiments carried out in duplicate. Fulvestrant
and camizestrant inhibited the proliferation of both WT and Y537S ERa-expressing MCF7 cells in a concentration-dependent manner. The table shows pIC50 values
from independent experiments.C,MCF7 cells expressingWT or Y537S ERawere treatedwith the indicated concentration of fulvestrant or camizestrant for 72 hours,
and ERawas determined byWestern blot. Fulvestrant and camizestrant showed concentration-dependent inhibition of PgR expression (normalized to an untreated
control) in MCF7 cells expressing bothWT and Y537S ERa.D,Camizestrant dose–response in the long-term estrogen-deprived ESR1wt PDXmodel, HBXF079-LTED.
Statistical analysis was performed by one-tailed, unequal variance t test versus log (change in tumor volume) compared with vehicle control at the final day of
treatment. E, ER degradation measured by Western blot from tumors taken at the end of the efficacy dosing period. F, In the ESR1m D538G PDX CTC-174 model,
camizestrant demonstrated antitumor activity in a dose-dependent manner, with maximal antitumor activity at 10 mg/kg. Efficacy correlated with ER degradation
measured by Western blot from tumors taken at the end of the efficacy dosing period. Statistical analyses were performed by one-tailed, unequal variance t test
versus log (change in tumor volume) compared with vehicle control at the final day of treatment.G, ER degradationmeasured byWestern blot from tumors taken at
the end of the efficacy dosing period. NS, not significant; � , P <0.05; �� , P <0.01; ��� , P <0.001; ���� , P <0.0001. pIC50, negative log of the IC50 (half-maximal inhibitory
concentration) value when converted to mol/L.
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Figure 3.

Camizestrant has superior in vivo activity to fulvestrant in ESR1wt and ESR1m PDX models (1). A,Waterfall plot representing the growth of 28 of ERþ breast cancer
PDX treated with camizestrant 10 mg/kg daily; bars are colored according to ESR1 mutational status and other genomic characteristics annotated at the top. The
percentage change calculated from the initial volume at day of treatment is shown. Data representmean� SE of themean.B,Waterfall plot representing the growth
of 25 PDX treated with fulvestrant 5 mg/kg weekly. N/A denotes models where the head-to-head armwas not available. The percentage of change calculated from
the initial volume at day of treatment is shown. Data representmean� SE of themean.C, Pie chart indicates the proportions of PDXmodels sensitive or insensitive to
camizestrant and/or fulvestrant. The antitumor response of camizestrant versus fulvestrant monotherapy is represented as the percentage of tumor change
comparedwith the initial tumor volume, benchmarked to vehicle changes.D,Correlation of fulvestrant PDX antitumor response (y-axis) versus camizestrant (x-axis)
in 25 PDX, represented as the percentage of tumor volume change comparedwith the initial tumor volume. Data represent mean. The boxes indicate the percentage
change from baseline ≤100%; the percentage of models sensitive only to fulvestrant or camizestrant, or sensitive to both is represented in each box.
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Combining camizestrant with CDK4/6i and AKTi inhibits tumor
growth in models that progress on CDK4/6i, regardless of genetic
alterations in ESR1/PIK3CA/AKT/PTEN

Data suggest that cotargeting CDK4/6, PI3K/AKT/mTOR, andERa
could effectively control tumor growth in ERþ breast cancer xenografts
and PDX models (14, 40). Earlier, we showed camizestrant has
antitumor activity in twice as many ERþ breast cancer PDX models
as fulvestrant, including those derived from tumors that are primary or
metastatic, na€�ve or exposed to ET and/or CDK4/6i, and with different
ESR1m status (Figs. 2–4). Therefore, we tested camizestrant as the ET
backbone in a triple combination with CDK4/6i and agents targeting
the PI3K/AKT/mTOR pathway. We compared six PDX models
representing CDK4/6i resistance via intrinsic mechanisms or induced
by long-term palbociclib treatment. Models were classified on the
basis of ESR1m or PIK3CA/AKT1/PTEN genetic alteration. The
percentage of tumor growth inhibition of single, dual, and triple
combinations relative to control vehicle was determined (Fig. 6A).
Although camizestrant and capivasertib (individually and com-
bined) at clinically relevant doses and schedules were active
in most models, the camizestrant, palbociclib, and capivasertib
triplet induced greater antitumor activity, regressing all models
irrespective of genomic alterations, including PTEN loss, PIK3CAm,
ESR1m, and an ESR1–CCDC170 oncogenic fusion (Fig. 6A and B,
Supplementary Fig. S1; refs. 41, 42). End-of-study protein samples
from the BB6RC160 model (ESR1wt, no PIK3CA/PTEN/AKT1
alterations) were collected after 21 days’ treatment to assess path-
way modulation (Supplementary Fig. S1C). Protein analysis dem-
onstrated significant modulation of ER (ER, TFF1), proliferation
(PCNA), CDK4/6 (pRb1, Rb1), and PI3K/AKT/mTOR signaling
proteins (pAKT, pPRAS40, pS6 and total) after triplet treatment
(Supplementary Fig. S1C). The data suggest that co-targeting these
three signaling nodes to inhibit ER, CDK4/6, and AKT with
camizestrant as an ET backbone could expand activity in patients
with refractory tumors.

Discussion
Using various in vitro and in vivo assays, we demonstrate that

monotherapy with the ngSERD camizestrant robustly and selectively
degrades ER, with pure ER antagonism. This translates into antitumor
activity in models representing the clinical landscape in ERþ breast
cancer (Fig. 6C). Notably, camizestrant showed in vivo activity in
ESR1wtmodels and inmodels bearing clinically relevant ESR1m, such
as D538G and Y537S: This has significant implications for patients
whose disease acquires resistance to standard ET. Furthermore, cami-
zestrant arrested or regressed tumor growth in ESR1mPDXmodels in
which fulvestrant had poor or no activity, suggesting that camizestrant
may also benefit patients who do not benefit from fulvestrant, a current
ET standard of care.

Consistent with our data, others have suggested that SERDs can
differ in their ability to degrade ER in ERþ breast cancer cell lines, and
that this correlates with a partial agonist phenotype and poorer anti-
proliferative activity in the cell lines where degradation is compro-
mised (43). Specifically, SERDs with acidic headgroups, such as
AZD9496 and GDC-0810, substantially degrade ER in only some cell
lines, whereas SERDs with basic headgroups, such as camizestrant and
GDC-0927, phenocopy fulvestrant and have substantially degraded ER
in all cell lines tested.

Interestingly, this differing ability of acidic and basic SERDs to
degrade ER resulted in no differential effect on ER-regulated gene
expression inCAMA-1 cells. Our data on the antiproliferative effects of
acidic and basic SERDs align with a recent report (44), in which subtle
differences in the antiproliferative effects ofGDC-0810 andGDC-0927
are described previously.

Partial ER agonism is an undesirable side effect of tamoxifen,
increasing the risk of endometrial cancer (45). With the acidic
SERD AZD9496, agonism was undetected in ERþ breast cancer cell
lines, but evident in endometrial in vitro and in vivo models, which
are more sensitive for detecting ER agonism. This aligns with data
we (23) and others (44, 46) have published. The SERM/SERD
elacestrant does not degrade ER to the same extent as fulvestrant
in multiple ERþ breast cancer cell lines, and agonizes ER in mouse
uterine tissue (47). Contrastingly, even in these more sensitive
systems, agonism was not seen with the basic ngSERD camizestrant
in vitro or in vivo.

The precisemechanism bywhich SERDs degrade ER is unclear, as is
why the degree of ER degradation differs among SERDs and cell lines.
Although the 26S proteasome inhibitor MG132 can prevent SERD-
induced ER degradation, to date, no specific E3-ligase has been found
to be involved. Furthermore, fulvestrant-like SERDs immobilize ER on
chromatinmore than acidic SERDs (43), but inMCF7 cells both SERD
types degrade ER equivalently. Therefore, the molecular mechanism
behind this difference remains elusive.

Among our most notable findings is camizestrant’s improved
antitumor activity and ER pathway modulation in ESR1m PDX
models compared with both fulvestrant and elacestrant. This occurs
despite fulvestrant doses in mouse studies exceeding clinical expo-
sures approximately 8-fold, likely overestimating fulvestrant’s clin-
ical potential (48). These data align with the observation from the
PALOMA-3 trial that Y537S ESR1m—but not other ESR1m variants
—was enriched in fulvestrant-treated patients (with or without
palbociclib) at progression. This suggests that Y537S mutations
can cause fulvestrant resistance (37). Conversely, camizestrant has
demonstrated clinical activity in patients with HRþ/HER2� met-
astatic breast cancer with a variety of ESR1m, including Y537S, and
reduces Y537S ESR1m levels in circulating tumor DNA (49). This
difference in activity of camizestrant and fulvestrant in patients
with detectable ESR1m and ESR1wt is being explored in the ongoing

Figure 5.
Enhanced efficacy of camizestrant in combination with PI3K/AKT/mTOR inhibitors as doublets in CDK4/6-sensitive and -resistant models (1). A–D, Combination of
camizestrant with PI3Ka inhibitor alpelisib (A), mTOR inhibitor everolimus (B), AKT inhibitor capivasertib (C), or CDK4/6 inhibitor palbociclib (D) delivers enhanced
efficacy compared with monotherapy in D538G ESR1mPDX CTC-174. Statistical analysis was performed by one-tailed, unequal variance t test versus log (change in
tumor volume) compared with vehicle control at the final day of treatment. E, Relative tumor volume plots of ST3632 PDX model treated with oral camizestrant at
10 mg/kg daily, oral palbociclib at 50 mg/kg daily, and oral abemaciclib 50 mg/kg daily, and with camizestrant þ abemaciclib and camizestrant þ palbociclib.
Statistical analysis was performed by one-tailed, unequal variance t test versus log (change in tumor volume) at the final day of treatment. F, In vivo combination of
camizestrant at 10 mg/kg daily with palbociclib 50 mg/kg, abemaciclib 50 mg/kg, and capivasertib 130 mg/kg in PDX ST1799 dosed for 40 days (gray area). For
clarity, the graph is divided into four subgraphs due to the large number of treatment arms;where they appear, the vehicle, camizestrant, and palbociclib arms are the
same in each subgraph. CDK, cyclin-dependent kinase. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; ns, not significant.
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Phase 2 SERENA-2 trial (NCT04214288), comparing the efficacy
of camizestrant versus fulvestrant in women with ERþ/HER2–

advanced breast cancer. SERENA-2 has recently reported positive
results; notably, camizestrant improves median PFS compared with
fulvestrant in patients with detectable ESR1m at baseline, including
the more commonly detected D538G and Y537C/D/N/S ESR1m
variants (50). This suggests that camizestrant may benefit those with
ET resistance.

Importantly, camizestrant showed improved activity compared
with elacestrant in a subset of preclinical models. Elacestrant
has demonstrated modest clinical improvement in median PFS
over fulvestrant and AIs in ERþ/HER2� advanced breast cancer
following treatment with CDK4/6i (EMERALD; ref. 29). We also
showed that in models sensitive to camizestrant but insensitive to
fulvestrant, only camizestrant can sufficiently block the ER and cell-
cycle pathways at the transcriptional level, correlating with the
observed efficacy. This effect could be due to a more complete
antagonism of residual-free or chromatin-bound ER compared with
fulvestrant, but further experiments are warranted to understand
the precise mechanisms. The data presented suggest putative
mechanisms by which camizestrant has superior activity compared
with fulvestrant.

Camizestrant exhibited favorable efficacy in vivo as monotherapy
and in combination with CDK4/6 or PI3K/AKT/mTOR inhibitors.
Combination treatments inhibited tumor growth more than did
single treatments in ESR1m and PIK3CAm PDX models. This
increase in activity was also observed in ERþ PDX models insen-
sitive to palbociclib and/or ET. These data support the benefit of
camizestrant and PI3K/AKT/mTOR inhibitors in patients with
ESR1m and PIK3CAm tumors.

Molecular mechanisms of resistance to ET plus CDK4/6i
are incompletely understood, and novel approaches for patients
who relapse after treatment are a high unmet need (12). Our
results support camizestrant’s potential to be a superior backbone
ET in na€�ve, early-stage disease, as well as in late-stage ERþ/HER2�

breast cancer tumors that have progressed on current ETs with/

without CDK4/6i. Moreover, our data suggest that a novel triple
combination of camizestrant, capivasertib, and CDK4/6i could help
to achieve high response rates in a broader patient population,
irrespective of ESR1m and PIK3CA/AKT1/mTOR alterations, in the
metastatic and CDK4/6i-resistant setting. Although all six preclin-
ical models tested benefited from a triplet combination, further
studies can stratify biomarkers to select appropriate combinations
for specific breast cancer populations.

On the basis of these preclinical data, clinical investigation of
camizestrant is underway in Phase 2 and 3 trials. In addition to
SERENA-2, SERENA-4 (NCT04711252) is comparing camizestrant
and palbociclib versus anastrozole and palbociclib as first-line treat-
ment forwomenwith ERþ/HER2– advanced breast cancer. SERENA-6
(NCT04964934) is comparing the effects of switching to camizestrant
in combination with palbociclib or abemaciclib versus continuing
anastrozole or letrozole in combination with palbociclib or abema-
ciclib in patients with ERþ/HER2� metastatic breast cancer with
detectable ESR1m, who are already receiving first-line treat-
ment (51). In addition to these studies in advanced disease, CAM-
BRIA-1 (NCT05774951) is an open-label Phase 3 study evaluating
outcomes with camizestrant versus standard ET for patients with
ERþ/HER2� early breast cancer and at least 2 years of standard
adjuvant ET. These studies contribute to camizestrant’s compre-
hensive development program.

In summary, we provide evidence supporting the clinical
development of the ngSERD camizestrant as monotherapy, or in
double or triple combinations with CDK4/6 and AKT inhibitors,
to block ER signaling more completely than currently available
ETs for patients with ERþ breast cancer, and improve therapeutic
outcomes.

Conclusions
Building on the success of fulvestrant, we show that the ngSERD

camizestrant could become the next-generation ET for patients
with HRþ breast cancer across the clinical landscape. Compared
with fulvestrant, camizestrant shows enhanced efficacy and superior

Figure 6.
Enhanced efficacy of camizestrant in combinationwith PI3K/AKT/mTOR inhibitors as doublets in CDK4/6i-resistantmodels (2).A, 28-, 35- or 42-day efficacy studies
using several ERþ breast cancer PDX harboring/not harboring alterations in PIK3CA/AKT/PTEN. Dark blue, mutations; light blue, deletions; orange, fusions. The
rate of growth for each animal is estimated on the basis of fitting each tumor’s growth curve to an exponential model: log10(tumor volume) ¼ a þ b�time þ
error, where a and b correspond to the log initial volume and growth rate, respectively. The model assumes that the error terms are normally distributed.
Tumor volumes less than 15 mm3 were replaced with a minimum value of 15 mm3. This growth rate summary metric was then used for statistical analysis to
compare treatments with a user-specified reference group. Tumor growth inhibition was used to plot a heat map. Designed dosing: oral palbociclib 50 mg/kg
daily, subcutaneous fulvestrant 5 mg weekly, oral camizestrant 10 mg/kg daily, oral capivasertib 130 mg/kg BID 4 days on/3 days off. Statistical analysis was
performed by one-tailed, unequal variance t test versus log (change in tumor volume) at the final day of treatment. B, 28-, 35- or 42-day efficacy studies used
in A; relative tumor volume plots displaying arms: control, standard-of-care hormone therapy þ CDK4/6 inhibitor (fulvestrant þ palbociclib), or triplet
combination of hormone therapy þ CDK4/6 inhibitor þ AKTi (camizestrant þ palbociclib þ capivasertib). Designed dosing: oral palbociclib 50 mg/kg daily,
subcutaneous fulvestrant 5 mg weekly, oral camizestrant 10 mg/kg daily, oral capivasertib 130 mg/kg BID 4 days on/3 days off. Statistical analysis
was performed by one-tailed, unequal variance t test versus log (change in tumor volume) at the final day of treatment. C, Camizestrant fits centrally in the
overall landscape of breast cancer as a backbone endocrine therapy. Estrogens (e.g., E2) bind to ERa, leading to its dimerization and translocation to the
nucleus, where ERa dimers bind to coactivators to form transcriptionally active ERa complexes. Activated complexes regulate gene transcription in the
nucleus or activate kinases in the cytoplasm to drive cell proliferation. Mutations in the ligand-binding domain of ESR1 drive resistance in advanced ERþ breast
cancer and act independently of estrogens to activate transcription. Camizestrant is a next-generation SERD for the treatment of ERþ breast cancer, acting as
a pure ER antagonist and selective ERa degrader. Camizestrant’s mechanism of action stops the transcription of ER target genes in wild-type (blue) and
mutant (green) ERa, impairing tumor cell proliferation. These properties position camizestrant as a central endocrine therapy partner along with CDK4/6
inhibitors (palbociclib and abemaciclib) in ERþ breast cancer. Other signaling pathways are essential to ERþ breast cancer proliferation and survival, and
contribute to mechanisms of endocrine therapy resistance, including CDK4/6 and PI3K/AKT/mTOR pathways. Inhibitors of these signaling axes are currently
approved targeted therapies (everolimus and alpelisib) or under investigation (e.g., capivasertib). �, P < 0.05; �� , P < 0.005; ��� , P < 0.0005. CAMI,
camizestrant; CAPI, capivasertib; CDK, cyclin-dependent kinase; CoA, cytochrome C oxidase assembly; Del, deletion; E2, estradiol; E2F, E2F transcription
factor; ERE, estrogen response element; FULV, fulvestrant; m, mutated; MET, metastatic; PALBO, palbociclib; PRIM, primary; RB1, retinoblastoma gene; TGI,
tumor growth inhibition.
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ER signaling and cell-cycle suppression in PDX models. Clinically,
camizestrant could enhance ER antagonism and degradation, there-
by improving clinical benefit for patients with HRþ breast cancer.
Camizestrant also has potential, in combination with CDK4/6
and PI3K/AKT/mTOR inhibitors, to address resistance to current
ETs: The highest unmet need in the largest group of patients with
breast cancer.
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