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Stationary shapes of axisymmetric vesicles beyond lowest-energy configurations
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We conduct a systematic exploration of the energy landscape of vesicle morphologies within the
framework of the Helfrich model. Vesicle shapes are determined by minimizing the elastic energy
subject to constraints of constant area and volume. The results show that pressurized vesicles can
adopt higher-energy spindle-like configurations that require the action of point forces at the poles.
If the internal pressure is lower than the external one, multilobed shapes are predicted. We utilize
our results to rationalize the experimentally observed spindle shapes of giant vesicles in a uniform
AC field.

I. INTRODUCTION

Biomembranes encapsulate cells and cellular organelles
and play a key role in regulating essential tasks in natural
physiology, such as, efficient transport of oxygen to cells,
tissues and organs [1], signal transmission in neurons [2],
and immune regulation [3, 4]. These processes are intrin-
sically complex and rely on a delicate balance between
membrane shape transformations and self-generated or
externally imposed forces mediated by underlying mech-
anisms binding the membrane to the cellular cytoskeleton
[5]. In particular, phenomena such as cell division and
cell motility may be explained by growth or retraction
of cytoskeletal filaments (e.g., actin and microtubules)
that generate protrusive forces on the membranes via
anchoring proteins [6, 7]. Binding-specific proteins al-
low localized transmission of stresses to the membrane
that may lead to microtubule tethering [8] and forma-
tion of spindle-like configurations in a intermediate step
of mitotic spindle orientation [9].
The main structural component of biomembranes is a

phospholipid bilayer. Giant unilamellar vesicles (GUVs)
are cell-sized lipid sacs that self-assemble in aqueous so-
lutions and constitute a popular model to study mem-
brane biophysics [10]. Pioneering works using vesicles as
biomimetic models for living cells were inspired by the
discocyte biconcave shape of red blood cells (RBCs) un-
der normal physiological conditions [11–14]. More re-
cently, research has been directed to the understand-
ing of activity-induced vesicle shapes where active par-
ticles or filaments confined in GUVs lead to membrane-
deformation states varying from tethering to multi-lobed
structures where active particles or filaments tend to ac-
cumulate in regions of high curvature [15–17]. Another
class of experimentally observed closed-membrane shapes
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is spindle-like configurations that may occur, for exam-
ple, during tether formation induced by the controlled
axial growth of confined microtubules [18], by straining
of GUVs embedded in nematic liquid crystals [19, 20], or,
by electrodeformation of vesicles leading to field-induced
tubulation at the poles [21]. Spindle-like shapes, without
field-induced tubulation, have been observed recently by
modulations of externally applied uniform electric fields
[22] as shown in Fig. 1(a). Vesicle shapes induced by
localized forces have been identified as higher-energy con-
figurations (compared to unconstrained vesicles) [23, 24]
and resonate with cell membrane dynamics where activ-
ity can be associated with binding of local stresses be-
tween the cytoskeleton and the membrane or with asym-
metric binding of curvature-inducing proteins [25]. In the
context of electric fields, it has been shown that uniform
electric fields acting on cylindrical vesicles of fixed length
may drive pearling instabilities; assuming the caps of the
cylindrical vesicle to be semi-spherical, an electric tension
is coupled to an axial force that orients the vesicle with
the field direction and contributes to the global force bal-
ance at the interface [26]. We hypothesize that spindle
shapes induced by shape distorting electric stresses are
analogously driven by modulations of isotropic stresses
and point-like forces acting at the poles.

In this work, we use theory, numerical computation,
and experimental analysis to interrogate membrane de-
formation of GUVs under quasi-steady conditions via
modulations of global, isotropic membrane stresses (i.e.,
membrane tension and transmembrane pressure differ-
ences) mimicking the action of external fields. We show
a new class of higher-energy vesicle configurations that
may have physical implications resembling the dynamic
response of biomembranes or synthetic cells driven by
self-generated or externally applied forces. More specifi-
cally, we concentrate on higher-energy stationary shapes
stemming from the classical prolate branch of lowest en-
ergy [27], including, but not limited to, spindle-like and
tether-like configurations. In order to interpret our the-
ory and numerical results in the context of electric fields,
we present an experimental study on the evolution of
vesicle shapes in an alternating electric field leading to
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FIG. 1. (a) A giant vesicle in a uniform AC electric field
adopts a spindle shape [22]. (b) Schematic showing the coor-
dinate system (r, φ, z) used to describe the axisymmetric vesi-
cle contour. The shape is parametrized in terms of the tilt
angle ψ, the arclength 0 ≤ s ≤ L measured from the north
pole, where the meridional pole-to-pole distance is L. h0 is
the length of the vesicle major axis.xs is the tangent vector
along the arclength direction and xφ is the azimuthal tangent
vector pointing into the page; n is the outward-pointing nor-
mal vector. The origin of the coordinate system is set at the
south pole, i.e., at s = L.

the formation of spindle-like configurations in high elec-
tric field strength regimes (see Fig. 1(a)). We propose a
numerical methodology that identifies a finite region in a
vast parameter space of possible solutions where station-
ary spindle shapes are identified which is in qualitative
agreement with shapes observed experimentally. In §II a
description of model assumptions, governing equations,
and boundary conditions is presented; section §III con-
tains a collection of vesicle stationary shapes, where re-
sults of pressure, tension, length, height, axial force, and
bending energy are shown as a function of volume and
area; in §IV we present a numerical mapping of spindle
shapes; experimental results are shown in §V and con-
cluding remarks are presented in section §VI.

II. PROBLEM FORMULATION

The thickness of a lipid membrane (e.g., ≈ 5 nm) is
orders of magnitude smaller than the characteristic size
of a typical cell or a giant vesicle. Hence, the membrane
is treated as a two-dimensional surface embedded in a
three-dimensional space [10]. This separation of length
scales allows for a mesoscopic modeling of the membrane
where details related to membrane molecular structure
are included in material parameters and effective geomet-
ric quantities, such as the elastic moduli and spontaneous
curvature.

Typically, the leading order energetic cost of membrane
deformation is given by the curvature-elastic energy per
unit area [28],

f =
κ

2
(2H − C0)

2 + κGK (1)

where H is the mean curvature

H = −1

2
(c1 + c2) , (2)

c1 and c2 are the principal radii of curvature, κ and κG
are elastic moduli, and asymmetries in the packing of
the lipid molecules in the membrane are quantified by
the spontaneous curvature, C0. The last term in Eq. (1)
is the Gaussian curvature,

K = c1c2 . (3)

A. Shape equations

Equilibrium shapes of vesicles have been extensively
studied for the past decades and are typically determined
by theoretical and numerical approaches that minimize
the elastic energy of the membrane [11, 27–32]. For freely
suspended vesicles under constraints of constant area and
constant volume, the elastic energy is

E′ = Eb +Σ

∫

∂A

dA+ P

∫

∂V

dV , (4)

where

Eb =
1

2

∫

A

κ(2H − C0)
2 dA , (5)

is the classical Canham-Helfrich bending energy [11, 28],
Σ and P = pex−pin are Lagrange multipliers included to
enforce the constraints of total area, AT , and total vol-
ume, VT , and are often associated with effects of tension
within and osmotic pressure difference across the mem-
brane, respectively. Equation (5) is the integral form of
the curvature-elastic energy density (1). We have ne-
glected the Gaussian curvature energy in (4) since its
integral will only contribute a constant for our prob-
lem (e.g., for vesicles having closed surfaces as defined
in Ref. [33]).
The modeling of localized forces leading to membrane

protrusions and the experimental realization of vesicle
tethers have been an active area of research for many
years [18, 24, 34–37]. Previous works on axisymmetric
vesicle shapes have accounted for the action of an axial
force at the poles by including an extra term in the total
elastic energy (4) of the form −Fh0, where F is the axial
force, and h0 is the height of the vesicle (i.e., the pole-
to-pole distance along the axis of symmetry) [35, 37]. In
an ensemble where the height is fixed, the force enters
the energy minimization as a Lagrange multiplier enforc-
ing h0; alternatively, in an ensemble where the force is
specified, the height is determined self-consistently [24].
Typically, the length of the vesicle (i.e., arclength pole-
to-pole distance) is free to vary and enforces that the
total energy of the system is constant. Božič et al. [35]
and later Heinrich et al. [24] used the generalized area
difference model for the elastic energy of membranes and
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presented results for stationary shapes of prolate freely
suspended vesicles deformed axially by a tensile point
force yielding prolate-to-spindle shapes with subsequent
formation of tethers at the poles.
Herein, we follow a similar approach where the total

elastic energy of closed membranes including the effect
of an axial point force, F , acting at the north pole is

G′ = E′(H,Σ, P )− F∆z|s=0 (6)

where the south pole is fixed at s = L, ∆z = (z(0)− z0)
is an incremental variation in height at s = 0 relative to a
reference stationary value, z0, measured from the origin
of the coordinate system depicted in Fig. 1(b), and

F = −4πκ(Hsr)|s=0 (7)

is the axial force derived in Appendix A. The axial
force (7) is in agreement with a force-and-torque balance
derivation given by Eq. A5 in Ref. [36], where trans-
membrane pressure effects are subleading at the poles.
We assume two-fold symmetric shapes such that an equal
and opposite point force −F acts at the south pole where
s = L, and we follow the convention that F > 0 is a ten-
sile force (i.e., pulling at the poles). Embedded in Eq. (6)
is the assumption that shape changes occur at a much
faster characteristic time scale compared to the rate of
application of the constant force, F , over an incremental
variation in height.
Minimization of Eq. (6) neglecting spatial variations of

bending stiffness and asymmetries in the packing of lipid
molecules in the membrane (i.e., constant κ and C0 = 0),
yields the classical shape equation

2κ∆bH + 4κH(H2 −K)− 2HΣ− P = 0 , (8)

where H and K are the mean and Gaussian curva-
tures defined in Eqs. (2)-(3), respectively, and ∆b is the
Laplace-Beltrami operator. A derivation of the shape
equation (8) using energy minimization is presented in
Appendix A, for completeness. The axisymmetric vesi-
cle surface is parameterized by the arclength, s, and the
principal radii of curvature are

c1 = rszss − zsrss , (9)

and

c2 =
zs
r
, (10)

where (r, z) are the radial and axial coordinates in cylin-
drical coordinates illustrated in Fig. 1(b); the subscripts
denote differentiation with respect to arclength. Param-
eterization by arclength introduces an additional local
constraint,

(rs)
2 + (zs)

2 = 1 . (11)

Using Eqs. (9)-(10) with definitions (2)-(3) in the
shape equation (8) yields a fourth-order partial differen-
tial equation in the space variables (r, z) with boundary
conditions

r(0) = 0 , r(L) = 0 , (12)

zs(0) = 0 , zs(L) = 0 , (13)

where L is the meridional, arclength pole-to-pole distance
of the vesicle. For unconstrained vesicles, the force (7)
vanishes at the poles and an additional condition Hs = 0
is necessary. In Appendix E we show that when F = 0
the spatial variables (r, z) are analytic functions of ar-
clength near the poles. If Hs 6= 0, then F is finite and a
conjugate variable of the vesicle height, h0.
Numerical methods have been used to study the pa-

rameter space of stationary vesicle contours as solutions
to Eq. (8). Earlier works used a shooting method where
conjugate pairs of variables such as pressure-volume
(P, V ) and tension-area (Σ, A) are adjusted to yield a
closed vesicle shape where the length, L, and height, h0,
of the vesicle are determined self-consistently [27, 38, 39]
- see Fig. 1(b) for geometric details. Alternatively, sta-
tionary shape equations can be solved implicitly as a two-
point boundary value problem in a truncated computa-
tional domain with modified boundary conditions [40].
More sophisticated numerical methods that predict vesi-
cle dynamics in flows also predict equilibrium shapes by a
relaxation procedure [41–43]. Semi-analytical approaches
have also been directed to the modeling of regions of
high membrane curvature where elastic boundary layers
dominate the dynamics locally [36, 44]. In this work,
we use a pseudo-spectral method to solve Eq. (8) nu-
merically as described in section II B and Appendix B.
For completeness, in Appendix C we show and discuss
the connection between the general shape equation (8)
and the classical system of Euler-Lagrange shape equa-
tions widely used in the literature to compute stationary
shapes of axisymmetric vesicles (cf. a comprehensive re-
view by Sefeirt [32]).

B. Dimensionless equations and numerical

approach

The dimensionless form of the governing Eqs. (8), (11),
and the force relation (7) are

2∆̄bH̄ + 4H̄(H̄2 − K̄)− 2H̄Σ̄− P̄ = 0 , (14)

(r̄s)
2 + (z̄s)

2 = 1 , (15)

and

F̄ = −
(

dH̄

ds̄
r̄

)

s̄=0,L̄

(16)

where the over-bars denote dimensionless variables de-
fined by

s̄ = s
lc
, r̄ = r

lc
, z̄ = z

lc
, L̄ = L

lc
,

P̄ =
Pl3

c

κ , Σ̄ =
Σl2

c

κ , H̄ = H lc , K̄ = K l2c , (17)
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and the dimensionless boundary conditions become

r̄(0) = 0 , r̄(L̄) = 0 , (18)

z̄s(0) = 0 , z̄s(L̄) = 0 . (19)

Accordingly, the dimensionless area, volume, and the ax-
ial force are

Ā =
A

4πl2c
, V̄ =

V

(4π/3)l3c
, (20)

F̄ =
F lc
4πκ

. (21)

Possible choices for the characteristic length scale are
defined in terms of area, volume, pressure, tension,
length, axial force, and height. In this work, we use the
area-defined characteristic length scale lc =

√

A/(4π)
and equations (14)-(15) with boundary conditions (18)-
(19) are solved numerically using an implicit pseudo-
spectral method [45, 46] where three parameters (e.g.,
area, volume and length) are specified for constrained
vesicles. The resulting non-linear system of algebraic
equations is calculated using Newton’s method. For un-
constrained vesicles, an additional condition Hs = 0 is
enforced that relaxes one of the three parameters speci-
fied for constrained vesicles; typically, in this case, the
total area and volume are specified, the pressure and
tension are determined, and the length and height are
calculated self-consistently. Details on the numerical im-
plementation are presented in Appendix B. Departure of
vesicle shapes from quasi-spherical configurations is usu-
ally quantified by the reduced volume [32, 47]

ν =
V̄

Ā3/2
, (22)

where 0 < ν ≤ 1, and physically it represents how de-
flated the vesicle is according to the ratio of the vesicle
true volume to the volume of an equivalent sphere with
the same true area. For lc =

√

A/(4π), the reduced
volume equals the dimensionless volume, V̄ ; this is the
choice of characteristic length scale used in the results
presented in section III.

III. RESULTS

In this section, stationary shapes of axisymmetric vesi-
cles are presented. A detailed stability analysis of sta-
tionary contours is not pursued in this study and we re-
port vesicle contours with two-fold symmetry only. We
present the bending energy of these solutions, and the
expectations are that, without any additional external
forces, the lowest energy cases are the physically stable.
The multidimensional parameter space of the problem

spans vesicle shapes with defined surface area, volume,
length, height, pressure, tension, axial force, and bend-
ing energy. This parameter space is large and our results
show a complementary class of stationary shapes stem-
ming from the classical bending energy branch of prolate,
unconstrained vesicles that, in certain limits, compare
qualitatively with recent experimental results of spindle-
like GUV configurations [19, 22] and with multi-lobed
shapes of biological cells [48].

Contours of prolate, unconstrained vesicles in agree-
ment with classical results of Seifert, Berndl and
Lipowsky [27] are obtained from the numerical solution
of the dimensionless shape equation (14) using the ar-
clength relation (15) and boundary conditions (18)-(19)
with the additional condition that Hs = 0 (i.e., F = 0)
at the poles. Values of total area and volume are spec-
ified and the Lagrange multipliers P̄ and Σ̄, the height
h̄0, and the length L̄ are determined. Figure 2(a) shows
the bending energy (5) of prolate, axisymmetric vesicles
as a function of the reduced volume, ν, as defined in (22);
the corresponding values of pressure, tension, height, and
length are shown in Figs. 2(b)-(c). Note that the criti-
cal pressure and critical tension at which quasi-spherical
vesicles become unstable to infinitesimal shape perturba-
tions (i.e., −P̄ /2 = Σ̄ = 6 at ν = 1 )[27, 49] are recovered
as shown in Fig. 2(b).

Constrained vesicle shapes are calculated from solu-
tions to Eqs. (14)-(15) and boundary conditions (18)-(19)
where the condition Hs = 0, enforced for unconstrained
vesicles, is relaxed for given surface area and volume;
thus, another parameter of the problem needs to be spec-
ified. For instance, one could fix the height of the vesicle
leading to a non-zero point force F acting at the poles,
where the length L of the vesicle is free to vary; or, one
could fix the length L of the vesicle and let the height
and axial force be determined self-consistently.

Figure 3 shows results for the bending energy (5) and
axial force (7) acting at the poles of axisymmetric vesicles
as a function of reduced volume. The solid black line is
the prolate branch shown in Fig. 2(a) and we investigate
vesicle shapes stemming from this curve starting from a
vesicle with reduced volume ν0 = 0.90 as indicated by
point (d) in Fig. 3; the dotted lines emanating from the
solid black line represent bending energies of four-, six-
, and eight-lobed unconstrained vesicles branching from
shape perturbations about a quasi-spherical contour and
are added for comparison purposes only. Starting from
point (d) in Fig. 3, two branches of solutions arise by fix-
ing the dimensionless area and dimensionless length, and
by varying the reduced volume or, equivalently, the di-
mensionless transmembrane pressure difference. For ex-
ample, the green line corresponds to pressurized or “in-
flated” vesicles where P̄ is decreased (i.e., the internal
pressure is increased relative to external one); whereas
the red solid line represents “deflated” vesicles where the
external pressure is increased relative to the internal one.
Results for the axial force, F , are given by the dash-
dotted lines in Fig. 3 and are calculated using Eq. (E15),
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FIG. 2. Bending energy of unconstrained vesicles versus reduced volume, ν, (a) (cf. Fig. 8 in Ref.[27]); results for pressure
and tension (b), where the critical pressure and tension at which spherical shapes become unstable to infinitesimal shape
perturbations yielding branches of prolate or oblate vesicles (i.e., −P̄ /2 = Σ̄ = 6 at ν = 1) is recovered [49]; corresponding
values for vesicle length and height (c).

where the Lagrange multiplier η defined in Appendix C is
determined from relations (C7) and (C14) using the nu-
merical values of pressure, tension, the radial coordinate,
and the principal curvatures evaluated at the equator
(i.e., at s = L/2).

As we increase the internal pressure of the vesicle (or
inflate the vesicle) from point (d) in Fig. 3, the bend-
ing energy increases followed by a change in sign of the
pressure difference across the membrane, where the in-
ternal pressure exceeds the external one (i.e., P̄ < 0),
leading to vesicle shapes with high-curvature regions at
the poles relative to other parts along the contour [50].
This is illustrated in the sequence of shapes (d)-(a) on
the right of Fig. 3, where the first shape transition leads
to a spindle-like configuration (see Fig. 3(c)) followed by
limiting shapes with elongated tips (or tethers) at both
poles. Back to the unconstrained prolate shape labeled
as (d) in Fig. 3, higher-energy stationary shapes along
the red solid line are reported as the internal pressure
decreases relative to the external one (or as the vesicle
deflates) yielding shapes with increasing number of lobes
as seen in the sequence of shapes (d)-(j) shown on the
right of the same figure. The points where the dotted
black lines for four-, six-, and eight-lobed unconstrained
vesicles are tangent to the red solid line correspond to
the zeroes of the axial force characterizing transitions in
lobe number due to a local change in sign of curvature
at the poles according to Eq. (7). Initially, the prolate
shape dimples at the poles and the point force is com-
pressive. The height of the vesicle decreases and the axial
force becomes tensile when ν ∼ 0.7 initiating a transition
from four- to six-lobed shapes. We hypothesize that this
tensile force acting at the poles hinders self-intersection
of the contour when the height is close to its minimum
value around ν ∼ 0.5.

Moving in the direction of reduced volumes ν . 0.7,
the axial force is tensile and non-monotonic following an
increase in vesicle height; a transition from six- to eight-
lobed shapes initiates at ν ∼ 0.77 when the force becomes
compressive again. Similar transitions are expected to
happen for even higher modes. The end points in Figs. 3

TABLE I. Parameter values for length, bending energy, pres-
sure, tension, height, and axial point force for the vesicle
shapes marked as (a)-(j) in Fig. 3. Dimensionless variables
as defined in Eqs. (17) and (21).

Shape ν Ēb P̄ Σ̄ h̄0 2F̄
(a) 0.99 3.99 -2614 1328.5 2.72 51.44
(b) 0.97 2.02 -412.9 215.0 2.94 22.02
(c) 0.93 1.27 -42.11 23.60 3.00 5.26
(d) 0.90 1.19 11.34 -5.11 2.86 0
(e) 0.70 2.86 27.60 -9.89 0.96 -1.03
(f) 0.56 3.37 37.60 -10.29 0.17 5.20
(g) 0.45 4.24 42.60 -9.08 0.22 8.68
(h) 0.54 5.06 51.34 -12.34 1.00 6.45
(i) 0.85 2.74 73.34 -34.03 2.60 -4.25
(j) 0.82 4.79 98.34 -39.90 1.24 1.42

are the final converged shapes obtained from the numer-
ical procedure summarized in Appendix B. All shapes
marked as (a)-(j) in Fig. 3 are shown in the Supplemen-
tary Material for completeness; relevant parameter values
for these shapes are listed in Table I.
The evolution of pressure and tension in response to

variations in reduced volume and bending energy are
shown in Fig. 4. A closer look into the shape evolution
near the north pole as one moves up the green solid curve
in Fig. 3 is depicted in Fig. 5(a), where Figs. 5(b) and
(c) show the values of the axial force and vesicle height
as a function of reduced volume, respectively. Tether
formation occurs after a maximum height is achieved fol-
lowing a monotonic increase of the axial force that grows
rapidly for limiting shapes with reduced volume close to
one. This divergent behavior of the axial force and of the
isotropic effects of pressure and tension shown in Fig. 4
are a consequence of the geometric limits imposed by fix-
ing the dimensionless area and dimensionless length (i.e.,
the volume is bounded) and is reflected by the rate of
decrease of the tether neck radius according to a scal-
ing between the axial point force and the tether radius
F ∼ r−1

t in the limit when the tether shape can be ap-
proximated by a cylinder with radius rt [37].
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This analysis can be directly extended to solution
branches starting at different initial reduced volumes, ν0,
along the prolate branch (black solid lines in Figs. 2(a)
and 3) and the interpretation of the results are qualita-
tively the same. Note that the classical prolate branch
of two-lobed unconstrained vesicles forms an envelope
of lowest-energy contours, and spindle-like shapes are
observed for dimensionless volumes close to the spher-
ical limit (i.e., ν ≈ 1), as illustrated by the contour of
Fig. 3(c), in agreement with previous results in the liter-
ature [23, 24].

IV. NUMERICAL MAPPING OF SPINDLE

SHAPES

In this section we propose an approach to map a re-
gion of spindle shapes determined numerically within
a multidimensional bending energy landscape. We ex-
pand and restrict the energy diagram shown in Fig. 3 to
segments of energy branches of vesicle contours having
positive meridional curvature only (i.e., c1 > 0 for all
0 ≤ s ≤ L), which originate from the lowest energy pro-
late branch of unconstrained vesicles given by the black
solid line in Fig. 3. Results are shown in Fig. 6 where
the purple lines represent the bending energy of vesicle
shapes with positive curvature. The region spans vesicle
branches of fixed dimensionless area and dimensionless
length (and variable reduced volume) starting from un-
constrained vesicles with reduced volumes in the range
0.46 ≤ ν0 < 1. Unconstrained vesicles with reduced vol-
umes ν0 & 0.85 have positive curvature c1 along the con-
tour and hence the purple lines originate from the black
dashed line in Fig. 6 in this range. The first filled circle
marks the branch of solutions starting from ν0 = 0.72
where the concavitiy of the pressure and tension curves
versus reduced volume changes sign. Red filled circles
indicate the additional region of possible spindle shapes
predicted by numerical analysis relative to the range of
spindle shapes observed experimentally marked by black
filled circles (for more details on the experimental results,
see section V); open diamonds and squares indicate lim-
iting shapes for a given energy branch, and open circles
are arbitrarily chosen shapes within each interval as il-
lustrated by the representative shapes in Fig. 6.
Figure 7 highlights the aforemenetioned change in con-

cavity of the pressure and tension curves for the en-
ergy branch originated from ν0 ∼ 0.72 along which
∂2Σ̄/∂ν2|Ā,L̄ > 0 and ∂2P̄ /∂ν2|Ā,L̄ < 0. We hypoth-
esize that this inflection point in the tension and pres-
sure curves with respect to reduced volume delineates
a region of vesicle shapes that could potentially turn
into a spindle configuration as the vesicle is pressur-
ized. Inspection of curvature profiles versus arclength for
each shape along the energy branches with c1 > 0 and
∂2Σ̄/∂ν2|Ā,L̄ > 0 shows that spindle shapes occur beyond
or at points where the concavity of the merdional curva-
ture c1 changes sign at the equator (i.e., at s = L/2).

All the filled circles in Figs. 6 and 7 mark this change in
concavity of c1.
Figure 8 shows a three-dimensional version of the

bending energy diagram depicted in Fig. 6 for reduced
volumes, ν ≥ 0.90, where the extra dimension is the vesi-
cle length. The additional black solid lines in Fig. 8 rep-
resent vesicle shapes with dimpled regions at the poles
only (i.e., where c1 ≤ 0 locally) and positive meridional
curvature everywhere else. Dimpled shapes are obtained
by initially compressing unconstrained vesicles (or by de-
flating them via modulations of pressure and tension as
shown by the red solid curve in Fig. 3). Representative
shapes are shown in Fig. 8 and are marked by open dia-
monds on the plot as a reference. Figure 8 indicates that
spindle and dimpled shapes at the poles may coexist in
a finite region of the bending energy landscape due to
perturbations in axial forces or isotropic stresses about
unconstrained vesicle configurations.
Our numerical results show that spindle-like shapes are

characterized by configurations where the internal pres-
sure is greater than the external pressure (i.e., P̄ < 0)
[50], whereas results for unconstrained vesicles present
excess external pressure, as seen in Fig. 2(b). This indi-
cates that by controlling the membrane pressure-tension
response to external stimuli, one could design an ex-
perimental system where higher-energy spindle shapes
could be observed. In fact, spindle shapes reported in
Fig. 3 are in qualitative agreement with spindle configu-
rations of GUVs observed experimentally and driven by
different mechanisms, e.g., by the axial growth of micro-
tubules [18], the strain of GUVs in nematic liquid crystals
[19, 20], and, more recently, by modulations of an exter-
nally applied, uniform electric field [22] as discussed in
Section V.

V. EXPERIMENTAL OBSERVATION OF A

SPHERE-TO-SPINDLE TRANSITION OF GUVS

IN A UNIFORM ELECTRIC FIELD

GUVs were prepared from DOPC (dioleoylphos-
phatidylcholine) using the standard procedure of electro-
formation [51]. GUVs response to a uniform AC electric
field was studied in a custom-made chamber [52]. In an
AC uniform electric field, vesicles display a frequency-
dependent ellipsoidal deformation [53–56]. A vesicle
adopts a prolate spheroidal shape at low frequencies. If
the vesicle is filled with a solution that is less conducting
than the suspending medium, i.e., the ratio of inner and
outer conductivities Λ = λin/λex < 1, increasing the fre-
quency induces an oblate spheroidal deformation. The
prolate-to-oblate transition occurs a critical frequency
[57]

fc =
λin

2πaCm
[(1− Λ) (Λ + 3)]

−1/2
, (23)

where a is the initial radius of the vesicle, and Cm is the
membrane capacitance; typically, the critical frequency is
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FIG. 3. Bending energy Eb given by Eq. (5) normalized by the bending energy of a unit sphere versus reduced volume, ν;
vesicle shapes with fixed area, Ā, and length, L̄, and variable volume.
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FIG. 4. Pressure P̄ and tension Σ̄ for vesicle shapes repre-
sentative of the results shown in Fig. 3 shown in part (a);
combined effect of pressure and tension (b). Both plots are
functions of the reduced volume, ν.

in the range of 10 to 100 kHz. At the critical frequency,
the vesicle is spherical at low field strengths. However,
increasing the field amplitude induces several responses,
including transition to a spindle-like shape.

A. Vesicle responses to an electric field with an

increasing amplitude

The experimental phase diagram for vesicle shapes in
a uniform AC electric field with amplitude in the range
of 0-20 kV/m and a frequency at the oblate-prolate tran-
sition is shown in Figure 9. Each DOPC vesicle was
observed for 60 seconds, longer than the inverse growth
rate of dynamic interfacial instabilities predicted by lin-
ear stability analysis [58–60]. Hence, it can be safely
assumed that vesicles sufficiently explored the dynamics
and the shapes are stationary.

We observe that the vesicle shape is sensitive to the ini-
tial membrane tension (measured in the absence of elec-
tric field). At high membrane tension Σ ∼ 10−7 − 10−6

N/m, increasing the electric field strength to 20 kV/m did
not induce any morphological changes and the vesicles
fluctuated about their quasi-spherical shapes at the crit-
ical frequency. Such vesicles are referred herein as stable
vesicles. At significantly lower tension Σ ∼ 10−8 − 10−9

N/m, the vesicles exhibited stable shapes up to a field
magnitude of 10 kV/m, with recorded decrease in shape
fluctuations (see Fig. 10b). However, above 10 kV/m,
vesicle shapes transitioned into spindle-like configura-
tions. Shape transitions from quasi-spherical to spindle-
like shapes occurred on a time scale of 20-30 seconds; an
example of spindle formation from quasi-spherical vesi-
cles is shown in Video S1 of the Supplementary Mate-
rial. We also observed that non-spherical vesicles aligned
their major axis of deformation along the field direction
similar to electrically-driven prolate shapes. The vesi-
cles studied experimentally sustained their shapes during
each observation window for electric field strengths up to
20 kV/m. Turning off the field led to recovery of the ini-
tial quasi-spherical configurations and hence the shapes
reported in Fig. 9 are reversible. Tensionless GUVs with
membrane tension Σ < 10−9 N/m dimpled at the poles
upon increasing the field strength above 15 kV/m. Fur-
ther field increase led to the growth of shape instabil-
ities where the vesicles transformed into two transient
and connected spindle shapes. We observed that one of
the spindle-shaped compartment would grow randomly
and the other would shed away reducing the excess area
and increasing the membrane tension. The evolution of
the shapes and instabilities described above for initially
tensionless giant vesicles is shown in Video S2 of the Sup-
plementary Material.

In general, the above observations depend on electric
field strength, membrane tension, bending rigidity, and
GUV size. Two dimensionless numbers describe the im-
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FIG. 6. Bending energy, Eb, normalized by the bending of
a unit sphere versus reduced volume, ν. Bending energy of
freely suspended, unconstrained vesicles (dashed line), forced
vesicle shapes with positive meridional curvature for all s
(continuous lines); open diamonds and circles indicate ex-
treme shapes along each solid line; filled circles mark the
transition to a region of possible spindles and open circles in-
dicate arbitrarily chosen shapes within each branch (spindles
for ν0 ≥ 0.72). Range of initial reduced volumes of force-free
vesicles, ν0, starting from 0.46 (far-left) to 0.98 (second-last
far-right) in 0.2 increments in reduced volume; the last curve
on the right starts with ν0 = 0.995. Inset shows enlarged re-
gion for the ν0 = 0.50 energy curve. Vesicle contours along
branches starting at ν0 = 0.50, 0.72, and 0.92 as indicated by
the symbols.

portance of these variable parameters: electrical capillary
number,

Cael =
ǫ E2

0a
3

κ
, (24)

and the reduced volume (or excess area, ∆).
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FIG. 7. Pressure P̄ and tension Σ̄ for vesicle shapes repre-
sentative of the results shown in Fig. 3; plots are functions of
the reduced volume, ν. The dashed line refers to the average
tension of all solid circles equal to 6.64.

The electric capillary number compares shape pre-
serving bending stresses to shape distorting electrical
stresses, where ǫ is the electric permittivity and E0 is
the electric field magnitude. Previously, Dahl et al. [61]
determined excess area by measuring contour fluctua-
tions. However, as pointed out by Zhou et al.[62], the
fluctuations in the azimuthal direction are ignored in this
method and the excess area is approximated. We circum-
vent this problem by directly pulling out all the fluctua-
tions in ellipsoidal deformation by applying uniform AC
field with an increasing amplitude. The excess area is cal-
culated from the highest aspect ratio [22]. The relation
between excess area and reduced volume (22) is

ν =

(

1 +
∆

4π

)−3/2

. (25)

The results shown in Fig. 9 indicate three characteristic
shapes in the (∆, Cael) phase space: i) stable vesicles,
where the vesicle shape fluctuates around a mean quasi-
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FIG. 8. Three-dimensional version of Fig. 6 including the vari-
ation of length the vesicles as indicated. Black line represent
shapes of vesicles with dimpled regions at the poles; extreme
contours marked by open diamonds are shown on the right,
where ν0 is the reduced volume of the initial freely suspended
vesicle of each solution branch.

spherical contour, for Cael < 104 and excess area 0 − 2;
ii) spindle-like vesicles for Cael > 104 and excess area
between 0.2 − 1.2; and iii) unstable vesicle shapes with
dimpled regions at the poles for Cael > 104 and excess
area greater than 0.5.

B. Electric field increases tension

Flickering spectroscopy [63] of the vesicles in the ab-
sence and presence of an electric field indicates that
the tension increases. In brief, the method analy-
ses a time series of vesicle contours in the focal plane
(the equator of the quasi-spherical vesicle). The quasi-
circular contour is decomposed in Fourier modes, r(φ) =

a
(

1 +
∑

q uq(t) exp(iqφ)
)

. The fluctuating amplitudes

uq are independent and have mean square amplitude de-
pendent only on the membrane bending rigidity κ and
the tension σ

〈|uq|2〉 ∼
kBT

κ
(

q3 + Σ̄q2
) (26)

where, kBT is the thermal energy, κ is the bending rigid-
ity, Σ = σR2/κ is the dimensionless membrane tension,
q is the mode number, and q=(qx, qy) is the wave vec-
tor conjugate to position (x, y), where x is the direction
along the membrane undeformed plane, and y is the di-
rection normal it. In real space, GUV equatorial fluctu-
ations were measured from an average value, a0. Hence,
we average out the theoretical spectrum (26) in the qy di-

rection to get 〈|uq|2〉 ∼ kBT

κ(q3+Σ̄q)
[63–65]. The low modes

(q <
√
Σ̄) are dominated by the tension.

E0

Cael

∆
FIG. 9. Phase diagram of vesicles at the critical frequency
(23) in AC electric field as a function of excess area ∆ and
electrical capillary number Cael. The inner and outer solu-
tions are 1 mM NaCl (conductivity 126± 1µS cm−1) and 1.5
mM NaCl (conductivity 186±1µS cm−1), respectively. Open
blue circles represent stable vesicles where the contours fluc-
tuate about their mean quasi-spherical shape. The filled red
circles represent the spindle-like vesicles, and red diamonds
represent vesicles showing invagination at the poles followed
by shape instabilities. See Videos S1 and S2 in the Supple-
mentary Material for full dynamics of the shape transforma-
tions.

Figure 10 shows the change in fluctuation spectrum
(26) as the applied field magnitude increases from 0-5
kV/m. The overall spectrum shift illustrated in 10(a) in-
dicates a decrease in fluctuations following an increase in
field strength. The overall decrease in amplitude of large
wavelength (low wavenumber) fluctuations is shown in
the probability density function (pdf ) plots of Fig. 10(b).
Quantitatively, this decrease can be characterized by the
root mean square displacement (rmsd) of edge fluctua-
tions, σh, which is equivalent to the standard deviation of
a Gaussian distributed histogram of the fluctuation am-
plitude [66, 67]. The rmsd is independent of dynamics
which averages the fluctuation amplitude over time and
is independent of viscosity for an equilibrated system.
Without any applied electric field strength, the recorded
rmsd for membrane fluctuations were σh = 310±42 nm ;
on increasing the electric field strength, the fluctuations
decreased to σh = 198± 9 nm. Using Fourier modes as a
proxy for the GUVs’ microscopic configurations, we find
the presence of a zero probability flux between different
modes using detailed balance [68]. Details are given in
appendix F 4 indicating that fluctuations are thermally
driven even in the presence of electric field. Figure 10(c)
shows an increase in membrane tension with electric field
strength obtained by fitting the experimental data to
Eq. (26) for 11 different vesicles which is associated with
an overall decrease in membrane fluctuation with electric
field strength as depicted in Figs. 10(a)-(b).
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〈|uq|2〉

(a)

q

(b)

(c)

FIG. 10. a) Experimental shape fluctuation spectra as a function of mode number q for GUVs as a function of the electric field
strength. The solid lines are obtained from the theoretical fit of Helfrich’s spectrum (26) yielding membrane tension. b) Images
and probability distribution of fluctuation amplitude of the vesicles at two different electric fields for part (a). c) Increase in
membrane tension for an ensemble of eleven different vesicles as the electric field is switched from 0 to 5 kV/m. The inner and
outer solution salt concentration are 0 mM NaCl and 1 mM NaCl respectively.

C. Comparison of experimental and

theoretical results

Spindle-like configurations are observed in the numer-
ical results shown in Fig. 6 for reduced volumes in the
range 0.75 . ν < 1 represented by filled circles; see,
for instance, the shape in Fig. 3(c). This range of re-
duced volumes encompass the experimental range of re-
duced volumes reported in Fig. 9 where spindle shapes
are verified, i.e., 0.87 . ν < 1 (or excess area between
0 < ∆ . 1.2). Inspection of Fig. 9 indicates an overlap-
ping region of filled red circles and red diamonds where
spindle and dimpled shapes may coexist for reduced vol-
umes ν & 0.9; this range of reduced volumes is in qualita-
tive agreement with the region of coexisting spindle and
dimpled shapes shown in the three-dimensional phase
space of Fig. 8. Moreover, numerical results of Fig. 7
show that spindle configurations are driven by a signifi-
cant increase in membrane tension for reduced volumes
near one. This is in qualitative agreement with electric-
field driven increase in membrane tension followed by
a decrease in overall shape fluctuations and increase in
field strength (cf., Figs. 10(b) and (c)). Shape trans-
formations from quasi-spherical vesicles at the critical
frequency are reported for high values of electric cap-
illary number Cael > 104 which can be reinterpreted as
a threshold of high values of critical dimensionless elec-
tric tension Σela2/κ at which spindle-like and/or dim-
pled shapes may be verified. The black filled circles in
Figs. 6 and 7 indicate the range of reduced volumes con-
templated by the experimental results of Fig. 9, and the
red filled circles represent the additional range of reduced
volumes where stationary spindle-like shapes are numer-
ically identified according to the assumptions presented
in Section IV.

VI. CONCLUSIONS

In this work we developed a numerical and experi-
mental study on stationary vesicle configurations driven

by the combined effect of isotropic stresses and localized
forces to interrogate membrane activity and induced me-
chanics of biological and synthetic cells. We show that
classical results for unconstrained vesicles [27] correspond
to an envelope of lowest-energy configurations which can
be driven to higher-energy stationary shapes by modula-
tions of pressure, tension, and axial forces as analogs to
externally applied fields. Numerical results reveal limit-
ing shapes of vesicles showing spindle-like configurations
and further tethering at the poles as the vesicle is pres-
surized or “inflated”. In the other direction, when the
vesicle is “deflated”, bifurcations in the energy diagram
show multi-lobed vesicle contours of increasing number
of modes. Typically, spindle-like shapes are reported for
vesicle reduced volumes near the spherical limit, and nu-
merical results indicate that spindle shapes occur when
the internal pressure of the vesicle exceeds the exter-
nal pressure. We propose a numerical methodology that
identifies a finite region in a vast parameter space of pos-
sible solutions, where stationary spindle-like shapes are
identified. We further interpret our numerical results in
the context of electric fields and show qualitative agree-
ment with spindle shapes observed experimentally when
giant vesicles in uniform AC fields are exposed to a broad
range of electric field strengths. The results of this work
elucidate some of the theoretical, numerical, and exper-
imental challenges related to the modelling and assay of
unconstrained or constrained, axisymmetric giant vesi-
cles. Our analysis can be extended to a broader set of
higher-energy states by allowing, for example, asymme-
tries in the packing of the lipid molecules (i.e., C0 6= 0),
and spatial variations of membrane material properties
(e.g., bending rigidity) leading to more detailed models
for the bending energy density (1).
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Appendix A: Derivation of the stationary shape

equations

For completeness, we present in this Appendix a
derivation of the general shape equation (8) extend-
ing the derivation for two-dimensional vesicles [69] to
three-dimensional, axisymmetric geometries. Stationary
shapes are determined when the first variation of the to-
tal elastic energy (6) is zero under small perturbations
in the shape. Here, we follow the standard differen-
tial geometry notation summarized in the Supplemen-
tary Material, where the mean curvature is given by,
H = (c1+c2)/2, which differs from the definition of mean
curvature appearing in Eq. (8) by a minus sign; the defi-
nition of the Gaussian curvature remains the same as in
Eq. (3). Assuming arclength parametrization, the per-
turbed shape of a vesicle can be written as

x̄(s, φ, ǫ) = x(s, φ) + δx(s, φ, ǫ) , (A1)

where the perturbation in shape is

δx(s, φ, ǫ) = ǫy(s, φ) , (A2)

and

y(s, φ) = u(s)xs(s, φ) + v(s)n(s, φ) , (A3)

where xs is the tangent vector along the arclength direc-
tion s, n is the outward-pointing normal vector following
the geometric convention shown in Fig. 1(b), and u and v
are magnitudes of perturbations in shape in the tangen-
tial and normal directions, respectively. For axisymmet-
ric geometries, perturbations in the azimuthal direction
can be neglected without loss of generality. Hence, the
coefficients of the first fundamental form of the slightly
deformed regular surface embedded in R

3 are

Ē(s, φ, ǫ) = x̄s · x̄s , (A4)

F̄ (s, φ, ǫ) = x̄s · x̄φ , (A5)

Ḡ(s, φ, ǫ) = x̄φ · x̄φ , (A6)

where the vectors (x̄s, x̄φ) locally span the tangent plane
at a point P on the perturbed surface where a normal
vector is given by

n̄(s, φ, ǫ) =
x̄s × x̄φ

W̄
, (A7)

where

W̄ (s, φ, ǫ) =
√

ĒḠ− F̄ 2 , (A8)

defines the metric of the deformed surface [33, 70] follow-
ing the derivation in the Supplementary Material. Ac-
cordingly, the coefficients of the second fundamental form
reduce to

L̄(s, φ, ǫ) = x̄ss · n̄ , (A9)

M̄(s, φ, ǫ) = x̄s φ · n̄ , (A10)

N̄(s, φ, ǫ) = x̄φφ · n̄ . (A11)

For surfaces of revolution where z is the axis of sym-
metry in the cylindrical coordinate system (r, φ, z), the
vector components of the unperturbed shape are

x(s, φ) = {r(s) cosφ, r(s) sin φ, z(s)} , (A12)

where 0 ≤ s ≤ L and 0 ≤ φ ≤ 2 π, and the normal vector
reduces to

n(s, φ) = {−zs cosφ,−zs sinφ, rs} . (A13)

In this case, the lines of curvature are equal to the para-
metric lines reducing the expressions for the principal
curvatures to

c̄1 =
L̄

Ē
, (A14)

and

c̄2 =
N̄

Ḡ
, (A15)

as shown in the Supplementary Material.
Substituting Eqs. (A12)-(A13) into Eqs.(A1)-(A11)

and using the arclength relation (11), the perturbed prin-
cipal curvatures (A14)-(A15) can be written as

c̄1(s, ǫ) = c1 + ǫ
(

vss + u c1s + vc21
)

+O(ǫ2) , (A16)

c̄2(s, ǫ) = c2 + ǫ
(rs
r
vs + vc22 + u c2s

)

+O(ǫ2) . (A17)

Thus,

H̄(s, ǫ) = H + ǫ

[

1

2
∆sv + v(2H2 −K) + uHs

]

+O(ǫ2) ,

(A18)

W̄ (s, ǫ) = r + ǫ r

[

(ur)s
r

− 2vH

]

+O(ǫ2) , (A19)

and

n̄(s, ǫ) = n(s)− ǫ r







rs
r
(c1 u+ vs)

0
c1c2 u+ c2vs






, (A20)
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where H and K are the mean curvature and Gaussian
curvature, respectively, the subscript s denotes arclength
derivatives, and n̄ is the perturbed normal vector defined
in Eq. (A7). For presentation purposes, Eqs. (A16)-(A20)
are carried out using an arbitrary, fixed value for the
azimuthal angle, φ = 0.
The first variation of the bending energy (5) with C0 =

0 is

δ(1)Eb
4πκ

=

∫

Γ

(

H̄2W̄ −H2W
)

ds , (A21)

where Γ indicates the vesicle contour where s1 ≤ s ≤ s2.
Inserting Eqs. (A18)-(A19) into (A21) yields

δ(1)Eb
2π

= 2κǫ

∫

Γ

[

2H(H2 −K)v

+u
(H2r)s
r

+H2us +H
(rvs)s
r

]

r ds ,

(A22)

and integrating by parts,

δ(1)Eb
2π

= 2κǫ

{
∫ s2

s1

[

2H(H2 −K) +
1

r
(Hsr)s

]

v rds

+(Hr)vs|s2s1 − (Hsr)v|s2s1
}

,

(A23)

where we assume that Hr → 0 as s → 0 and that Hsr is
finite at the poles. This is confirmed by the local analysis
presented in Appendix E. Hence, the first boundary term
in Eq. (A23) vanishes yielding

δ(1)Eb
2π

=

∫ s1

s2

[

4κH(H2 −K) + 2κ
1

r
(Hsr)s

]

δx · n r ds

− 2κ (Hsr)δz|s2s1
(A24)

where δx · n = ǫv and δx · n|poles = δz according to
Eqs. (A2) and (A3). The last term in the integrand of
Eq. (A24) is the Laplace-Beltrami operator acting on H
for axisymmetric geometries.
The variation of the point-force term in Eq. (6) de-

pends on the sign of the mean curvature. Assuming the
force is an odd function of the curvature at the poles
(i.e., F (H) = −F (H)), the total elastic energy (6) can be
written as

G̃ = Ẽ′(H,Σ, P ) + F (H)∆z|s2s1 (A25)

assuming symmetry of the forces acting at the poles,
where Ẽ′ = E′ for C0 = 0.
Hence, the variation of axial force in terms of H is

δ(1) (F (H)(z − z0))|s2s1 = F (H)δz|s2s1 . (A26)

Similarly, the first variation of the tension term in (4)
can be written as

δ(1)EΣ

2π
=

∫

Γ

Σ
(

W̄ −W
)

ds

= ǫ

∫

Γ

Σ

[

(ur)s
r

− 2vH

]

r ds ,

(A27)

and integration by parts yields

δ(1)EΣ

2π
= −

∫

Γ

∇sΣ δx · xs r ds−
∫

Γ

(2HΣ) δx · n r ds ,
(A28)

where the boundary term (Σr)u|s2s1 vanishes for a finite
tension. The O(ǫ) first variation of the volume is

δ(1)EP
2π

= P

∫

Γ

1

3

[

W̄ (n̄ · x̄)−W (n · x)
]

ds, (A29)

where the differential volume is defined as
∫

V

dV =
1

3

∫

∂V

dAn · x , (A30)

and the differential area is given by dA =√
EG− F 2du dv (see Supplementary Material). Using

relations (A19)-(A20) and definitions (A1)-(A3) and
integrating by parts yields

δ(1)EP
2π

= P

∫

Γ

δx · n r ds, (A31)

where P is the difference between exterior and interior
pressures across the membrane.
Setting to zero the total variation of the total elas-

tic energy (6) with respect to arbitrary perturbations in
shape yields

2κ∆bH+ 4κH(H2 −K)− 2HΣ+ P = 0 , (A32)

and the relation

F = 4πκ(Hsr) , (A33)

for the point force at the poles.
Letting H = −H following the notation in Refs. [27,

32] recovers the shape equation (8) and the axial force
balance (7). Note that the minus sign applies to the
definition of the mean curvature, and the definition of
the principal curvatures remains the same as in Eqs. (9)
and (10).

Appendix B: Pseudo-spectral numerical solution

In this Appendix, we present details of the pseudo-
spectral numerical solution of Eqs. (14)-(15) and bound-
ary conditions (12)-(13). Here, the characteristic length
scale is lc = L, and the solution domain is mapped onto
the interval −1 ≤ x̂ ≤ 1. Using a change of variable,

x̂ = 1− 2ŝ , (B1)

the governing equations and boundary conditions reduce
to

− [r̂(4ĉ1 + ĉ2)x]x −
r̂

2
(4ĉ1 + ĉ2) (4ĉ1 − ĉ2)

2

+
Σ̂

κ̂

r̂

4
(4ĉ1 + ĉ2)−

r̂

8

P̂

κ̂
= 0 ,

(B2)
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(r̂x)
2 + (ẑx)

2 =
1

4
, (B3)

r̂(0) = 0 , r̂(1) = 0 , (B4)

ẑs(0) = 0 , ẑs(1) = 0 , (B5)

where the over-hat superscript denotes variables normal-
ized by L. The computational domain is discretized in
N + 1 Chebyshev collocation points,

x̂i = cos

(

(i− 1)π

N

)

, i = 1, . . . , N + 1 , (B6)

and the resulting system of non-linear algebraic equations
is solved using Newton’s method. The results shown in
section III were computed with N = 75 where spectral
accuracy is verified.

1. Numerical convergence

We present numerical results for the third-derivative
of the spatial variable r for a hypothetical, opened vesi-
cle shape at the poles as an example of numerical con-
vergence of our results away from the singular limit of
closed, constrained vesicles at s = 0. Equations. (14)-
(15) are solved with modified boundary conditions r̂(0) =
r̂(1) = δ/L and ẑs(0) = ẑs(1) = 0 for N = 45, 35, 25, 15
(top to bottom curves) shown in Fig. 11(a)-(c); values
for the circular spacing at both ends of the vesicle are
indicated in the figure. Each plot (a)-(c) is obtained by
fixing the area and length of the vesicle, and changing the
volume. This is equivalent to moving up the solid-green
curve in Fig. 3 starting from a reduced volume of 0.90
by volume increments ν = ν dν where dν = (1.0052) is
the incremental change. Exponential convergence is ver-
ified as the number of points increases, as indicated by
the relative distance between pairs of points for a fixed
arclength.

Appendix C: Tilt-angle formulation for

axisymmetric vesicles

The tilt-angle formulation has been extensively used in
numerical analyses of stationary shapes of axisymmetric
vesicles [32], where the tilt angle ψ is subtended between
the tangent vector to the surface and the horizontal di-
rection, as illustrated in Fig. 1(b). In this Appendix,
we revisit this formulation following the derivation pre-
sented in Refs. [27, 71] for completeness of presentation
and further comparison with the numerical results shown
in section III. First, a derivation of the shape equations

assuming constant-force ensemble is presented and com-
ments are made about the dynamically equivalent shape
equations assuming constant-height.
The general shape equation (8) can be recast as a

system of non-linear ordinary differential equations for
axisymmetric vesicles by minimizing the total energy
functional (6). In the tilt-angle approach, the variables
(r, z, ψ; rs, zs, ψs) are taken as independent “coordinates”
and “velocites”, where arclength plays the role of time
in classical mechanics; thus, the geometric relations be-
tween the spatial coordinates (r, z) and the tilt angle

rs = cosψ , zs = − sinψ , (C1)

are enforced via Lagrange multipliers (γ, η), respectively,
where ψ ∈ [0, π] for 0 ≤ s ≤ L. The total elastic en-
ergy (6) can be written in the terms of a “Lagrangian”
function, L, as follows

G′
L = 2πκ

∫ s2

s1

L(r, rs, zs, ψ, ψs) ds− F∆z|s=s1 , (C2)

where s1 and s2 are the arclength measures at the north
and south poles, respectively, and

L =
r

2

(

ψs +
sinψ

r

)2

+
Σ

κ
r +

1

2

P

κ
r2 sinψ

+ γ(rs − cosψ) + η(zs + sinψ) .

(C3)

In Eq. (C3), the membrane is assumed symmetric and
the principal curvatures are given by

c1 = −ψs , c2 = − sinψ

r
, (C4)

as shown in Appendix A and given by definitions (2), (9),
(10), and the geometric relations (C1).
Following Halminton’s principle of stationary action

derived in the Supplementary Material for completeness,
where the action functional is given by Eq. (C2) and
the arclength s is treated as time, extrema conditions
on the membrane elastic energy are obtained by path
variations of the energy functional in the configurational
space spanned by the coordinates (r, z, ψ). Combining
Eqs. (2.3) and (2.6) in the Supplementary Material, the
variation of the elastic energy reduces to

δG′
L

2πκ
=

∫ s2

s1

{[

∂L
∂ψ

− d

ds

∂L
∂ψs

]

δψ +

[

∂L
∂r

− d

ds

∂L
∂rs

]

δr

+

[

∂L
∂z

− d

ds

∂L
∂zs

]

δz

}

ds−H∆s|s2s1+
∂L
∂ψs

∆ψ

∣

∣

∣

∣

s2

s1

+
∂L
∂rs

∆r

∣

∣

∣

∣

s2

s1

+
∂L
∂zs

∆z

∣

∣

∣

∣

s2

s1

− F

2πκ
∆z|s1 ,

(C5)

where δE′
L = 0 gives a stationary shape, and variations

of each coordinate at the poles are given by

∆r = δr+rs∆s , ∆z = δz+zs∆s , ∆ψ = δψ+ψs∆s ,
(C6)
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ŝ
FIG. 11. Numerical results for r̂sss versus arclength using lc = L for three difference circular gaps at the poles indicated by
δ/L.

according to (2.5) in the Supplementary Material. In
Eq. (C5), H ≡ L − ψs∂L/∂ψs − rs∂L/∂rs − zs∂L/∂zs
plays the role of the Hamiltonian of the system

H =
r

2

[

ψ2
s −

(

sinψ

r

)2
]

− Σ

κ
r − 1

2

P

κ
r2 sinψ

+ γ cosψ − η sinψ ,

(C7)

as defined in Eq. (2.7) in Supplementary Materials.
Given that the Langrangian function (C3) is not an ex-
plicit function of arclength, i.e. ∂L

∂s = 0, then

dH
ds

= 0 (C8)

and H is constant.
When δG′

L = 0, the terms in the integrand of Eq. (C5)
yield a system of Euler-Lagrange shape equations for ar-
bitrary variations of (r, z, ψ) as follows,

ψss =
cosψ sinψ

r2
− ψs

r
cosψ +

1

2

P

κ
r cosψ

+
γ

r
sinψ +

η

r
cosψ ,

(C9)

γs =
1

2
ψ2
s −

sin2 ψ

2 r2
+

Σ

κ
+
P

κ
r sinψ , (C10)

ηs = 0 , (C11)

where the Lagrange multiplier functions γ and η enforce
the geometric arclength relation (11) locally.
Boundary conditions (12)-(13) still apply for the sys-

tem of equations (C9)-(C11) and the geometric relations
(C1). Note that Eq. (13) combined with the arclength
relation (11) and the radial geometric constraint (i.e.,
rs = cosψ) yield equivalent boundary conditions for the
tilt angle,

ψ(0) = 0 , ψ(L) = π , (C12)

which enforce that the first three terms and the last term
in Eq. (C7) vanish, leading to

γ(0) = γ(L) = H , (C13)

where,

H ≡ 0 , (C14)

for arbitrary variations in arclength at the poles.
Constraints of constant area and constant volume can

be imposed globally using

AT −
∫ L

0

2πr ds = 0 , (C15)

and

VT −
∫ L

0

πr2 sinψds = 0 . (C16)

Equation (C14) implies that the length L of the vesi-
cle is determined self-consistently (i.e., for ∆s|poles 6= 0)
to satisfy the extremum condition on the elastic energy,
δE′

L = 0. Moreover, boundary conditions of fixed angles
at the poles and closed vesicle shapes yield ∆ψ|poles =
∆r|poles = 0, respectively. For non-zero changes in height
of the vesicle, ∆z|s1 6= 0, a point force

F = 2πκη , (C17)

is needed to enforce δE′
L = 0, where we assumed, by

symmetry, that the forces acting on both poles are equal
and point in opposite directions. The same relation for
the force (C17) is recovered in Appendix E using the
local behavior of the tilt angle (E7), the extremum of the
energy (6), and the definition of the axial force (7).
The system of Euler-Lagrange equations (C9)-(C11)

and boundary conditions (12), (C12), (C13), and C14
along with the geometric relations (C1), (C15) and
(C16) can be solved numerically for axisymmetric vesicle
shapes. A possible numerical approach is to use an im-
plicitly, two-point boundary value problem in a truncated
domain with modified boundary conditions to avoid coor-
dinate singularities at the poles [40]. This analysis can be
conducted for an ensemble of axisymmetric membranes
with edges (or holes at both poles) hold at a fixed separa-
tion by an axial force, where the same form of Eq. (C17)
has been derived in Ref. [72].
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In the constant-height scenario, the potential (C2) is
modified using relation (C17) directly,[35, 37]

G̃′ = 2πκ

∫ s2

s1

L̃(r, rs, ψ, ψs) ds , (C18)

where the axial force appears in the modified Lagrangian
and enforces the geometrical constraint of constant
height as follows

L̃ =
r

2

(

ψs +
sinψ

r

)2

+
Σ

κ
r +

1

2

P

κ
r2 sinψ

+ γ(rs − cosψ) +
F

2πκ
sinψ ,

(C19)

and

h0 +

∫ L

0

sinψds = 0 , (C20)

using zs = − sinψ. Taking the first variation of (C18)
following the steps used in the energy minimization of
Eq. (C5), yields a dynamically equiavlent system of
Euler-Lagrange equations (C9)-(C10) where one uses
Eq. (C17) to eliminate η. In this case, the boundary con-
ditions are r(0) = r(L) = 0, z(0) = 0 and z(L) = h0 with
the geometric constraints on area, volume, and height
given by (C15), (C16), and (C20), respectively. The
boundary terms in the energy minimization (cf. Eq. (C5))

yield the addition conditions of H̃ ≡ 0 for ∆s|poles 6= 0,
where

H̃ =
r

2

[

ψ2
s −

(

sinψ

r

)2
]

− Σ

κ
r − 1

2

P

κ
r2 sinψ

+ γ cosψ − F

2πκ
sinψ ,

(C21)

by definition H̃ ≡ L̃ − ψs∂L̃/∂ψs − rs∂L̃/∂rs, and the
condition of zero moment at the poles

(rψs + sinψ) |poles = 0 , (C22)

for ∆ψ|poles 6= 0. The numerical solution of the modi-
fied system of Euler-Lagrange equations determines the
pressure, tension, and axial force for specified values of
volume, area, and height, respectively; the length L and
the tilt-angle at the poles are determined self-consistently
such that H̃ is constant and the moment is zero.

Appendix D: Note on the correspondence between

shape equations

The direct correspondence between the general shape
equation (8) and Eqs. (C9)-(C11) is obtained by elim-
inating the Lagrange multiplier functions (γ, η) from
Eqs. (C9)-(C11) and (C7) using H ≡ 0.
The steps are as follows: (i) eliminate η = η(ψ, ψs, r, γ)

from Eq. (C7) setting H = 0; (ii) this expres-
sion is then used in Eq. (C9) to yield a relation for

γ = γ(ψ, ψs, ψss, r); (iii) finally, γ is eliminated from
Eq. (C10) by differentiation with respect to arclength.
This procedure results in a third-order shape equation in
the tilt angle as previously reported in the literature [71],
that can be recast in the form of Eq. (8) using definitions
(9)-(10) and relation (2).

This equivalence between the general form of the shape
equation (8) and the system of Euler-Lagrange equations
for axisymmetric vesicle shapes was a controversial topic
in the 90s and early 2000s [23, 71, 73–76]. Ou-Yang
and coworkers [73, 74] argued that the Euler-Lagrange
shape equations when parametrized by the radial dis-
tance from the symmetry axis to a point on the surface
[14, 31], or by arclength [27] led to different shape equa-
tions when compared to the general shape equation (8)
specialized to axisymmetric geometries. Zheng & Liu [75]
showed that both shape equations (see Eqs.(2) and (3)
in Ref.[75]) are relatable by a simple formula where the
Euler-Lagrange shape equation is cast as a first integral
of the more general, higher-order shape equation. In fact,
both equations yield the same results for closed vesicles
with smooth profiles where the constant of integration in
Eq.(5) of Ref.[75] is set to zero. This constant of integra-
tion can be associated with the axial point force discussed
above [35, 37] and hence vesicles with smooth, analytical
contours are freely suspended or unconstrained. In this
limit, vesicle contours are independent of the choice of
parametrization, the total length and the height of the
vesicle are free to vary, and the resulting vesicle profiles
reduce to a special subset of minimum energy, stationary
solutions to Eq. (8) [35]. The complementary, higher-
energy set of vesicle shapes obtained from Eq. (8) lose
analyticity at the poles where discontinuities in higher
order derivatives of space variables are predicted [23, 37].
These non-analytic stationary shapes are associated with
vesicle configurations resulting from the action of axial
point forces, or, equivalently from an additional geomet-
ric constraint of fixed vesicle height [23, 71, 77].

Blyth & Pozrikidis [76] revisited this topic and pointed
out inconsistencies in the derivation of the Euler-
Lagrange shape equations (C9)-(C11) with η = 0 when
the “Hamiltonian” function of this system is set to zero.
The authors presented numerical solutions to the gen-
eral shape equation (8) for axisymmetric shapes and en-
forced smoothness of the profile at the poles by setting
dc1/ds = 0 as one of the boundary conditions. Note that
this is equivalent to setting the axial point force to zero
(cf. Eq. (7)) which yields a special subset of stationary
solutions to Eq. (8). Hence, the results shown in Figs.
3(a)-(c) of Blyth & Pozrikidis are for freely suspended
vesicles and are in agreement with the results obtained
from the system of Euler-Lagrange shape equations re-
ported in Refs. [27, 71] with η = 0.

Blyth & Pozrikidis [76] also computed axisymmetric
shapes using a thin-shell formulation for isotropic ten-
sions and isotropic stress resultants integrated across the
membrane thickness. Their results indicate a broader set
of stationary shapes that arise from the solution of stress
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balance shape equations that are dynamically-equivalent,
not exactly equal to Eq. (8) or Eq. 3 in Ref. [76]. The
reason for this difference in form of the shape equations
is a consequence of the choice of the linear constitutive
equation for the meridional, Mm, and azimuthal, Mφ,
bending moments acting on a patch of membrane. For in-
stance, forMm = κc1 andMφ = κc2, the shape equations
derived from force-torque balance assuming isotropic lat-
eral tensions and isotropic integrated stresses derived in
Ref. [76] differ from the shape equation (8); however,
as shown in the Appendix of Powers et al. [36], the
general shape equation is recovered if the bending mo-
ments are defined in terms of the mean curvature, i.e.,
Mm =Mφ = κ(c1 + c2).
Some vesicle profiles reported in Ref. [76] are in quali-

tative agreement with the solutions shown in section III
of this work; however, self-intersection of the shapes in
multi-lobed branches or pinching dynamics at the poles
of vesicles with elongated tips are not verified herein for
vesicle shapes with two-fold symmetry. This suggests
that the physical conditions in both works are different
within a higher dimensional configurational space; more-
over, all numerical solutions in Ref. [76] are for uncon-
strained vesicles.

Appendix E: Local analysis of the tilt angle near the

poles

In this Appendix we show a local analysis of the shape
equations (C9)-(C11) near the pole (i.e., for |s| ≪ 1)
where we take ψ → 0 and r → 0. Since rs = 1 at s = 0,
it follows from Eq.(C1)(a) that r ∼ s to leading order.
In this limit, Eq. (C10) reduces to

γs ∼
Σ

κ
+

1

2

[

ψ2
s −

ψ2

r2

]

. (E1)

Since H ≡ 0, we assume r
[

ψ2
s − ψ2

r2

]

→ 0 as s→ 0 yield-

ing a linear, local behavior for the Lagrange multiplier
function,

γ ∼ Σ

κ
s , (E2)

implying that γ(0) = 0. Inspection of Eq. (C9) in the
limit as |s| ≪ 1, leads to

ψss ∼
(

ψ

s2
− ψs

s
+
η

s

)

+
1

2

P

κ
s+

γ ψ

s
. (E3)

Since both γ and ψ tend to zero as s→ 0, we neglect the
term ∼ (γψ)/s; note that the pressure also vanishes as
s → 0. Thus, to leading order, the tilt-angle is governed
by

s2ψss + sψs − ψ = −ηs , (E4)

that admits a homogeneous solution of the form,

ψ ∼ as+
b

s
, (E5)

where we set b = 0 since ψ → 0 as s → 0. A particular
solution to Eq. (E4) is

ψp = −1

2
η s ln s , (E6)

and hence the general solution local to s = 0 is

ψ ∼ a s− 1

2
η s ln s . (E7)

An equivalent local form for the tilt angle ψ has been pre-
viously reported in Ref. [35]. Inserting the local behavior
for the tilt angle (E7) into Eq. (E4) confirms, after inte-
gration, the leading order behavior of γ given by Eq. (E2)
using γ(0) = 0. In fact,

γ ∼ γ0 s+ γ1 s ln s (E8)

where

γ0 =
Σ

κ
− η

2

(

a+
η

4

)

, (E9)

and

γ1 =
η2

4
. (E10)

The local behavior for the spatial variables (r, z) can
be obtained directly from the local behavior of the tilt
angle ψ. Inserting Eq. (E7) into relations (C1), one gets
after integration

r ∼ s+ r1 s
3(ln s)2 + r2 s

3 ln s+ r3 s
3 +O(s5(ln s)4) ,

(E11)
and

z ∼ h0 + z1 s
2 log s+ z2 s

2 +O(s4(ln s)3) , (E12)

where the O(1) constant of integration in Eq. (E11) is set
to zero for closed shapes, h0 is the height of the vesicle at
s = 0 (north pole) and the south pole is located at the ori-
gin of the coordinate system illustrated in Fig. 1(b) (i.e.,
z(s2) = 0). The asymptotic coefficients in Eqs. (E11)
and (E12) are

r1 = − 1

24
η2 , r2 = η

(a

6
+

η

36

)

,

r3 = −a
6
− η

( a

18
+

η

108

)

,
(E13)

and

z1 =
η

4
, z2 = −

(a

2
+
η

8

)

, (E14)

respectively.
Equations (E11)-(E12) show non-analytic behavior for

the spatial variables (r, z) near the poles. If η = 0, r and
z can be expressed as Taylor series expansions of cosine
and sine about s = 0, respectively, since ψ ∼ as → 0 as
s → 0 and the logarithmic dependance is removed. In
this case, the contours are considered smooth for all s.



17

A direct relation between the Lagrange multiplier η
and the axial force, F , is obtained using definition (7) and
the asymptotic behavior of the tilt angle (E7), yielding

F = 2πκη , (E15)

where Hs ∼ ψss and r ∼ s. Smooth vesicle contours
with local analytic behavior for |s| ≪ 1 implies that
the axial force vanishes at the poles (i.e., the vesicle is
freely suspended) if, and only if, Hs = 0. Alternatively,
if the Lagrange multiplier η is nonzero and finite, the
point-force acting at the poles is also nonzero and fi-
nite since (Hsr)|poles is bounded for shapes with finite
energy. The non-analiticity of axisymmetric, closed con-
tours when η 6= 0 has been pointed out in the literature
in Refs. [23, 71]. Note that the local behavior of ψ lead-
ing to γ(0) = 0 implies that the “Hamiltonian” of the
system is constant and equal to zero for all s even when
η is nonzero and finite. In this case, the axial force is
sufficient to guarantee the interfacial force balance (8) at
the poles or, equivalently, to satisfy the condition that
the first variation of the total elastic energy (6) is zero
for all s (cf. Eq. A33 in Appendix A).

1. Effect of spontaneous curvature

The local analysis presented in Appendix E can be
extended to include the effect of spontaneous curvature,
where the shape equations (C9) and (C11) remain the
same, and Eq. (C10) becomes [71]

γs =
1

2
(ψs − C0)

2 − sin2 ψ

2 r2
+

Σ

κ
+
P

κ
r sinψ . (E16)

Inserting the rescaled forms of the tilt angle and tension

ψ̃ = ψ − C0r , (E17)

and

Σ̃ = Σ− 1

2
κC2

0 , (E18)

in Eq. (E16) yields

γs ∼
Σ̃

κ
− ψ̃

r
C0 +

1

2

[

ψ̃2
s −

ψ̃2

r2

]

. (E19)

We follow assumption (E2) where

γ ∼ Σ̃

κ
s , (E20)

is obtained by inspection of the Hamiltonian Eq. (C7)
using the condition H ≡ 0 given that

r

[

ψ̃2
s −

ψ̃2

r2

]

→ 0 , (E21)

γ ∼ rψ̃sC0 , (E22)

and γ(0) = 0. Hence, the governing equation for the

rescaled tilt angle ψ̃ has the same form as in Eq. (E4)
with solution given by

ψ̃ ∼ a s− 1

2
η s ln s , (E23)

where assumptions (E21)-(E22) are automatically sat-

isfied. Substituting the rescaled solution for ψ̃ into
Eq. (E19) yields the local behavior

γ ∼ γ̃0 s+ γ1 s ln s+O(s2 ln s) (E24)

where

γ̃0 =
Σ̃

κ
− η

2

(

a+
η

4

)

, (E25)

and γ1 is given by Eq. (E10).

Appendix F: Experimental methods

All imaging is done using a high speed camera at 60
fps (Photron SA1, USA) and optical microscope (phase
contrast Zeiss A1, Germany).

1. Electroformation

Giant unilamellar vesicles (GUVs) were formed from
lipid, dioleoylphosphatidylcholine (DOPC). The lipids
were purchased from Avanti Polar Lipids (Alabaster, AL)
and Polymer Source Inc. (Montreal, Canada), respec-
tively. Sucrose and Glucose were obtained from Sigma
Aldrich, USA. HPLC water (22934 grade) was purchased
from Fisher Scientific, USA. A small volume, 10 µl, of the
4 mM lipid solution concentration was spread on the con-
ductive surface of two glass slides coated with indium tin
oxide (ITO) (Delta Technologies). The glass slides were
then stored under a vacuum for 1–2 hours to remove
traces of organic solvent. Afterwards, a 2 mm Teflon
spacer was sandwiched between the glass slides and the
chamber was gently filled with 40 mM sucrose solution.
The slides (conductive side facing inward) were connected
to an AC signal generator Agilent 33220A (Agilent Tech-
nology GmbH, Germany). An AC field of voltage 1.5 V
and frequency 10 Hz applied for 2 hours at room temper-
ature, resulting in 10-50 µm sized vesicles. The harvested
vesicles were diluted 10 times in 44 mM glucose solution
to obtain fluctuating vesicles.

2. Bending rigidity measurement

Membrane tension was probed using the flickering
spectroscopy. The method takes advantage of non-
invasive data collection and well-developed statistical
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analysis criteria. The details of the method are high-
lighted in Gracia et al. [64] and Faizi et al. [65]. A time
series of fluctuating vesicles at the equatorial cross sec-
tion was recorded. The fluctuating contour is represented

in Fourier modes, r(φ) = a
(

1 +
∑

q uq(t) exp(iqφ)
)

.

The amplitude of the fluctuations uq can be presented
with mean square amplitude that depends on the mem-
brane bending rigidity κ and tension Σ, 〈|uq|2〉 ∼

kbT

κ(q3+Σ̄q)
, where kBT is the thermal energy (kB is the

Boltzmann constant and T is the temperature), Σ̄ =
ΣR2/κ, and a is the initial radius of the vesicle. The
integration time effect of the camera was minimized by
acquiring images at a low shutter speed of 200 µs. At
least 10,000 images were obtained for each vesicle for ro-
bust statistics.

3. Electrodeformation

The electrodeformation experiments are conducted in
an electrofusion chamber (Eppendorf, Germany). The
chamber is made from Teflon with two 92 µm cylindrical
platinum parallel electrodes 500 µm apart. The field is
applied using a function generator (Agilent 3320A, USA).
The function generator is controlled using a custom built
MATLAB (Mathworks, USA) program. This gives a pre-
cise control over the strength and duration of applied
electric fields.
The image acquisition rate for electrodeformation

recordings is kept to a constant of 60 fps for lipid vesicles
and the shutter speed is fixed to 300 µ s. The time evolu-
tion of the vesicle is analyzed using a home-made image
analysis software. The software uses a Fourier series to
fit the vesicle contour, rs =

∑∞
n=0 cn cos(nθ)+dn sin(nθ),

where rs is the vesicle contour radius at the azimuthal
angle θ, cn and dn are the amplitude of the mode number
n. The second mode in the series is used to determine the
major and minor axis, a1 and b1, of the deformed vesicles

to evaluate the aspect ratio α = (1 + c2)/(1− c2).

4. Detailed balance analysis

To check for the equilibrium nature of the fluctu-
ations, we tested for broken detailed balance in the
transitions between microscopic configurations based on
height-height membrane fluctuations [78] (see chapter 6
of Ref. [22] for more details about the method). The con-
figurations correspond to the shapes defined by different
Fourier modes. In equilibrium, it is equally likely for the
forward and backward transitions to occur between any
two different Fourier modes. A non-equilibrium system,
however, would display a probability flux in the phase
space of shapes. Figure 12 shows the probability density
map for Fourier modes 3 and 4 of vesicles fluctuations
in the absence and presence of electric field strength, as
indicated. The probability is defined as the ratio of the
time spent at a given state. The arrows indicate the
currents across box boundaries determined by counting
transitions between boxes. A nonzero value of the con-
tour integral of the probability current, Ω =

∮
C

j·dl∮
C

|j| dl
,

would indicate out of equilibrium dynamics. However,
we noticed for moderate electric field strength ranging
from 0-10 kV/m the detailed balance was not broken as
indicated by Ω ∼ 0. This implies that the fluctuations
are still thermally driven in the presence of electric field
as well.

We characterized the Gaussianity of the fluctuations
using the fourth PDF moment, Kurtosis, Kurt. For a
Gaussian distribution, Kurt = 3. In Figure 12 we demon-
strated the Kurtosis for every mode number for the same
vesicle in presence (7 kV/m) and absence of electric field
strength. Our results confirm the previous analysis of un-
broken Detailed balance with Kurtosis values Kurt ∼ 3
for membrane fluctuations in the presence of electric field
as well.
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